超精密加工的发展动向和展望
- 格式:doc
- 大小:52.50 KB
- 文档页数:8
超精密加工技术的发展及对策
1超精密加工技术的发展
超精密加工技术的发展为新材料的应用,新型机械的开发和精密电子设备的设计提供了基础技术。
它的应用领域涵盖了从航空航天到医疗器械,从芯片制造到高端家用电器,从汽车到电子产品。
在过去几十年中,超精密加工技术发展迅速,逐渐成为实现进步,满足我们日常生活需要的重要手段。
2超精密加工技术特点
超精密加工技术不仅对机械性能提出了更高要求,而且要求对工件尺寸和表面精度都必须有着较高的要求。
因此,提高工件表面精度的方法是提高加工和检测的准确性。
深度精度是指工件加工的精确度,也就是说,深度精度在一定范围内是恒定的,因此可以确保部件的精度,提高部件的整体精度,从而改善部件的质量和可靠性。
3超精密加工技术对策
伴随超精密加工技术发展,急需要完善体系,全面提高技术水平。
需要改善并完善设备、技术计算、检测等相关环节,提高技术方面的综合能力。
另外,针对不同行业的不同要求,研发更多的立体特种设备,加强培训,提高技术水平和技术创新能力。
再者,要加强技术和科研机构之间的交流和合作,不断完善技术创新体系。
最后,加大和企业之间的技术交流和经验交流,提问现实生产中的应用性,提高企业准确高效实施和维护超精密加工技术的能力。
随着科技的进步,超精密加工技术在日常生活中起到了重要的作用,它的发展能够直接带来更佳的生活质量。
同时为了更好的发展,要加强技术支持,提升技术水平,增加技术的应用性,从而让超精密加工技术发挥更大的作用。
精密与特种加工技术结课论文题目:超精密加工技术的发展与展望指导教师:沈浩学院:机电工程学院专业:机械工程姓名:司皇腾学号: 152085201020超精密加工技术的发展与展望摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。
根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。
精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。
本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。
在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。
创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。
环保也是机械制造业发展的必然趋势。
关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工【引言】精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。
实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。
超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。
通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。
在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。
过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。
超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。
它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。
现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。
想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。
在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。
光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。
超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。
激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。
不过,话说回来,技术再先进,也得面对一些挑战。
比如说,成本问题。
超精密加工的设备可不是白菜价,维护保养更是个大开销。
这让很多小企业在这条路上犹豫不决,真是让人心疼。
材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。
为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。
还有就是人才的培养。
这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。
现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。
真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。
说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。
你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。
超精密加工技术在未来机械领域的发展前景概述超精密加工技术在未来机械领域的发展前景[前言]近二十年以来机械制造业正以迅猛的发展步伐向精密加工、超精密加工发展,在未来的发展过程中精密加工、超精密加工将成为在国际竞争、市场竞争中取胜的关键技术。
现代制造业之所发要致力于提高加工精度,其主要原因在于提高产品的性能和质量,提高其质量的稳定性和性能的可靠性,促进产品的小型化、功能性强,零件互换性好,产品的装配、调试生产率高,并促进制造装配自动化。
随着制造业的发展,现在的精密机械加工正在从微米、亚微米级工艺发展,在今后的加工中,普通机械加工、精密加工与超精密加工精度可分别达到1μm、0.01μm、0.001μm(即1nm),而且超精密加工正在向原子级加工精度逼进(0.1nm)。
随着极限加工精度的不断提高,为科学技术的发展和进步创造了条件,也为机械冷加工提供了良好的物质手段。
关键词超精密加工发展趋势发展策略后续研发一、引言我们一提到超精密这个词语,就觉得它比较神秘,但跟任何其他复杂的高新技术一样,经过一段时间的熟悉、适应,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是如此。
实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。
超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。
二、正文超精密加工当前是指被加工零件的尺寸和形状精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,目前正在向纳米级加工技术发展。
超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。
美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。
英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。
行业综述超精密加工技术的发展现状与趋势北京机床研究所精密机电有限公司(100102) 贺大兴 盛伯浩 在全球技术竞争日益激烈的今天,超精密加工作为机械制造业中极具竞争力的技术之一,目前已受到许多国家的关注。
超精密加工技术是尖端技术产品发展不可缺少的关键手段,它不仅适于国防应用,而且可以大量应用于高端民用产品中,例如惯导仪表的关键部件、核聚变用的透镜与反射镜、大型天文望远镜透镜、大规模集成电路的基片、计算机磁盘基底及复印机磁鼓、现代光学仪器设备的非球面器件、高清晰液晶及背投显示产品等。
超精密加工技术促进了机械、计算机、电子、光学等技术的发展,从某种意义上来说,超精密加工技术担负着支持最新科学技术进步的重要使命,也是衡量一个国家制造技术水平的重要标志[1]。
超精密加工是一个相对的概念,它是相对于精密加工而言的。
当前普遍认为超精密加工是指加工精度高于0.1μm,加工表面粗糙度小于R a0.02μm 的加工方法。
超精密加工通常包括超精密切削(车削、铣削、刻划等)、超精密磨削、超精密研磨和抛光等,另外广义的超微细加工、纳米级以及原子级的加工等也属于超精密加工的范畴。
1 超精密加工技术的发展现状商业化的超精密加工技术应用可以追溯到上一世纪60年代美国,由于军事领域精密元件的需求,促使这一技术迅速发展。
到80~90年代,由于激光在各领域的广泛应用,各种类型的金刚石车床和镜面铣削机床不断出现,超精密加工技术在许多国家相继发展,除美国以外,英国、德国、前苏联、法国、日本、荷兰等许多国家都发展了这一技术,它的应用领域也不局限于军事领域,扩展到大量需求的民用领域。
到90年代中后期,超精密加工技术的多种配套技术包括工艺技术进入成熟期,定型的超精密设备逐渐增加,开始出现专业化制造的特点。
国际上从事超精密开发应用的公司以及机构经历了市场筛选和优势重组的阶段(例如新的Precitech公司合并了Pneumo超精密公司、Moore Nanotechnology Sys2 tem的形成等),众多分散的小的超精密单位逐步淡出,具有优势的典型企业和机构的进一步突显。
精密加工和超精密加工的发展趋势和技术前沿1.向高精度、高效率方向发展随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,超精密加工技术就是要向加工精度的极限冲刺,应该说,这种极限是无限的,当前的目标是向纳米级进军,而现状是处于亚微米级水平。
图0-13表示了超精密加工理论基础和应用技术的发展,提出了量子技术、量子能量的利用,并将和太空技术联系起来。
2.向大型化、微型化方向发展由于航天航空等技术的发展,大型光电子器件要求大型超精密加工设备,如美国研制的加工直径为~4m的大型光学器件超精密加工机床。
由于微型机械、集成电路的发展,超精密加工技术向微型化发展,如微型传感器,微型驱动元件和动力装置、微型航空航天器件等。
3.向加工检测一体化发展由于超精密加工的精度很高,必须发展相应的检测技术才能适应其要求;同时,采用加工和检测独立进行的方法可能由于安装等误差而不能实现,因此,要采用在位检测方法,使加工检测一体化。
4.在线检测与误差补偿超精密加工的精度很高,影响因素多且复杂,进行在线检测、工况监控以确保加工质量及其稳定性是十分必要的。
由于超精密加工的精度很高,加工设备本身的精度有时很难满足要求,就要采用在线检测和误差补偿的方法来提高精度,保证加工质量的要求。
5.新型超精密加工方法的机理加工机理的研究是新技术的生长点,超精密加工机理涉及微观世界和物质内部结构,所利用的能源包括机、光、电、声、热、化、磁、原子等,十分广泛。
不仅可以采用分离去除加工,而且可以采用分层堆积加工方法;既可采取单独加工方法,更可采用复合加工方法。
加工机理的研究往往具有突破性。
6.新材料的研究新材料包括新的工具材料(切削、磨削)和被加工材料。
精密加工和超精密加工的被加工材料对其加工质量的影响极大,其化学成分、力学机械性能均有严格要求,亟待研究。
当前,精密加工和超精密加工在我国急需要研究的是实用化,将一些成熟或比较成熟的精密加工和超精密加工技术推广到实际中去,以提高加工技术的水平,使生产的机械产品质量更好、生产率更高。
超精密机械加工技术及其发展动向本文主要介绍的就是超精密机械加工技术和其发展的动向,研究超精密机械的研究原理,研究机械的发展现状,了解目前超精密机械的管理制度和管理措施上存在的问题,研究在超精密机械在进行加工制作的过程中影响其质量的因素,对影响机械制作质量的因素进行简单的介绍分析,加强对机械的管理和提高其质量,保证机械的应用寿命,使得超精密机械在应用的过程中提高工作的效率,提高经济的效益。
标签:超精密;机械加工;技术发展;动向;研究分析1 前言随着我国经济建设发展速度的不断加快,我国的综合国力已经成功的跻身于国际的前沿,所以加强我国的经济建设的管理成为我国最重要的任务,必须保证我国的经济市场可以在激烈的竞争中得到生存,现在我们的行业种类越来越多,对于机械的应用越来越广泛,所以保证机械制作的精密度就可以保证工程的质量,得到人们的信赖,促进我国经济建设的进步与发展,如今我国的超精密机械已经取得了初步的成绩,所以继续研究发展超精密机械,保证产品的质量使人们得到满足是急需解决的问题。
2 超精密机械的介绍超精密机械的加工技术非常的复杂,需要经过的步骤非常的多,并且机械的制作材料非常的小,超精密机械加工就是以形状精度为数百纳米甚至数百微米,表面的粗糙组的范围以在数百纳米以内为标准的机械,可以看出加工的过程必须非常的小心,在加工的过程中还要进行切削、磨削等多种加工的技术,然后将工具复制到其他的工件上的方法,超精密机械的加工过程以及加工技术的应用必须要时刻的注意,如果一不小心就会降低制作的质量,影响到机械的应用,降低产品的质量,不利于产品满足顾客的需求,就影响经济市场的发展,当前的超精密机械已经发展了40多年,在某些方面取得了较好的成绩,但是在其加工技术方面还是存在许多的漏洞,不能促进超精密机械的广泛应用。
超精密机械的加工技术与现在的计算机、能源技术等等都有较为紧密的联系,超精密机械的加工技术在近些年来正在逐渐的发展,因为其发展的过程非常的缓慢,所以不能适应我国经济发展的速度,所以现在必须要采取正确的措施进行加工技术的升级,推动超精密机械的大规模发展和应用,使其适应我国经济的发展速度。
国外超精密加工技术的现状和发展趋势1. 引言在当今世界,超精密加工技术已经成为了制造业的重要组成部分。
随着科技的不断发展,国外的超精密加工技术也取得了长足的进步。
本文将从多个角度对国外超精密加工技术的现状和发展趋势进行评估和探讨。
2. 现状分析超精密加工技术是指在微米或纳米级别进行加工的技术,其精度和表面质量要求非常高。
当前,国外一些先进制造业发达国家,如日本、德国和美国等,都在超精密加工技术领域具有举足轻重的地位。
这些国家的企业和研究机构不断推动着超精密加工技术的发展,不断推陈出新,取得了许多创新成果。
3. 技术发展趋势未来,国外超精密加工技术将朝着更高精度、更复杂形状、更多材料的加工方向发展。
随着人工智能、大数据和物联网等新一代信息技术的不断涌现,超精密加工技术将更加智能化、数字化和柔性化。
新型材料、纳米技术的应用,也将极大地拓展超精密加工技术的应用范围。
4. 我的观点我认为,国外超精密加工技术的快速发展将为全球制造业带来深远影响。
随着超精密加工技术在航空航天、医疗器械、电子器件等领域的广泛应用,将极大地推动相关产业的发展。
超精密加工技术的不断突破也将为人类社会带来更多便利和可能性。
5. 总结国外超精密加工技术的现状和发展趋势令人振奋。
技术不断创新,应用领域不断拓展,为制造业注入了新的活力。
我对超精密加工技术的未来充满信心,相信它将在全球范围内发挥越来越重要的作用。
通过本文的介绍和分析,相信您已经对国外超精密加工技术的现状和发展趋势有了更深入的了解。
希望本文能够为您带来一些启发和思考,并对您在相关领域的学习和工作有所帮助。
超精密加工技术在国外的发展已经取得了显著的进步,但仍有许多挑战和机遇。
在不断推动超精密加工技术的发展的国外也在积极探索新的技术路径和应用领域,以应对日益复杂的市场需求和竞争压力。
国外超精密加工技术在材料加工和表面处理方面取得了重大突破。
随着新型材料的广泛应用和纳米技术的发展,超精密加工技术已经能够处理更多种类的材料,包括金属、陶瓷、复合材料等。
超精密加工的发展动向和展望超精密加工经过数十年的努力,日趋成熟,不论是超精密机床、金刚石工具,还是超精密加工工艺已形成了一整套完整的超精密制造技术系统,为推动机械制造向更高层次发展奠定了基础,现在正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。
但是从另一个角度来分析,随着科技的发展,对它的要求越来越高,而现实的情况又受到技术水平的制约,依然存在许多困难。
1综述超精密加工技术是一门综合性的系统工程,它的发展综合地利用了机床、工具、计量、环境技术、微电子技术、计算机技术、数控技术等的进步。
日本的津和秀夫教授形象地将超精密加工比作富士山的山顶,所以在某种意义上说,已到达了精密加工的顶峰。
日本的文献上,经常出现向极限靠拢的提法。
虽然从技术的角度来说,有些模糊,但是很形象化。
实际上,加工精度在现有的水平上再提高一步已是相当困难。
以现在的产品而言,凡是要求高的尺寸,大部分是超越现有标准的,这从另一个侧面反映了超精密的实际情况,相当多的要求,均以技术条件的形式来表示,或标明具体的特殊公差,而今天除了精度以外,对表面还提出了新的要求——表面完整性。
日本谷口纪男教授往往将超精密加工技术与微细加工综合在一起来加以介绍,客观上反映了两种技术的交叉,也体现了时代的特征。
本文想就超精密加工发展的趋势,说明一些个人的看法。
超精密加工技术随着时间的推延,精度、难度、复杂性等都在向更高层次发展,使加工技术也随之需要不断加以更新,来与之相适应。
以金刚石切削为例,其刃口圆弧半径一直在向更小的方向发展,因为它的大小直接影响到被加工表面的粗糙度,与光学镜面的反射率直接有关,而今反射率要求越来越高,如激光陀螺反射镜的反射率已提出了99.99%,必然要求金刚石刀具更加锋利,根据日本大阪大学岛田尚一博士介绍,为了进行切薄试验,目标是达到切屑的厚度1nm,其刃口圆弧半径趋近2~4nm。
直至今日,这个水平仍为世界最高的。
为了达到这个高度,促使金刚石研磨机也改变了传统的结构,而采用了空气轴承作为支承,研磨盘的端面跳动能在机床上自行修正,使其端面跳动控制在0.5μm以下,我国航空系统303所研制的刃磨机就是一例。
刃口锋利了,接着其检测又成为一个难题,起先日本横滨大学的中山一雄教授用金丝压痕的方法;后来发展到采用扫描电子显微镜(SEM),其测量精度可达到50nm;随着精度的再提高,日本的刀尖评价委员会又在SEM上增加了二次电子的发射装置,这时也只能测定到20~40nm;1993年,该小组再提出采用扫描隧道显微镜(STM)或原子力显微镜(AFM)来进行检测,但以后就未见报道。
直到1996年,我国的华中理工大学发表了用AFM检测的报道。
1998年,哈工大又再次作了报道。
用AFM成功地检测了刃口圆弧半径。
检测技术的突破,的进为微量切削机理一步探索创造了前提。
硬脆材料的加工一般均采用研磨等方法,后来日本足利大学的宫下政和教授发表了采用金刚石砂轮,控制切削深度和走刀量,在超精密磨床上,可以进行延性方式磨削,即使是玻璃的表面也可以获得光学镜面。
这在技术上是一次很大的突破。
接着,又发展到了直接采用大负前角度的金刚石车刀在上述的类似条件下,也可以获得同样的结果,但车削的效率则明显的提高。
今天又提出如果将超声波技术与金刚石切削结合,更有利于发挥出功效。
我国吉林工大等也作了这种尝试,并取得成果。
砂轮采用金属结合剂,一般指的是铜,而为了提高砂轮的寿命,日本东京工业大学的中川威雄教授采用了铸铁结合剂,使砂轮的寿命明显提高,这是很大的突破,随之,引起了各种结合剂的研究热潮。
后来日本理化学研究所的大森整就在这个基础上,发展了砂轮的在线电解修整(ELID)技术,又使超精密加工技术的途径得到了拓宽,在镜面加工方面取得了进步。
金刚石技术的发展,近几十年来,给了科技人员很大的激励,从天然金刚石到人造金刚石,从超硬金刚石薄膜到厚膜的形成,逐渐为在超精密制造技术方面广泛采用金刚石工具创造了美好的前景。
为了金刚石应用领域的拓宽,为突破金刚石切削黑色金属,一直在进行大量的实践,如深冷切削、富碳大气中的切削等,都先后取得一些效果,也有在金刚石的成份中掺入硼,使之与黑色金属的亲和力明显改善。
而今金刚石的刃磨已在探索其他的途径,如热化学研磨即为一例。
微量切削的机理一直是技术人员所关切的一个大问题,但是要直接对切削点观察是异常困难的,现在有提议将切削装置小型化,放置于SEM的镜头下进行切削并观察;日本大阪大学井川直哉教授等开始采用计算机仿真,逐步在向揭开微量切削的奥秘迫近。
超精密机床的发展,已经相当成熟。
它是最重要的硬件,它集大量成果于一体,如高精度主轴、微量进给装置、高精度定位系统、气浮导轨技术、热稳定性技术、NC系统等。
特别是美国的LLNL实验室、日本的不二越、东芝机械等公司、英国的Cranfield、Pneumo 、Precision等的产品都已商品化,在市场上很有声望。
总之,超精密制造技术是综合的、系统的技术组合,而且随着时间的推延,其内涵始终在演变,因此必须及时跟踪、分析,综合地将其各方面的进步,以新颖的构思巧妙地加以重组,来不断地提高超精密加工技术水平,适应时代的要求。
2展望与对策时代对超精密加工技术仍在不断地提出更新的需求,从大到天体望远镜的透镜,小到微机械的微纳米尺寸零件。
不论体积大小,其最高尺寸精度都趋近于毫微米;形状也日益复杂化,各种非球面已是当前非常典型的几何形状;70年代,始于日本的产品短薄轻小的战略思想,引发了仪表的小型化、轻便化,从而导致仪表零件的薄壁、低刚度、易变形的特点,也造成超精密加工的更大难度。
在当前必然也会谈到的是微机械技术的诞生,为超精密制造技术引来一种崭新的态势,它的微细程度使传统的制造技术面临一种新的挑战。
尽管它的诞生时间只是近期的事。
人们已公认为它是21世纪的前沿技术。
它的发展极为神速,受到全世界的关注,我国也不例外,仅几年时间,许多单位已生产出各种产品,甚至完成了将原子迁移,构成图形或字体等的各种创举。
1996年,上海交通大学展示了直径为2mm的微电机,而今天瑞士TECHSTAR GmbH 已经将直径3mm电机,转速为100,000r/min的产品作为商品销售,其最小的滚珠轴承外径只有3mm。
微机械的发展如此迅速,确实惊人!面临即将到来的21世纪,我国从事超精密加工的广大科技人员如何努力才能缩短与国外的差距,作为这条战线的一名工作者,确是日有所思,下面提出一些个人的具体想法。
跟踪世界先进科技的发展,大量掌握和利用信息超精密加工技术是发展科技的重要手段,所以受到世界各国的广泛重视,因此也就不断地获得新的成果,但是因为它的要求都处在精度的极限,传统的、单一的技术往往很难突破,必须综合地利用当前取得的各种成果,通过综合、分析,加以整合、重组,才能进一步满足更高的要求。
因此当务之急是如何及时地取得各种有关的信息。
自从进入信息时代,获得信息的手段也随之而得到发展,特别是计算机联网的实现,加速了信息传递。
因此为信息的及时获得创造了前提,同时已成为竞争的重要手段。
前面已提到的金刚石切削刃口圆弧半径的测量,一直是超精密加工技术领域中的一个难题,自从1982年,STM和AFM的发明,应当说为其测量创造了前提,但是当时并未受到应有的重视,直到1993年才从《Precision Engineering》看到美国学者J.Drescher提出这种设想,但并未实现。
到了1996年和1998年,才看到我国的华中理工大学和哈工大在这方面相继作出了的有关的报道。
表明这些信息的传递,有利于加速技术的发展。
但为什么实践如此滞后。
也许可以说,信息虽然是有了,但并没有很快得到应用,当时它的出现并非直接为超精密加工领域应用的。
不过今天看来这项研究,所以能获得进展,也是因为应用了这个信息。
这充分说明信息只是一种素材,有了信息还得进一步经过加工,才能成为真正的手段。
超精密加工技术一直是制造技术的前沿技术,每前进一步,都需付出很大的代价,而且对其要求也是随着时间的推延而不断提高,这就必须广泛的收集信息,虽然工艺信息往往是被视作Know-How而加以保密,所以更增加了它的收集难度,但是信息的渠道是多方面的,另外,得到的信息,大部分仍然需要经过大量筛选,择其有用的为我所用。
而信息的收集必须先行,并且需要及时。
比如,当前硬脆材料的加工已是当务之急,历来采用磨削的途径,但是在技术上存在比较难克服的问题,往往满足不了光学等方面的要求,有的还将附加采用难度不小的抛光。
为了突破这个难题,世界各国都开始摸索新的途径,后来出现在超精密机床上加工硬脆材料,控制极小切深和走刀量,首先从磨削突破了硬脆材料延性方式的技术,紧接着也很快采用大负前角的金刚石车刀获得成功。
当然在掌握上,仍然存在难度。
近期又有建议在金刚石的切削上如果复合振动切削,便能更易实现硬脆材料延性方式的切削。
这表明技术是在不断推陈出新的。
必须时时跟踪,这样才有可能缩短研制的周期,突破难题。
整合、重组思想的运用超精密加工技术是一项系统工程,它集机床、工具、计量、数控、材料、环境控制等成果于一体,针对不同的加工对象,不同的设计要求,综合地加以利用。
这里想以当前的超精密机床为例,可以发现大部分这类机床也是反映出这些特点,它是根据自己所需的产品来设计、制造的。
从这类机床的主轴、直到床身,几乎均被认为到了精度的极限,因此每种型号特色都比较明显。
而商品化的也有一些,但从已发表的文献中来看,只是少数。
前者如美国的LLNL国家实验室的大型光学金刚石车床LODTM等。
后者如Pneumo Precision公司的SMG325超精密机床。
即使是大量生产磁盘的车床其需要量也是很有限的,以日本东芝机械公司为例,据其公司的介绍,每年在日本的补充量也仅三十多台,或者更少。
这是超精密机床的特点。
超精密机床的特点扩大到整个超精密加工技术来看,有类似的情况,超精密加工技术也都是在其有关的各项技术支撑的条件下,逐步发展起来的,同时又往往取各项技术的崭新成果来加以充实、提高。
例如金刚石车刀的刃口圆弧半径达到2~4nm,就可切削下小于1nm 厚度的切屑,这为更高精度的加工创造了前提;摩擦驱动的出现,完全解决了滚珠丝杆的发热、振动、振摆和噪音等的不足,使获得更佳的质量具有可能性;冷却液的温度能控制到20±0.0005℃,在喷淋下切削可以保证高精度;静压轴承的高精度为主轴的高精度回转提供了条件;双频激光干涉仪达到了当前的最高定位精度;喻为零膨胀系数的微晶玻璃为超精密机床向更高层次的发展提供了可能。
这许多崭新的技术成就为整个超精密加工技术向纵深发展创造了依据。
今日的超精密加工技术就是以这许多先进技术作为支撑的。
但是如何运用好这些技术,还有待更高超的整合和重组的技巧。