2020 年恒成立、存在性问题(存在量词)
- 格式:doc
- 大小:215.54 KB
- 文档页数:2
新高考数学一轮复习知识点解析1.积累常用的不等式,熟练运用导数解决不等式恒成立问题、存在性问题. 2.熟练使用分离参数、分类讨论等方法解决参数范围问题. 3.能够大致描绘函数图象,能借助图象理解题意和解题.【例1】已知函数()ln xf x ax x=-,a ∈R . (1)若()()2g x x f x '=,其中()f x '是函数()f x 的导函数,试讨论()g x 的单调性; (2)证明:当12a e≥时,()0f x ≥. 【答案】(1)当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,∞+,()221ln 1ln x xx x f x a a x x⋅--'=-=-,恒成立和存在性问题()2221ln ln 1x a a x x g x x x -⎛⎫-=+- ⎪⎝⎭=,()21212ax g x ax x x+'=+=, 当0a ≥时,()0g x '≥恒成立,此时()g x 在()0,∞+上单调递增; 当0a <时,()0g x '>,即2210ax +>可得212x a-<,所以0x <<,由()0g x '<,即2210ax +<可得212x a->,所以x >所以当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减, 综上所述:当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减. (2)当12a e≥时,()1ln 2xf x x e x ≥-, 设()1ln 2x h x x e x =-,则()222211ln ln 1111ln 222x x x x x x eh x e x e x x ⋅-+--'=-=-=, 令()21ln 12t x x x e =+-,则()110t x x e x '=+>, 所以()21ln 12t x x x e=+-在()0,∞+上单调递增,且1102t e e =⨯+=,所以0x <<时,()0t x <,即()0h x '<,此时()h x 单调递减;当x >()0t x >,即()0h x '>,此时()h x 单调递增, 所以()1ln 2x h x x e x=-在(上单调递减,在)+∞单调递增,所以()min 102h x h e ====, 所以()1ln 02xh x x e x=-≥对于()0,x ∈+∞恒成立, 所以()0f x ≥.【变式1.1】已知函数()2ln f x ax x =-. (1)讨论()f x 的单调性; (2)证明:当12a >时,()3f x >恒成立. 【答案】(1)0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a为单调减函数,在1(,)2a+∞为单调增函数;(2)证明见解析. 【解析】(1)121()2ax f x a x x-'=-=,其中0x >; 当0a ≤时,()0f x '<,()f x 在()0,∞+为单调减函数; 当0a >时,1(0,)2x a ∈,()0f x '<,()f x 为单调减函数;1(,)2x a∈+∞,()0f x '>,()f x 为单调增函数,综上,0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a 为单调减函数,在1(,)2a+∞为单调增函数.(2)证明:因为12a >2=≥当且仅当2=12x a=时,取等号.由(1)知min 1()()1ln 22f x f a a==+,所以()ln 21f x a +≥+,令1()ln 21()2g x x x =+>,则()g x 为增函数,所以1()()32g x g >=,即12a >时,()3f x >恒成立. 【例2】已知函数()xe f x x=.(1)求曲线()y f x =在2x =处的切线方程;(2)设()()ln 2G x xf x x x =--,证明:()3ln 22G x >--.【答案】(1)24e y x =;(2)证明见解析.【解析】(1)2()x x e x e f x x -'=,22222(2)24e e e f -'==且2(2)2e f =,所以切线方程22(2)24e e y x -=-,即24e y x =.(2)由()()ln 2(0)G x xf x x x x =-->,1()2x G x e x '=--,21()0xG x e x''=+>,所以 ()G x '在(0,)+∞为增函数,又因为(1)30G e '=-<,25(2)02G e ''=->, 所以存在唯一0(1,2)x ∈,使()000120x G x e x '=--=, 即012x e x =+且当()00,x x ∈时,()0G x '<,()G x 为减函数, ()0,x x ∈+∞时,()0G x '>,()G x 为增函数,所以()0min 0000001()ln 22ln 2x G x G x e x x x x x ==--=+--,0(1,2)x ∈, 记1()2ln 2H x x x x =+--,(12)x <<, 211()20H x x x'=---<,所以()H x 在(1,2)上为减函数,所以13()(2)2ln 24ln 222H x H >=+--=--,所以()03()ln 22G x G x ≥>--. 【变式2.1】已知函数()()322361f x x ax a x =++-(a ∈R ).(1)讨论函数()f x 的单调性;(2)若()15f =,4m <,求证:当1x >时,()()2ln 1mx x f x +≤.【答案】(1)见解析;(2)证明见解析. 【解析】(1)函数()f x 的定义域为(),-∞+∞,且()()()()26661611f x x ax a x x a '=++-=++-⎡⎤⎣⎦.①若2a =,则()0f x '≥,因而()f x 在(),-∞+∞上单调递增;②若2a <,则当(),1x ∈-∞-及()1,x a ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减;③若2a >,则当(),1x a ∈-∞-及()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减, 综上,当2a =时,()f x 在(),-∞+∞上单调递增;当2a <时,()f x 在(),1-∞-,()1,a -+∞上单调递增;在()1,1a --上单调递减; 当2a >时,()f x 在(),1-∞-a ,()1,-+∞上单调递增,在()1,1a --上单调递减. (2)由题意知()()123615f a a =++-=,∴1a =,故()3223f x x x +=.欲证当1x >时,()()2ln 1mx x f x +≤,∵当1x >时,21x >,ln 11x +>. ∴只需证:()()2ln 1f x m x x ≤+,即23ln 1x m x +≤+在()1,+∞上恒成立,设()()()123,ln 1x h x x x +=∈++∞,则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++.设()32ln x x x ϕ=-,则()223x x xϕ'=+,故当()1,x ∈+∞时,()0x ϕ'>,()x ϕ单调递增. 又()3ln16322ln 2022ϕ-=-=<,()320e eϕ=->,∴()0h x '=有且只有一个根0x ,且02x e <<,0032ln x x =. ∴在()01,x 上,()0h x '<,()h x 单调递减;在()0,x +∞上,()0h x '>,()h x 单调递增, ∴函数()h x 的最小值()0000002323243ln 112x x h x x x x ++===>++. 又∵4m <,∴23ln 1x m x +≤+在()1,+∞上恒成立, 故()()2ln 1mx x f x +≤成立.利用导数证明不等式恒成立的两种情形(1)若函数最值可以通过研究导数求得,则可先利用导数研究函数单调性,将不等式恒成立问题转化成函数最值问题来解决:()()min f x a f x a >⇒>;()()max f x a f x a <⇒<.(2)若函数最值无法通过研究导数求得,即导函数的零点无法精确求出时,可以利用“虚设和代换”的方法求解.“虚设和代换”法当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点存在,再虚设为0x ,接下来通常有两个方向:(1)由()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入()0f x ,从而求得()0f x ,然后解决相关问题.(2)根据导函数()f x '的单调性,得出0x两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解.【例3】已知函数()()ln 1f x x =+,()()g x kx k =∈R . (1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得任意()00,x x ∈,恒有()()f x g x >;(3)确定k 的所有可能取值,使得存在0t >,对任意的()0,x t ∈,恒有()()2f xg x x -<.【答案】(1)证明见解析;(2)证明见解析;(3)1k =. 【解析】(1)证明:令()()()[)ln 1,0,F x f x x x x x =-=+-∈+∞, 所以()1111xF x x x-'=-=++. 当[)0,x ∈+∞时,()0F x '<,所以()F x 在()0,+∞上单调递减. 又因为()00F =,所以当0x >时,()0F x <,即()0f x x -<, 所以()f x x <.(2)证明:令()()()()ln 1G x f x g x x kx =-=+-,[)0,x ∈+∞,()()1111kx k G x k x x-+-'=-=++. 当0k ≤时,()0G x '>,所以()G x 在()0,+∞上单调递增, 所以()()00G x G >=,即()()f x g x >, 故对任意的正实数0x 均满足题意. 当01k <<时,令()0G x '=,得1110k x k k-==->, 取011x k=-,对任意()00,x x ∈,恒有()0G x '>, 所以()G x 在()00,x 上单调递增,()()00G x G >=,即()()f x g x >.综上,当1k <,总存在00x >,使得对任意()00,x x ∈,恒有()()f x g x >. (3)当1k >时,由(1)知,对于任意()0,x ∈+∞,()()g x x f x >>, 故()()g x f x >.此时()()()()()ln 1f x g x g x f x kx x -=-=-+.令()()[)2ln 1,0,M x kx x x x =-+-∈+∞,则有()()22211211x k x k M x k x x x-+-+-'=--=++. 令()0M x '=,得()22210x k x k -+-+-=,x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0M x '>,即()M x 在⎛ ⎝⎭上单调递增, 故()()00M x M >=,即()()2f xg x x ->.所以满足题意的t 不存在.当1k <时,由(2)知,存在00x >,使得对任意的()00,x x ∈,恒有()()f x g x >, 此时()()()()()ln 1f x g x f x g x x kx -=-=+-.令()()[)2ln 1,0,N x x kx x x =+--∈+∞,则有()()22211211x k x k N x k x x x--+-+'=--=++. 令()0N x '=,即()22210x k x k --+-+=,得x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0N x '>,即()N x 在⎛ ⎝⎭上单调递增, 故()()00N x N >=,即()()2f xg x x -=.记0x 中较小的为1x ,则当()10,x x ∈时,恒有()()2f xg x x ->,故满足题意的t 不存在.当1k =时,由(1)知,当()0,x ∈+∞时,()()()()()ln 1f x g x g x f x x x -=-=-+.令()()[)2ln 1,0,H x x x x x =-+-∈+∞,则有()2121211x xH x x x x--'=--=++. 当0x >时,()0H x '<,即()H x 在()0+∞,上单调递减, 故()()00H x H <=.故当0x >时,恒有()()2f xg x x -<,此时任意正实数t 满足题意,综上,k 的取值为1.【变式3.1】已知函数()xf x e x =-. (1)求函数()xf x e x =-的极值;(2)求证:对任意给定的正数a ,总存在正数x ,使得不等式11x e a x--<成立. 【答案】(1)()1f x =极小值,无极大值;(2)证明见解析.【解析】(1)因为()x f x e x =-,所以()1x f x e '=-,令()0f x '=,则0x =,当0x >时,()0f x '>,即()f x 在()0,∞+上单调递增; 当0x <时,()0f x '<,即()f x 在(),0-∞上单调递减,所以0x =时,()f x 取得极小值,()()01f x f ==极小值,无极大值.(2)由(1)知当0x >时,110x e x -->,要证11x e a x --<,即11x e a x--<,即证当0a >时,不等式1x e x ax -<-,即10x e ax x ---<在(0,)+∞上有解. 令()1x H x e ax x =---,即证min ()0H x <, 由()10x H x e a '=--=,得ln(1)0x a =+>. 当0ln(1)x a <<+时,()0H x '<,()H x 单调递减; 当ln(1)x a >+时,()0H x '>,()H x 单调递增,min ()(ln(1))1ln(1)ln(1)1H x H a a a a a ∴=+=+-+-+-,令()ln 1V x x x x =--,其中11x a =+>,则()1(1ln )ln 0V x x x '=-+=-<,()V x ∴递减,()()10V x V ∴<=, 综上得证.【例4】已知函数()2ln ()f x ax x a =-+∈R .(1)讨论()f x 的单调性;(2)若存在()(),1,x f x a ∈+∞>-,求a 的取值范围.【答案】(1)分类讨论,答案见解析;(2)1,2⎛⎫-∞ ⎪⎝⎭.【解析】(1)函数()f x 的定义域为()0,+∞,()21122ax f x ax x x-='=-+,当0a ≤时,()0f x '>,则()f x 在()0,+∞上递增, 当0a >时,由()0f x '=,得x =由()0f x '>,得x ⎛∈ ⎝;由()0f x '<,得x ⎫∈+∞⎪⎭,于是有()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.(2)由()f x a >-,得()21ln 0a x x --<,(1,)x ∈+∞, 2ln 0,10x x -<->,当0a ≤时,()21ln 0a x x --<,满足题意;当12a ≥时,令()()21()ln 1g x a x x x =-->,()2210ax x xg '=->,()g x 在()1,+∞上递增,则()()10g x g >=,不合题意; 当12a <<时,由()0g x '>,得x ⎫∈+∞⎪⎭;由()0g x '<,得x ⎛∈ ⎝,于是有()g x 在⎛ ⎝上递减,在⎫+∞⎪⎭上递增,()()min 10g g g x <==, 则102a <<时,()()1,,0x g x ∃∈+∞<,综上,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭.【变式4.1】已知函数()()()21222x f x xe a x x a =-+-∈R .(1)当1a e≤时,讨论函数()f x 的极值;(2)若存在()00,x ∈+∞,使得()()00001ln 222f x x x a ax <+--,求实数a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)(),1-∞-.【解析】(1)由题意,函数()()21222x f x xe a x x =-+-,可得()()()()()111x xf x e a x x e a x '=+-+=+-.①当0a ≤时,若1x <-,则()0f x '<;若1x >-,则()0f x '>, 所以()f x 在区间(),1-∞-上是减函数,在区间()1,-+∞上是增函数,所以当1x =-时,()f x 取得极小值()1312f e a --=-+,无极大值;②当10a e<<时,若ln x a <或1x >-,则()0f x '>;若ln 1a x <<-,则()0f x '<,()f x 在区间(),ln a -∞上是增函数,在区间()ln ,1a -上是减函数,在区间()1,-+∞上是增函数,所以当ln x a =时,()f x 取得极大值()()21ln ln 2f a a a a =-,当1x =-时,()f x 取得极小值()1312f e a --=-+;③当1a e =时,()0f x '≥,∴()f x 在区间(),-∞+∞上是增函数,∴()f x 既无极大值又无极小值,综上所述,当0a ≤时,()f x 有极小值()1312f e a --=-+,无极大值;当10a e <<时,()f x 有极大值()()21ln ln 2f a a a a =-,极小值()1312f e a --=-+; 当1a e=时,()f x 既无极大值又无极小值.(2)由题知,存在()00,x ∈+∞,使得0000ln 0xx e x x a --+<,设()ln xh x xe x x a =--+,则()()()11111x x h x x e x e x x ⎛⎫'=+--=+- ⎪⎝⎭, 设()()10xm x e x x=->,∴()m x 在区间()0,∞+上是增函数,又1202m ⎛⎫=< ⎪⎝⎭,()110m e =->,∴存在11,12x ⎛⎫∈ ⎪⎝⎭,使得()10m x =,即111x e x =,∴11ln x x =-, 当10x x <<时,()0m x <,即()0h x '<;当1x x >时,()0m x >,即()0h x '>, ∴()h x 在区间()10,x 上是减函数,在区间()1,x +∞上是增函数,∴()()11111111min 11ln 1x h x h x x e x x a x x x a a x ==--+=⨯+-+=+, ∴10a +<,∴1a <-,∴实数a 的取值范围为(),1-∞-.【例5】已知函数()22ln 1f x x x x ax =+-+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,求实数a 的取值范围.【答案】(1)320x y --=;(2)1,23e e ⎛⎤-∞-++⎥⎝⎦. 【解析】(1)当1a =时,()22ln 1f x x x x x =+-+,则()2ln 2212ln 21f x x x x x '=++-=++,所以()13f '=,而()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()131y x -=-,即320x y --=.(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,即存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式200002ln 12x x x ax +-+≥-成立,存在01,x e e ⎡⎤∈⎢⎥⎣⎦,不等式00032ln a x x x ≤++成立, 设()32ln h x x x x =++,1,x e e ⎡⎤∈⎢⎥⎣⎦,则()2(3)(1)x x h x x +-'=,当1[,1)x e ∈时,()0h x '<,()h x 在1[,1)e上单调递减;当(]1,x e ∈时,()0h x '>,()h x 在(]1,e上单调递增,又1123h e e e ⎛⎫=-++ ⎪⎝⎭,()32h e e e =++,()12240h e h e e e ⎛⎫-=-++< ⎪⎝⎭, 即()max 1123h x h e e e ⎛⎫==-++ ⎪⎝⎭,故()max 123a h x e e ≤-++=,所以实数a 的取值范围为1,23e e⎛⎤-∞-++ ⎥⎝⎦.【变式5.1】已知e 是自然对数的底数,函数()cos xf x x me =+,[]π,πx ∈-.(1)若曲线()y f x =在点()()0,0f 处的切线斜率为1,求()f x 的最小值;(2)若当[]π,πx ∈-时,()xf x e >有解,求实数m 的取值范围.【答案】(1)π11e -;(2)π41,e ⎛⎫+∞ ⎪ ⎪⎝⎭. 【解析】(1)由()cos x f x x me =+,得()sin xf x x me '=-+.曲线()y f x =在点()()0,0f 处的切线斜率为1,()01f m '∴==,()cos x f x x e ∴=+,()sin x f x x e '=-+.当[)π,0x ∈-时,sin 0x -≥,0x e >,()0f x '∴>, 当[0,π]x ∈时,01x e e ≥=,sin 1x ≤,则()0f x '≥,()f x ∴在[]π,π-上单调递增,()()πmin 1π1f x f e∴=-=-. (2)()cos 1xx x f x e m e >⇔>-,设()cos 1xxg x e =-,[]π,πx ∈-,则当[]π,πx ∈-时,()xf x e >有解()min mg x ⇔>.()cos 1x x g x e=-,()πsin cos 4x xx x x g x e e ⎛⎫+ ⎪+⎝⎭'∴==. 当[]π,πx ∈-时,π3π5π,444x ⎡⎤+∈-⎢⎥⎣⎦,解()0g x '=,可得04πx +=或π4πx +=,解得14πx =-,23π4x =. 当ππ4x -≤<-时,()0g x '<,此时函数()g x 单调递减; 当π3π44x -<<时,()0g x '>,此时函数()g x 单调递增; 当3ππ4x <≤时,()0g x '<,此时函数()g x 单调递减.4π14πg e ⎛⎫-= ⎪⎝⎭,()π1π1g e =+,且()π4πg g ⎛⎫-< ⎪⎝⎭,()nπ4mi 142πg x g e ⎛⎫∴=-=- ⎪⎝⎭,m ∴的取值范围为π41,2e ⎛⎫-+∞ ⎪ ⎪⎝⎭. 【例6】已知函数()2ln f x x x ax a =+-(a ∈R ).(1)当1a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)当1x ≥时,不等式()0f x ≥恒成立,求实数a 的取值范围.【答案】(1)330x y --=;(2)[)0,+∞. 【解析】(1)当1a =时,()2ln 1f x x x x =+-,()ln 21f x x x +'=+.则曲线()f x 在点()()1,1f 处的切线的斜率为()13f '=. 又()10f =,所以切线方程为330x y --=.(2)由函数()()2ln 10f x x x a x =+-≥,等价于ln 0ax ax x+-≥恒成立, 则()ln a g x x ax x =+-,其中1x ≥,()2221a ax x ag x a x x x ++=++=',当0a ≥时,因为1x ≥,所以0g x ,()g x 在[)1,+∞上单调递增,则()()10g x g ≥=,符合题意;当0a <时,令()2t x ax x a =++,214Δa =-,当2140Δa =-≤时,解得12a ≤-,()0g x '≤,()g x 在[)1,+∞上单调递减,则()()10g x g <=,对于任意1x >恒成立,不合题意;当2140Δa =->时,102a -<<,设()2t x ax x a =++的两个零点为12,x x ,设12x x <,12121,1x x x x a+=-=,则1201x x <<<,当[)21,x x ∈,()()0,0t x g x '>>,()g x 单调递增; 当()2,x x ∈+∞时,()0t x <,0g x,()g x 单调递减,又∵当x →+∞时,对数函数ln x 的增长速度远不如aax x-的减小速度, ∴()g x →-∞,所以不合题意,综上所述,实数a 的取值范围是[)0,+∞. 【变式6.1】函数()()ln 1,f x a x a =+∈R .(1)当1a =时,求曲线()y f x =在3x =处的切线方程; (2)若对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立,求实数a 的取值范围. 附:()1[ln 1]1x x '+=+. 【答案】(1)48ln230x y -+-=;(2)[)1,+∞.【解析】(1)当1a =时,()ln(1)f x x =+,得出切点(3,ln 4), 因为1()1f x x '=+,所以切线的斜率为()143k f ='=,所以曲线()y f x =在3x =处的切线方程为1ln 4(3)4y x -=-,化简得48ln 230x y -+-=.(2)对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立, 即()21ln 102a x x x -+≥+恒成立,令()()()21ln 102h x a x x x x =+-+≥,()()211011a x a h x x x x x +-=-+=+'≥+.①当1a ≥时,()0h x '≥恒成立,∴函数()h x 在[)0,x ∈+∞上单调递增,()()00h x h ∴≥=,1a ∴≥时符合条件.②当1a <时,由()0h x '=,及0x ≥,解得x =.当(x ∈时,()0h x '<;当)x ∞∈+时,()0h x '>,()()min 00h x hh =<=,这与()0h x ≥相矛盾,应舍去.综上可知,1a ≥,所以a 的取值范围为[)1,+∞.【例7】已知函数()1xf x e ax --=.(1)当1a =时,求证:()0f x ≥;(2)当0x ≥时,()2f x x ≥,求实数a 的取值范围.【答案】(1)证明见解析;(2)(,2]e -∞-.【解析】(1)证明:当1a =时,()1x f x e x =--,定义域为R ,则()1x f x e '=-,由()0f x '>,得0x >;由()0f x '<,得0x <, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以0x =是()f x 的极小值点,也是()f x 的最小值点,且min ()(0)0f x f ==, 所以()0f x ≥.(2)解:由()2f x x ≥(0x ≥),得21x ax e x ≤--(0x ≥),当0x =时,上述不等式恒成立,当0x >时,21x e x a x--≤,令21()x e x g x x--=(0x >),则222(2)(1)(1)(1)()x x x e x x e x x e x g x x x-------'==, 由(1)可知,当0x >时,10x e x -->,所以由()0g x '<,得01x <<;由()0g x '>,得1x >, 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以1x =是()g x 的极小值点,也是()g x 的最小值点,且min ()(1)2g x g e ==-, 所以2a e ≤-,所以实数a 的取值范围为(,2]e -∞-.【变式7.1】已知函数2()2ln ,()f x x ax x a =+++∈R . (1)讨论()f x 的单调性;(2)若()x f x e ≤恒成立,求a 的最大值. 【答案】(1)答案见解析;(2)3e -.【解析】(1)2121()2,(0,)x ax f x x a x x x∞'++=++=∈+,当a -≤≤()0f x '≥恒成立,()f x 在(0,)+∞上单调递增;当a <-时,在0,,,,()0,()44a a f x f x ∞⎛⎛⎫--+> ⎪ ⎪ ⎪⎝⎭⎝'⎭单调递增;在,()0,()f x f x <'⎝⎭单调递减;当a >(0,),()0,()f x f x ∞+>'单调递增,综上所述:当a ≥-时,()f x 在(0,)+∞上单调递增;当a <-时,()f x 在0,,44a a ∞⎛⎫⎛⎫--++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递增,在⎝⎭单调递减. (2)2()2ln xf x x ax x e =+++≤在(0,)+∞恒成立,可得2ln 2x e x x a x---≤恒成立;设2ln 2()x e x x g x x ---=,则22(1)ln 1()x e x x x g x x-'+-+=, 令2()(1)ln 1x h x e x x x =-+-+,则1()2xh x xe x x+'=-, 令()1x x e x μ=--,则()1x x e μ=-',因为0x >,所以()0x μ>,()x μ∴在(0,)+∞上单调递增,2211122x xe x x x x x x x x x ∴+->++-=+-,211()2x h x xe x x x x x∴=+->-'+,令21()j x x x x =-+,则3222121()21x x j x x x x-='-=--, 易知在(0,1),()0,()j x j x <'单调递减;在(1,),()0,()j x j x ∞+>'单调递增,()(1)1j x j ∴≥=,可得()0h x '>,所以()h x 在(0,)+∞上单调递增,又因为(1)0h =,所以在(0,1)上,()0h x <;在(1,)+∞上,()0h x >,所以在(0,1)上,()0,()g x g x '<单调递减;在(1,)+∞上,()0,()g x g x '>单调递增, 所以在(0,)+∞上,()(1)3g x g e ≥=-,所以3a e ≤-, 所以a 的最大值为3e -.(1)解决“已知不等式恒成立或能成立求参数”问题常用方法之一是“分离参数法”,即将参数k 与含有变量的式子分离,转化成()k h x <或()k h x >的形式,利用“()k h x <恒成立()min k h x ⇔<,()k h x >恒成立()max k h x ⇔>,()k h x <能成立()max k h x ⇔<,()k h x >能成立()min k h x ⇔>”把不等式恒成立或能成立问题转化成利用导数求函数值问题. (2)在恒成立或能成立问题中,若参数无法分离,可以尝试带着参数对原函数求导,然后令导数得零,得出极值点,根据极值点与区间端点的大小对参数进行分类讨论,然后再从正面证明或者从反面找反例来说明每一类是否符合条件,最后取并集.【例8】已知函数2()ln (0,1)x f x a x x a a a =+->≠. (1)当1a >时,求()f x 的单调区间;(2)若对任意的[]12,1,1x x ∈-,使得12()()1f x f x e -≤-,求实数a 的取值范围(e 为自然对数的底数).【答案】(1)()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞;(2)1[,1)(1,]e e.【解析】(1)()ln 2ln (1)ln 2x x f x a a x a a a x '=+-=-+(x ∈R ), 由于1a >,则ln 0a >,当0x >时,10x a ->,则()0f x '>; 当0x <时,10x a -<,则()0f x '<,所以()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞. (2)对任意的[]12,1,1x x ∈-,都有12()()1f x f x e -≤-, 则12max ()()1f x f x e -≤-,即max min ()()1f x f x e -≤-, 当01a <<时,ln 0a <,当0x >时,10x a -<,则()0f x '>,当0x <时,10x a ->,则()0f x '<,所以此时()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞,结合第(1)问知,当0,1a a >≠时,()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞, 所以min ()(0)1f x f ==,{}max ()max (1),(1)f x f f =-, 由1(1)1ln f a a-=++,(1)1ln f a a =+-,则1(1)(1)2ln f f a a a --=--,令1()2ln g x x x x =--,则22212(1)()10x g x x x x -'=+-=≥, 所以()g x 在(0,)+∞上是增函数, 又(1)0g =,故当1x >时,()0g x >;当01x <<时,()0g x <, 即当1a >时,(1)(1)f f >-;当01a <<时,(1)(1)f f <-, ①当1a >时,max min ()()(1)(0)ln 1f x f x f f a a e -=-=-≤-, 令()ln (1)h x x x x =->,则()()h a h e ≤,又11()10x h x x x-'=-=>,即()h x 在(1,)+∞上是增函数,所以1a e <≤; ②当01a <<时,有1(1)(0)ln 1f f a e a --=+≤-,则11ln 1e a a -≤-,即1()()h h e a≤,所以1e a≤,即11a e ≤<,综上可知,实数a 的取值范围是1[,1)(1,]e e.【变式8.1】设a ∈R ,已知函数()()()6x f x e x x a +-=-,函数()ln 1xx g x e x x=--.(注:e 为自然对数的底数)(1)若5a =-,求函数()f x 的最小值;(2)若对任意实数1x 和正数2x ,均有()()1248f x g x a +≥-,求a 的取值范围.【答案】(1)29-;(2)35,e ⎡⎤-⎣⎦.【解析】(1)当5a =-时,()21xf x e x '=+-为增函数,且()00f '=,所以()f x 在,0递减,在0,递增,所以()()min 01629f x f a ==+=-.(2)因为()2ln 111ln ln x x xx g x e e e x x x x ⎛⎫'=+=- ⎪⎝⎭, 由于函数2ln xy x e x =+在0,上单增,且1210e g e e e ⎛⎫'=-< ⎪⎝⎭,()10g e '=>, 所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭使得()00g x '=,且()()0min g x g x =.再令()ln u x x x =,()1ln u x x '=+,可知()u x 在1,单增,而由()00g x '=可知()001xu e u x ⎛⎫= ⎪⎝⎭,01x e >,011x >,所以001x e x =.于是()000001ln 11x x g x e x x ⎛⎫ ⎪⎛⎫⎝⎭=-+= ⎪⎝⎭,所以()min 1g x =.又()26xf x e x a '=+--为增函数,当0a ≥时,()050f a '=--<,当0a <时,2602aa f e ⎛⎫'=-< ⎪⎝⎭;又当6a ≥时,2602aa f e ⎛⎫'=-> ⎪⎝⎭, 当6a <时,()330f e a '=->,所以对任意a ∈R ,存在唯一实数3x , 使得()30f x '=,即3326xa e x =+-,且()()3min f x f x =.由题意,即使得()()min min 48f x g x a ≥+-,也即()()3333333626148248x x xe x x e x e x +---++≥+--, 即()()333310xx e x -+-≤,又由于()1xv x e x =+-单调递增且()00v =,所以3x 的值范围为[]0,3,代入3326xa e x =+-求得a 的取值范围为35,e ⎡⎤-⎣⎦.【例9】已知函数()1ln a a x xf x ++=,(),0a a ∈≠R . (1)求函数()f x 的单调区间;(2)设函数()()()()223,0g x x f x xf x a a '=--<,存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)3,026a e ⎛⎫∈⎪-⎝⎭. 【解析】(1)∵()()1ln ,0a f x a x x x +=+>,∴()()21ax a f x x -+'=, ①当0a >时,∵10a a +>,∴10,a x a +⎛⎫∈ ⎪⎝⎭,()0f x '<,∴()f x 单减,∴减区间是10,a a +⎛⎫⎪⎝⎭;1,a x a +⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,∴()f x 单增,∴增区间是1,a a +⎛⎫+∞ ⎪⎝⎭. ②当10a -<<时,∵10a a+<,∴()0f x '<,∴()f x 的减区间是()0,∞+. ③当1a =-时,∵()10f x x'=-<,∴()f x 的减区间是()0,∞+. ④当1a <-时,10,a x a +⎛⎫∈ ⎪⎝⎭,∴()0f x '>,∴()f x 的增区间是10,a a +⎛⎫ ⎪⎝⎭; 1,a x a +⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,∴()f x 的减区间是1,a a +⎛⎫+∞ ⎪⎝⎭. (2)()()()2ln 63,0g x ax ax x a a =--+<,因为存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,∴()()min max 2g x g x <,()()1ln g x a x '=-,∵0a <,[)1,x e ∈,()0g x '<,()g x 单减;(2,x e e ⎤∈⎦,()0g x '>,∴()g x 单增, ∴()()min 63g x g e ae a =--=,()()(){}2max max 1,63g x g g e a ==--.∴212663ae a a --<--,∴326a e >-, ∵0a <,∴3,026a e ⎛⎫∈⎪-⎝⎭. 【变式9.1】已知函数()x f x xe =,()||g x a x e =-.(1)若0x ≥,求证:当2a e =时,函数()||g x a x e =-与()x f x xe =的图象相切; (2)若1[2,1]x ∃∈-,对2[2,1]x ∀∈-,都有()()12f x g x ≥,求a 的取值范围. 【答案】(1)证明见解析;(2)(,]e -∞.【解析】(1)证明:∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 当0x ≥时,()2g x ax e ex e =-=-,设点()000,xP x x e 为函数()f x 图象上的一点,令()()000()12xg x f x e x k e '=+==,设()(1)x h x e x =+,∴()(2)0x h x e x '=+>,所以()h x 单调递增, 又(1)2h e =,∴01x =,此时()0(1)f x f e ==,()0(1)g x g e ==, 即当2a e =时,结论成立,切点为()1,e . (2)解:由已知得max max ()()f x g x ≥, ∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 可知,当[2,1)x ∈--时,()0f x '<,()f x 单调递减; 当[1,1]x ∈-时,()0f x '>,()f x 单调递增,又∵22(2)f e-=-;(1)f e =, ∴当[2,1]x ∈-时,max ()f x e =,又∵当0a ≤时,||a x e e -≤-,∴max ()g x e =-, ∴max max ()()g x f x ≤,∴0a ≤①;若0a >,当[2,1]x ∈-时,max ()(2)2g x g a e e a e -=-≤⇒≤=, 又∵0a >,∴0a e <≤②;由①②可得a e ≤,∴a 的取值范围为(,]e -∞. 【例10】已知函数()ln 2f x a x x =-+,其中0a ≠. (1)求()f x 的单调区间;(2)若对任意的[]11,x e ∈,总存在[]21,x e ∈,使得12()()4f x f x +=,求实数a 的值. 【答案】(1)见解析;(2)1e +. 【解析】(1)∵()1a a xf x x x-'=-=,0x >, 当0a <时,对()0,x ∀∈+∞,()0f x '<, 所以()f x 的单调递减区间为()0,∞+. 当0a >时,令()0f x '=,得x a =,∵()0,x a ∈时,()0f x '>;(),x a ∈+∞时,()0f x '<, 所以()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.综上所述,0a <时,()f x 的单调递减区间为()0,∞+;0a >时,()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.(2)讨论:①当1a ≤且0a ≠时,由(1)知,()f x 在[]1,e 上单调递减, 则()()max 11f x f ==,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()()122124f x f x f +≤=<, 所以对任意的[]11,x e ∈,不存在[]21,x e ∈,使得()()124f x f x +=;②当1a e <<时,由(1)知,在[]1,a 上()f x 是增函数,在[],a e 上()f x 是减函数, 则()()max ln 2f x f a a a a ==-+, 因为对11x =,对[]21,x e ∀∈,()()()()()1211ln 2ln 133f x f x f f a a a a a a +≤+=+-+=-+<, 所以对[]111,x e =∈,不存在[]21,x e ∈,使得()()124f x f x +=; ③当a e ≥时,令()()()4[1,]g x f x x e =-∈,由(1)知,()f x 在[]1,e 是增函数,进而知()g x 是减函数, 所以()()min 11f x f ==,()()max 2f x f e a e ==-+,()()()max 141g x g f ==-,()()()min 4g x g e f e ==-,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()124f x f x +=,即()()12f x g x =,故有()()()()11f g e f e g ⎧≥⎪⎨≤⎪⎩,即()()()()1414f f e f e f ⎧+≥⎪⎨+≤⎪⎩,所以()()134f f e a e +=-+=,解得1a e =+, 综上,a 的值为1e +.【变式10.1】已知函数()()3222f x x x m x =-+-+,223()x m g x x m+=-,m ∈R .(1)当2m =时,求曲线()y f x =在1x =处的切线方程; (2)求()g x 的单调区间;(3)设0m <,若对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立,求m 的取值范围.【答案】(1)1y x =+;(2)见解析;(3)[]2,1--.【解析】(1)当2m =时,()322f x x x =-+,所以()232f x x x '=-,所以()()12,11f f '==,所以曲线()y f x =在1x =处的切线方程为21y x -=-,即1y x =+.(2)()223x m g x x m+=-的定义域是{}|x x m ≠,()()()()23x m x m g x x m +-'=-, 令()0g x '=,得12,3x m x m =-=,①当0m =时,()(),0g x x x =≠,所以函数()g x 的单调增区间是(,0),(0,)-∞+∞; ②当0m <时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),3,,m m -∞-+∞,单调减区间是()()3,,,m m m m -; ③当0m >时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),,3,m m -∞-+∞,单调减区间是()(),,,3m m m m -.(3)因为()()3222f x x x m x =-+-+,所以()()2322f x x x m '=-+-,当0m <时,()412212200Δm m =--=-<,所以()0f x '>在()0,1上恒成立,所以()f x 在()0,1上单调递增, 所以()f x 在[]0,1上的最小值是()02f =,最大值是()14f m =-,即当[]0,1x ∈时,()f x 的取值范围为[]2,4m -,由(2)知,当10m -<<时,01m <-<,()g x 在()0,m -上单调递减,在(),1m -上单调递增,因为()22g m m -=-<,所以不合题意; 当1m ≤-时,1m ->,()g x 在[]0,1上单调递减,所以()g x 在[]0,1上的最大值为()03g m =-,最小值为()21311m g m+=-,所以当[]0,1x ∈时,()g x 的取值范围为213,31m m m ⎡⎤+-⎢⎥-⎣⎦, “对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立”等价于213,3[2,4]1m m m m ⎡⎤+-⊆-⎢⎥-⎣⎦,即2132134m m m m⎧+≥⎪-⎨⎪-≤-⎩,解得21m -≤≤-, 所以m 的取值范围为[]2,1--.不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.一、解答题.1.已知函数()()2ln 21f x x ax a x =+-+,(0a ≥).(1)当0a =时,求函数()f x 的极值;(2)函数()f x 在区间()1,+∞上存在最小值,记为()g a ,求证:()124g a a<-. 【答案】(1)极大值为1-,无极小值;(2)证明见解析. 【解析】(1)当0a =时,()ln f x x x =-,0x >,则()11f x x'=-, 当()0,1x ∈,()0f x '>;当[)1,x ∈+∞,所以()0f x '≤. 所以当1x =时,()f x 取得极大值为()11f =-,无极小值.(2)由题可知()()()()()222112111221ax a x ax x f x ax a x x x-++--'=+-+==. ①当0a =时,由(1)知,函数()f x 在区间()1,+∞上单调递减,所以函数()f x 无最小值,此时不符合题意; ②当12a ≥时,因为()1,x ∈+∞,所以210ax ->,此时函数()f x 在区间()1,+∞上单调递增,所以函数()f x 无最小值,此时亦不符合题意; ③当102a <<时,此时112a<, 函数()f x 在区间11,2a ⎛⎫ ⎪⎝⎭上单调递减,在区间1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 111ln1224f x f a a a ⎛⎫==-- ⎪⎝⎭,即()11ln 124g a a a =--, 要证()111ln 12244a a a g a =--<-,只需证当102a <<时,11ln 1022a a-+<成立, 设12t a=,()()ln 11h t t t t =-+>, 由(1)知()()10h t h <=,所以()124g a a<-. 2.已知函数()2ln ()f x a x a x =-∈R .(1)讨论函数()f x 的单调性;(2)若()1f x ≥恒成立,求a 的取值范围. 【答案】(1)答案见解析;(2){}2.【解析】(1)()()2220a x a f x x x x x-=-=>',当0a ≤时,()0f x '>,所以函数()f x 在区间(0,)+∞上单调递增;当0a >时,由()0f x '>,得x >()0f x '<,得0x <≤,所以函数()f x 在区间⎛ ⎝上单调递减,在区间⎫+∞⎪⎪⎭上单调递增, 综上所述,当0a ≤时,函数()f x 在区间(0,)+∞上单调递增;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增. (2)由(1)可得:当0a ≤时,()f x 在区间(0,)+∞上单调递增; 又()11f =,所以当01x <<时,()1f x <,不满足题意;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增;所以()min ln 2222a a a af x f a ==-=-, 为使()1f x ≥恒成立,只需()min ln 1222a a af x =-≥, 令2at =,()ln g t t t t =-,则只需()1g t ≥恒成立, 又()1ln 1ln g t t t '=--=-,由()0g t '>,得01t <<;由()0g t '<,得1t >, 所以()g t 在()0,1上单调递增,在()1,+∞上单调递减, 则()()max 11g t g ==; 又()1g t ≥,所以只有1t =,即12a=,则2a =, 综上,a 的取值范围为{}2.3.设3x =是函数23()()()x f x x ax b e x -=++∈R 的一个极值点. (1)求a 与b 之间的关系式,并求当2a =时,函数()f x 的单调区间;(2)设0a >,225()()4xg x a e =+.若存在12,[0,4]x x ∈使得12()()1f x g x -<成立,求实数a 的取值范围.【答案】(1)由23b a =--,()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减;(2)3(0,)2a ∈.【解析】(1)()()()232x f x x a x b a e -=-+-+-',由题意知()30f '=,解得23b a =--.当2a =,则7b =-,故令()()2390xf x x e -=-->',得33x -<<,于是()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减.(2)由(1)得()()()23233xf x x a x a e -=-+---',令()0f x '>,得13a x --<<(0a >),所以()f x 在()0,3上单调递增,在(]3,4单调递减,于是()()max 36f x f a ==+,()()(){}()3min min 0,423f x f f a e ==-+;另一方面()g x 在[]0,4上单调递增,()2242525,44g x a a e ⎡⎤⎛⎫∈++ ⎪⎢⎥⎝⎭⎣⎦.根据题意,只要()225614a a ⎛⎫+-+< ⎪⎝⎭,解得1322a -<<,所以30,2a ⎛⎫∈ ⎪⎝⎭.4.已知函数()2ln f x x ax x =+-,()3ln 12xx g x x e =-++.(1)讨论函数()f x 的单调性;(2)若()()f x g x ≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析;(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】(1)函数()2ln f x x ax x =+-的定义域为()0,∞+,且()212121ax x f x ax x x-+=+='-.①当0a =时,()1xf x x-'=,若01x <<,则()0f x '>;若1x >,则()0f x '<, 此时,函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞;②当0a <时,180Δa =->,令()0f x '=,可得14x a =(舍)或14x a=.若104x a <<,则()0f x '>;若14x a>,则()0f x '<, 此时,函数()f x的单调递增区间为0⎛ ⎝⎭,单调递减区间为+⎫⎪∞⎪⎝⎭; ③当0a >时,18Δa =-.(i )若180Δa =-≤,即当18a ≥时,对任意的0x >,()0f x '≥,。
1.5全称量词与存在量词1.全称量词与全称量词命题(1)全称量词短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示(2)全称量词命题含有全称量词的命题,叫做全称量词命题(3)全称量词命题的符号及记法记作:M x ∈∀,()x p 读作:对任意x 属于M ,有()x p 成立考点1.判断全称量词命题的真假例1判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)真命题.连接一条对角线,将一个四边形分成两个三角形,而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =是无理数,3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.例2将下列命题用量词等符号表示,并判断命题的真假:(1)所有实数的平方都是正数;(2)任何一个实数除以1,仍等于这个实数.【答案】(1)2,0x R x ∀∈>,假命题;(2),1x x R x ∀∈=,真命题【分析】(1)易得该命题为全称命题,再举出反例判定即可.(2)易得该命题为全称命题,再直接判定即可.【详解】(1)命题为:2,0x R x ∀∈>.易得当0x =时20x =,故原命题为假命题.(2)命题为:,1x x R x ∀∈=,易得为真命题.【点睛】本题主要考查了全称命题的定义与真假的判定.属于基础题.变式2-1判断下列全称量词命题的真假:(1)所有的素数都是奇数;(2)x R ∀∈,11≥+x ;(3)对任意一个无理数x ,2x 也是无理数.【答案】(1)假命题;(2)真命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)2是素数,但2不是奇数.所以全称量词命题“所有的素数是奇数”是假命题.(2)x R ∀∈,总有||0x ,因而||11x +.所以全称量词命题“x R ∀∈,||11x +”是真命题.(3是无理数,但22=是有理数.所以,全称量词命题“对每一个无理数x ,2x 也是无理数”是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.变式2-2判断下列全称量词命题的真假:(1)每一个末位是0的整数都是5的倍数;(2)线段垂直平分线上的点到这条线段两个端点的距离相等;(3)对任意负数2,x x 的平方是正数;(4)梯形的对角线相等【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据整数的知识判断即可.(2)根据平面几何的知识判断即可.(3)根据平方的性质判断即可.(4)举出反例判断即可.【详解】(1)根据整数的性质,末位是0的整数都是5的倍数成立.故为真命题.(2)根据垂直平分线的性质可得线段垂直平分线上的点到这条线段两个端点的距离相等.故为真命题.(3)对任意负数0x <,不等式两边同时乘以负数x 有20x >.故为真命题(4)举反例如直角梯形对角线显然不相等.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.2.存在量词与存在量词命题(1)存在量词短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示(2)存在量词命题含有存在量词的命题,叫做存在量词命题(3)存在量词命题的符号及记法记法:M x ∈∃,()x p 读法:存在M 中的元素x ,使得()x p 成立考点2.判断存在量词命题的真假例3判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据实数的定义分析即可.(2)根据等腰三角形的定义分析即可.(3)根据菱形与正方形的关系分析即可.(4)利用反证法证明是假命题即可.【详解】(1)实数包括有理数与无理数,其中无理数包括无限不循环小数如,e π等.故为真命题.(2)等腰三角形有两条长度相等的边,但并不是每个三角形都有两条长度相等的边,故为真命题.(3)四边长度相等的四边形为菱形,此时若相邻边互相垂直则为正方形,故为真命题.(4)假设有一个整数2,1n n +是4的倍数,则因为21n +能被4整除,故21n +为偶数,故2n 为奇数,故n 为奇数.设21,n k k N =+∈,则221442n k k +=++,故21n +除以4的余数为2与题设矛盾.故不存在整数,n 使得21n +是4的倍数.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.变式3-1判断下列存在量词命题的真假,并说明理由.(1)存在一个质数是偶数;(2)有一个实数x ,使2230x x ++=.【答案】(1)真命题,详见解析(2)假命题,详见解析【分析】(1)由2既是质数,也是偶数,可判断命题;(2)根据()2223122x x x ++=++≥,可判断命题.【详解】(1)因为2既是质数,也是偶数,所以原命题为真命题.(2)由于()22231220x x x ++=++≥>,所以原命题是假命题.【点睛】本题考查特称命题的判断,属于基础题.例4试判断以下命题的真假:(1)2,20x x ∈+>R ;(2)N x ∈∀,14≥x (3)3,1x x ∃∈<Z ;(4)2,3x x ∃∈=Q .【答案】(1)真命题;(2)假命题;(3)真命题;(4)假命题【分析】(1)根据不等式的性质判断即可;(2)全称命题判断为假,只需举一个反例即可;(3)特称命题判断为真,只需举一个正例即可;(4)解方程即可判断;【详解】解:(1)由于x ∀∈R ,都有20x ,因而有2220x +≥>,即220x +>.因此命题“2,20x x ∀∈+>R ”是真命题.(2)由于0∈N ,当0x =时,41x 不成立.因此命题“4,1x x ∀∈N ”是假命题.(3)由于1-∈Z ,当1x =-时,能使31x <成立.因此命题“3,1x x ∃∈<Z ”是真命题.(4)由于使23x =成立的数只有,而它们都不是有理数,因而没有任何一个有理数的平方能等于3.因此命题“2,3x x ∃∈=Q ”是假命题.【点睛】本题考查含有一个量词的命题的真假性判断,属于基础题.变式4-1判断下列命题的真假:(1)2,x x x ∃∈>R ;(2)2,x x x ∀∈>R ;(3)2,80x x ∃∈-=Q ;(4)2,20x x ∀∈+>R .【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题【分析】(1)特称命题判断为真,只需举一个正例即可;(2)全称命题判断为假,只需举一个反例即可;(3)通过解方程可判断;(4)根据不等式的性质可证明;【详解】解:(1)因为2x =时,2x x >成立,所以“2,x x x ∃∈>R ”是真命题.(2)因为0x =时,2x x >不成立,所以“2,x x x ∀∈>R ”是假命题.(3)因为使280x -=成立的数只有x =与x =-,但它们都不是有理数,所以“2,80x x ∃∈-=Q ”是假命题.(4)因为对任意实数x ,有20x ≥,则220x +>,即对任意实数,都有220x +>成立,所以“2,20x x ∀∈+>R ”是真命题.【点睛】本题考查命题真假判断,属于基础题.3.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:M x ∈∀,()x p 否定为:M x ∈∃,()x p ⌝(2)存在量词命题的否定存在量词命题:M x ∈∃,()x p 否定为:M x ∈∀,()x p ⌝考点3.全称量词命题和存在量词命题的否定例5命题“1x ∀>>”的否定是()A .01x ∃>≤B .01x ∀>≤C .01x ∃≤≤D .01x ∀≤≤【答案】A【分析】根据全称命题的否定为特称命题即可判断;【详解】解:命题1x ∀>>,为全称命题,全称命题的否定为特称命题,故其否定为01x ∃>≤故选:A【点睛】本题考查全称命题的否定,属于基础题.变式5-1命题“(0,1),x ∀∈20x x -<”的否定是()A .0(0,1),x ∃∉2000x x -≥B .0(0,1),x ∃∈2000x x -≥C .0(0,1),x ∀∉2000x x -<D .0(0,1),x ∀∈2000x x -≥【答案】B【分析】根据“全称命题”的否定一定是“特称命题”判断.【详解】“全称命题”的否定一定是“特称命题”,∴命题“(0,1),x ∀∈20x x -<”的否定是0(0,1),x ∃∈2000x x -≥,故选:B .【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.变式5-2命题“所有能被2整除的数都是偶数”的否定是A .所有不能被2整除的数都是偶数B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数【答案】D试题分析:命题“所有能被2整除的整数都是偶数”的否定是“存在一个能被2整除的数不是偶数”.故选D .考点:命题的否定.例6命题“0R x ∃∈,20010x x -+<”的否定是()A .R x ∃∈,210x x -+>B .R x ∃∈,210x x -+≥C .R x ∀∈,210x x -+>D .R x ∀∈,210x x -+≥【答案】D【分析】特称命题的否定是全称命题【详解】因为特称命题的否定是全称命题所以命题“0R x ∃∈,20010x x -+<”的否定是“R x ∀∈,210x x -+≥”故选:D【点睛】本题考查的是特称命题的否定,较简单.变式6-1已知命题:N,21000n P n ∃∈>,则P ⌝为()A .N,2100n n ∀∈B .N,21000n n ∀∈>C .N,21000n n ∃∈D .N,21000n n ∃∈<【答案】A【分析】【详解】写特称命题的否命题,将存在量词改为全称量词,再否定结果所以命题:N,21000n P n ∃∈>的否定P ⌝为N,2100n n ∀∈故选:A点评:掌握命题的改写方法变式6-2若命题[]2000:3,3,210p x x x ∃∈-++≤,则命题p 的否定为()A .[]23,3,210x x x ∀∈-++>B .()()2,33,,210x x x ∀∈-∞-⋃+∞++>C .()()2,33,,210x x x ∀∈-∞-⋃+∞++≤D .[]20003,3,210x x x ∀∈-++<【答案】A【分析】利用存在性命题否定的结构形式写出其否定即可.【详解】命题p []23,3,210x x x ∀∈-++>.故选:A.【点睛】全称命题的一般形式是:x M ∀∈,()p x ,其否定为(),x M p x ∃∈⌝.存在性命题的一般形式是x M ∃∈,()p x ,其否定为(),x M p x ∀∈⌝.变式6-3写出下列各题中的p ⌝:(1):,10p x Z x ∃∈->;(2):,20p x Q x ∀∈-≥;(3)2:,10p x R x ∀∈+>;(4)2:,10p x R x ∃∈-<.【答案】(1):,10p x Z x ⌝∀∈-≤;(2):,20p x Q x ⌝∃∈-<;(3)2:,10p x R x ⌝∃∈+≤;(4)2:,10p x R x ⌝∀∈-≥.【分析】(1)特称量词变为全称量词,大于变小于等于得到命题的否定。
全称量词命题与存在量词命题的否定基础知识1.命题的否定(1)定义:对命题p加以否定,就得到一个新的命题,记作“¬p”,读作“非p”或“p的否定”.(2)结论:如果一个命题是真命题,那么这个命题的否定就应该是假命题;反之亦然.2.存在量词命题的否定1.命题“∀x∈R,|x|+x2≥0”的否定是(C)A.∀x∈R,|x|+x2<0B.∀x∈R,|x|+x2≤0C.∃x∈R,|x|+x2<0D.∃x∈R,|x|+x2≥0解析:命题“∀x∈R,|x|+x2≥0”是全称量词命题,其否定为存在量词命题,所以命题的否定是∃x∈R,|x|+x2<0.2.“∃m,n∈Z,使得m2=n2+2 020”的否定是(C)A.∀m,n∈Z,使得m2=n2+2 020B.∃m,n∈Z,使得m2≠n2+2 020C.∀m,n∈Z,有m2≠n2+2 020D.以上都不对解析:命题“∃m,n∈Z,使得m2=n2+2 020”是存在量词命题,其否定为全称量词命题,所以命题的否定是∀m,n∈Z,有m2≠n2+2 020.3.设命题p:∀x∈(-1,1),|x|<1,则¬p为(B)A.∃x∈(-1,1),|x|<1B.∃x∈(-1,1),|x|≥1C.∀x∈(-1,1),|x|≥1D.∀x∉(-1,1),|x|≥1解析:命题p是全称量词命题,其否定¬p为∃x∈(-1,1),|x|≥1.4.设命题p :有些三角形是直角三角形,则¬p 为__任意三角形不是直角三角形__. 解析:命题p 是存在量词命题,¬p 为任意三角形不是直角三角形. 5.命题“∃x <1使得x 2≥1”是__真__命题.(选填“真”或“假”)类型 存在量词命题的否定 ┃┃典例剖析__■典例1 写出下列存在量词命题的否定,并判断其真假. (1)p :存在x ∈R,2x +1≥0; (2)q :存在x ∈R ,x 2-x +14<0;(3)r :有些分数不是有理数.思路探究:把存在量词改为全称量词,然后否定结论. 解析:(1)任意x ∈R,2x +1<0,为假命题. (2)任意x ∈R ,x 2-x +14≥0.因为x 2-x +14=(x -12)2≥0,是真命题.(3)一切分数都是有理数,是真命题. 归纳提升:1.存在量词命题否定的步骤(1)改变量词:把存在量词换为恰当的全称量词.(2)否定结论:原命题中的“有”“存在”等更改为“没有”“不存在”等. 2.存在量词命题否定的真假判断存在量词命题的否定是全称量词命题,其真假性与存在量词命题相反;要说明一个存在量词命题是真命题,只需要找到一个实例即可. ┃┃对点训练__■1.将本例(2)改为:q :存在x ∈R ,x 2-x -1<0,写出它的否定,并判断真假. 解析:任意x ∈R ,x 2-x -1≥0.因为x 2-x -1=(x -12)2-54,所以不能判断其值大于等于零,为假命题.类型 全称量词命题的否定 ┃┃典例剖析__■典例2 写出下列全称量词命题的否定: (1)任何一个平行四边形的对边都平行; (2)∀a ∈R ,方程x 2+ax +2=0有实数根;(3)∀a,b∈R,方程ax=b都有唯一解;(4)∀n∈N,n2≤2n.思路探究:把全称量词改为存在量词,然后否定结论.解析:(1)存在一个平行四边形,它的对边不都平行.(2)∃a∈R,方程x2+ax+2=0没有实数根.(3)∃a,b∈R,使方程ax=b的解不唯一或不存在.(4)∃n∈N,n2>2n.归纳提升:1.全称量词命题否定的步骤(1)改变量词:把全称量词换为恰当的存在量词.(2)否定结论:原命题中的“是”“成立”等改为“不是”“不成立”等.2.全称量词命题否定的真假判断方法全称量词命题的否定是存在量词命题,其真假性与全称量词命题相反;要说明一个全称量词命题是假命题,只需举一个反例即可.┃┃对点训练__■2.写出下列全称量词命题的否定,并判断所得命题的真假:(1)p:∀x∈{-2,-1,0,1,2},|x-2|≥2;(2)q:∀x∈R,x3+1≠0;(3)r:所有分数都是有理数.解析:(1)¬p:∃x∈{-2,-1,0,1,2},|x-2|<2.例如当x=2时,|x-2|=0<2,¬p是真命题.(2)¬q:∃x∈R,x3+1=0.例如当x=-1时,x3+1=0,所以¬q是真命题.(3)¬r:存在一个分数不是有理数.由r是真命题可知¬r是假命题.易混易错警示写命题的否定时忽略隐含的量词┃┃典例剖析__■典例3写出下列命题的否定:(1)可以被5整除的数,末位数字是0;(2)能被3整除的数,也能被4整除.错因探究:本题易忽略命题中存在的隐含量词,如“可以被5整除的数”实际上含有全称量词“任何一个”,注意要在否定时改为“存在”.事实上,对于(1),通常会错解为“可以被5整除的数,末位数字不是0”,而原命题为假命题,错解中命题的否定也是假命题,故此命题的否定错误;(2)的易错点与(1)相仿,易错解为“能被3整除的数,不能被4整除”.解析:(1)省略了全称量词“任何一个”,命题的否定为:存在可以被5整除的数,末位数字不是0.(2)省略了全称量词“所有”,命题的否定为:存在一个能被3整除的数,不能被4整除.误区警示:由于全称量词往往省略不写,因此在写这类命题的否定时,必须找出其中省略的全称量词,写成“∀x∈m,p(x)”的形式,再把它的否定写成“∃x∈M,¬p(x)”的形式.要学会挖掘命题中隐含的量词,注意把握每一个命题的实质,写出命题的否定后可以结合它们的真假性(一真一假)进行验证.学科核心素养全称量词命题、存在量词命题为假命题时求参数问题┃┃典例剖析__■已知命题p为假命题求参数的值或取值范围时,通常等价转化为¬p是真命题后,再求参数的值或取值范围.(1)存在量词命题为真命题求参数范围(值)的问题,常以一次函数、二次函数等为载体进行考查,一般在题目中会出现“恒成立”等词语.解决此类问题,可构造函数,利用数形结合法求参数范围(值),也可用分离参数法求参数范围(值).(2)存在量词命题为真命题求参数范围(值)的问题中常出现“存在”等词语,对于此类问题,通常是假设存在满足条件的参数,然后分离参数,并利用条件求参数范围(值).典例4已知命题p:“∃x∈R,x2-2x+m≤0”是假命题,求实数m的取值范围.思路探究:命题p的否定¬p一定为真命题,可以通过分离参数法,转化为不等式恒成立问题,通过求最值得出m的取值范围;也可以利用二次函数的图像和性质转化为Δ与0的关系,解不等式求解.解析:方法一:¬p:∀x∈R,x2-2x+m>0,是真命题,即m>-x2+2x=-(x-1)2+1,x∈R恒成立,设函数y=-(x-1)2+1,由二次函数的性质知,当x=1时,y最大值=1,∴m>y最大值=1,即实数m的取值范围是(1,+∞).方法二:¬p:∀x∈R,x2-2x+m>0,是真命题,设函数y=x2-2x+m,由二次函数的图像和性质知,只需方程x2-2x+m=0的根的判别式Δ<0,即4-4m<0,得m>1,即实数m的取值范围是(1,+∞).课堂检测·固双基1.命题“存在实数x,使x>1”的否定是(C)A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1解析:命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.2.命题“对任意x∈R,都有x2+2x+3>0”的否定为(A)A.存在x∈R,使得x2+2x+3≤0B.对任意x∈R,都有x2+2x+3≤0C.存在x∈R,使得x2+2x+3>0D.不存在x∈R,使得x2+2x+3≤0解析:命题的否定为“存在x∈R,使得x2+2x+3≤0”.3.“∀x>0,x2+1>|x+1|”的否定是__∃x>0,使x2+1≤|x+1|__.解析:根据含有量词的命题的否定的规则,可以写出:∃x>0,使x2+1≤|x+1|.4.对于二次函数y=ax2+bx+c(a≠0),命题“对于任意a>0,二次函数y=ax2+bx+c的图像开口向上”的否定是__存在一个a>0,使二次函数y=ax2+bx+c的图像开口向下__. 5.写出下列命题的否定,并判断所得命题的真假.(1)p:不论m取何实数,方程3x2-2x+m=0必有实数根;(2)q:存在一个实数x,使得x2+x+1≤0;(3)r:等圆的面积相等,周长相等.解析:(1)全称量词命题p:∀m∈R,方程3x2-2x+m=0有实数根,该命题的否定是存在量词命题,¬p:∃m∈R,使得方程3x2-2x+m=0没有实数根.当Δ<0,即m>13时,方程没有实数根,所以¬p是真命题.(2)命题q的否定是全称量词命题¬q:∀x∈R,x2+x+1>0.易知(x+12)2+34>0恒成立,所以¬q是一个真命题.(3)命题r的否定是¬r:存在一对等圆,其面积不相等或周长不相等.由平面几何知识知¬r是一个假命题.A级基础巩固一、单选题(每小题5分,共25分)1.命题“对任意x∈R,都有|x+1|+|x-2|≥3”的否定为(A)A.存在x∈R,使得|x+1|+|x-2|<3B .对任意x ∈R ,都有|x +1|+|x -2|<3C .存在x ∈R ,使得|x +1|+|x -2|≥3D .不存在x ∈R ,使得|x +1|+|x -2|<3解析:命题的否定为“存在x ∈R ,使得|x +1|+|x -2|<3”.2.已知全集U =R ,A ⊆U ,B ⊆U ,如果p :a ∈(A ∪B ),那么“¬p ”是( D ) A .a ∈A B .a ∈∁U BC .a ∉(A ∩B )D .a ∈[(∁U A )∩(∁U B )]解析:“p 或q ”的否定是“非p 且非q ”,所以“a ∈(A ∪B )”的否定为“a ∉A 且a ∉B ”,即“a ∈[(∁U A )∩(∁U B )]”.3.命题“∀x ∈R ,∃n ∈N *,使得n ≥2x +1”的否定是( D ) A .∀x ∈R ,∃n ∈N *,使得n <2x +1 B .∀x ∈R ,∀n ∈N *,使得n <2x +1 C .∃x ∈R ,∃n ∈N *,使得n <2x +1 D .∃x ∈R ,∀n ∈N *,使得n <2x +1解析:将“∀x ∈R ”改为“∃x ∈R ”,“∃n ∈N *”改为“∀n ∈N *”,“ n ≥2x +1”改为“n <2x +1”即可.4.若x 是不为零的实数,则命题∀m ∈[0,1],x +1x ≥2m 的否定形式是( D )A .∀m ∈[0,1],x +1x <2mB .∃m ∈[0,1],x +1x≥2mC .∃m ∈(-∞,0)∪(1,+∞),x +1x ≥2mD .∃m ∈[0,1],x +1x<2m解析:∀m ∈[0,1],x +1x ≥2m 的否定是∃m ∈[0,1],x +1x <2m ,全称量词命题的否定是换量词,否结论,不改变条件.故选D .5.若命题“∃x 0∈R ,x 20+2mx 0+m +2<0”为假命题,则m 的取值范围是( C ) A .(-∞,-1]∪[2,+∞) B .(-∞,-1)∪(2,+∞) C .[-1,2]D .(-1,2)解析:依题意得:∀x 0∈R ,x 20+2mx 0+m +2≥0,Δ=(2m )2-4(m +2)≤0解得:-1≤m ≤2,即m ∈[-1,2]. 二、填空题(每小题5分,共15分)6.“∃x 0∈R ,x 20+2x 0+2≤0”的否定是__∀x ∈R ,x 2+2x +2>0__.解析:这是一个存在量词命题,其否定为全称量词命题,故该命题的否定为∀x ∈R ,x 2+2x +2>0.7.静宁一中开展小组合作学习模式,高一某班某组王小一同学给组内王小二同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 的取值范围.王小二略加思索,反手给了王小一一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 的取值范围.你认为,两位同学所出的题中m 的取值范围是否一致?__是__(填“是”或“否”)解析:原命题是假命题,则该命题的否定是真命题,所以两位同学所出的题中m 的取值范围是一致的.8.已知非空集合M ,P ,则下列条件中,能得到命题“M ⊆P ”是假命题的是__④__. ①∀x ∈M ,x ∉P ; ②∀x ∈P ,x ∈M ;③∃x 1∈M ,x 1∈P 且x 2∈M ,x 2∉P ; ④∃x ∈M ,x ∉P .解析:M ⊆P 等价于∀x ∈M ,x ∈P ,因为“M ⊆P ”是假命题,所以其否定为∃x ∈M ,x ∉P ,它是真命题,故能得到“M ⊆P ”是假命题的条件是∃x ∈M ,x ∉P .故只有④符合条件. 三、解答题(共20分)9.(10分)命题p :存在x >a ,使得2x +a <3.若命题p 为假命题,求实数a 的取值范围. 解析:命题p 为假命题,则¬p :任意的x >a ,都有2x +a ≥3为真命题.由此可得2a +a ≥3,即a ≥1.所以实数a 的取值范围是[1,+∞).10.(10分)命题p 是“对任意实数x ,有x -a >0或x -b ≤0”.其中a ,b 是常数. (1)写出命题p 的否定;(2)a ,b 满足什么条件时,命题p 的否定为真?解析:(1)根据全称量词命题的否定是存在量词命题可知,¬p :∃x ∈R , 满足x -a ≤0且x -b >0.(2)由⎩⎪⎨⎪⎧x -a ≤0,x -b >0,得b <x ≤a ,所以当a >b 时,命题p 的否定为真.。
选修1-1参考答案第一章 常用逻辑用语 第一节 针对训练答案:1.必要不充分 2. 32,10x x x ∃∈-+>R 3 若12,m m+≥则m>0 4 _存在矩形对角线不相等 5 ②③④ ①正确, ②中B ≤0时不成立, ③中的定义域为φ, ④中应是随机抽样. 6 ②④ 7 必要不充分 8充分而不必要条件 9 ② ③ 10,11a b a b ≤-≤-若则 11充分不必要 12充分非必要 13 (3)14 C 15A 16 2,217A 18C 19 A 20 逆命题:若有两个不等实根则(假) 否命题:若则没有两个不等实根(假) 逆否命题:若没有两个不相等实根则(真)21D 22A 23 A 24B 25A 26D 27C 28. D 29. A 30 D 31. C . 32. 33. 真命题:或,非;假命题:且,非 第二节 针对训练1B2.D 原命题是真命题,所以逆否命题也为真命题3.A ①,仅仅是充分条件 ② ,仅仅是充分条件;③,仅仅是充分条件4.B “”为假,则为真,而(且)为假,得为假 5.D 当时,都满足选项,但是不能得出 当时,都满足选项,但是不能得出6.B 当时,,所以“过不去”;但是在△中, ,即“回得来” 02=++c bx ax 0<ac 0≥ac 02=++c bx ax 02=++c bx ax 0≥ac 20<<m p q p p q q 220a b a b >>⇒>0a b >>⇒ba 11<330a b a b >>⇒>p ⌝p p q ∧q 1,0a b ==,A B 1a b +>0.5,0.5a b ==C 1a b +>0170A =001sin170sin102=<ABC 0001sin 30150302A A A >⇒<<⇒>7.D 当时,从不能推出,所以假,显然为真 8.解:而,即。
ʏ袁满成函数中的任意性与存在性问题,是高中数学的重要内容,渗透着化归与转化㊁数形结合㊁函数与方程等数学思想,一直是高考命题的热点,也是同学们学习的难点㊂这类问题既有单一函数的任意性与存在性问题,也有双函数中的任意性与存在性问题,同时变量也涉及单变量与双变量㊂下面就双函数中的任意性与存在性问题进行探究,意在抛砖引玉㊂一㊁双函数㊁单变量的任意性与存在性问题双函数㊁单变量的任意性与存在性问题,需要优先考虑分离参数法,并转化为最值(或临界值)进行研究,但要注意利用的最值(或临界值)正好是相反的㊂当分离参数构造所得函数的最值不好求时,可以利用作差㊁分类讨论的方法进行解决㊂例1 已知函数f (x )=l o g a x ,g (x )=2l o g a (2x +t -2),其中a >0且a ʂ1,t ɪR ㊂当0<a <1,且x ɪ14,2[]时,f (x )ȡg (x )恒成立,求实数t 的取值范围㊂解:由f (x )ȡg (x )恒成立,可得l o g a x ȡ2l o g a (2x +t -2)恒成立,所以12l o g a x ȡl o g a (2x +t -2)恒成立㊂因为0<a <1,x ɪ14,2[],所以x ɤ2x +t -2,可得t ȡ-2x +x +2恒成立,即t ȡ(-2x +x +2)m a x ㊂令函数y =-2x +x +2=-2x -14()2+178,x ɪ14,2[],所以当x =14时,y m ax =2,故实数t 的取值范围为[2,+ɕ)㊂评析:若f (x )ȡa 或g (x )ɤa 恒成立,只需满足f (x )m i n ȡa 或g (x )m a x ɤa ,求出函数f (x )的最小值或函数g (x )的最大值即可解决问题㊂例2 已知函数h (x )=2x -1,g (x )=m (x 2-1),问是否存在实数m ,使得不等式h (x )>g (x )对任意的x ɪ[-2,2]恒成立㊂解:假设存在实数m ,使得不等式h (x )>g (x )对任意的x ɪ[-2,2]恒成立㊂令函数f (x )=h (x )-g (x )=2x -1-m (x 2-1)=-m x 2+2x +m -1,x ɪ[-2,2],要使不等式h (x )>g (x )对任意x ɪ[-2,2]恒成立,即f (x )>0对x ɪ[-2,2]恒成立㊂当m =0时,f (x )=2x -1,在-2ɤx ɤ12上,f (x )ɤ0,在12<x ɤ2上,f (x )>0,可知不满足题意;当m ʂ0时,函数f(x )只需满足-m >0,1mɤ-2,f (-2)>0ìîíïïïï或-m >0,-2<1m <2,Δ=4+4m (m -1)<0ìîíïïïï或-m <0,f (2)>0,f (-2)>0㊂ìîíïïï据此代入化简整理得m <0,-12ɤm <0,m <-53ìîíïïïïïï或m <0,-2<1m <2,m ɪ⌀ìîíïïïï或m >0,m <1,m <-53,ìîíïïïï所以m ɪ⌀㊂故不存在实数m ,使得不等式h (x )>g (x )对任意的x ɪ[-2,2]恒成立㊂评析:对于不适合分离参数的不等式,常用分类讨论法,结合函数的单调性或最值,求得参数的取值范围㊂二㊁双函数㊁双变量的任意性与存在性问题双函数㊁双变量的任意性与存在性问题,通常是将含有全称量词和存在量词的条件 等价转化 为两个函数值域之间的关系(或23 数学部分㊃经典题突破方法 高一使用 2022年1月Copyright ©博看网. All Rights Reserved.两个函数最值之间的关系)进行研究㊂例3已知函数f(x)=12x2+x,函数g(x)=l n(x+1)-a,若存在x1,x2ɪ[0,2],使得f(x1)>g(x2),求实数a的取值范围㊂解:因为f(x),g(x)在[0,2]上都是增函数,所以f(x)的值域A=[0,4],g(x)的值域B=[-a,l n3-a]㊂若存在x1,x2ɪ[0,2],使得f(x1)>g(x2),则f(x)m a x> g(x)m i n,即4>-a,所以a>-4㊂故实数a 的取值范围是(-4,+ɕ)㊂评析:对任意的x1ɪA,任意的x2ɪB,使得f(x1)ɤg(x2),则f(x)m a xɤg(x)m i n㊂对任意的x1ɪA,存在x2ɪB,使得f(x1)ɤg(x2),则f(x)m a xɤg(x)m a x㊂对任意的x1ɪA,存在x2ɪB,使得f(x1)ȡg(x2),则f(x)m i nȡg(x)m i n㊂例4已知函数f(x)=2x+a x2(a> 0),函数g(x)=x2-4x+1㊂若对任意x1ɪ[-1,2],总存在x2ɪ[-1,2],使得f(x1)= g(x2),则实数a的取值范围是㊂解:函数g(x)=x2-4x+1=(x-2)2-3,因为x2ɪ[-1,2],所以函数g(x)的值域为B=[-3,6]㊂任意x1ɪ[-1,2],总存在x2ɪ[-1, 2],使得f(x1)=g(x2),可设函数f(x)的值域为A㊂因为B=[-3,6],所以A⊆B㊂因为2x>0,a x2ȡ0,所以f(x)=2x+a x2>0在[-1,2]上恒成立㊂因为f(x)在[0,2]上单调递增,所以f(x)的最大值为f(2)=4+ 4a,所以4+4aɤ6,可得aɤ12㊂又a>0,所以实数a的取值范围是0,12(]㊂评析:对任意的x1ɪA,存在x2ɪB,使得f(x1)=g(x2),则f(x)的值域是g(x)值域的子集,即f(A)⊆g(B)㊂1.已知函数f(x)=|a x-1|+|x+1|, g(x)=x+2㊂若对∀xɪ[1,2],不等式f(x)ɤg(x)恒成立,求实数a的取值范围㊂提示:当xɪ[1,2]时,不等式f(x)ɤg(x)恒成立,即|a x-1|ɤ1对∀xɪ[1,2]恒成立㊂当a=0时,显然成立;当a>0时,由|a x-1|ɤ1,可得0ɤxɤ2a,要使|a x-1|ɤ1对∀xɪ[1,2]恒成立,则2aȡ2,可得aɤ1,所以0<aɤ1;当a<0时,由|a x-1|ɤ1,可得2aɤxɤ0,显然对∀xɪ[1,2],|a x-1|ɤ1不成立㊂综上可得,a的取值范围为[0,1]㊂或者,构造函数h(x)=|a x-1|,xɪ[1,2],则h(1)=|a-1|ɤ1,h(2)=|2a-1|ɤ1, {解得0ɤaɤ1㊂故实数aɪ[0,1]㊂2.已知函数f(x)=l n(x2+1),g(x)= 12()x-m,若对∀x1ɪ[0,3],∃x2ɪ[1,2],使得f(x1)ȡg(x2),则实数m的取值范围是㊂提示:当xɪ[0,3]时,f(x)m i n=f(0)= 0,当xɪ[1,2]时,g(x)m i n=g(2)=14-m㊂∀x1ɪ[0,3],∃x2ɪ[1,2],使得f(x1)ȡg(x2)可等价转化为f(x)m i nȡg(x)m i n,所以0ȡ14-m,即mȡ14,故实数m的取值范围是14,+ɕ[)㊂3.已知函数f(x)=x2-2x,g(x)=a x+2(a>0),对任意的x1ɪ[-1,2],存在x2ɪ[-1,2],使得g(x1)=f(x2),则a的取值范围是㊂提示:由xɪ[-1,2],f(x)=x2-2x, g(x)=a x+2(a>0),可得f(x)的值域为[-1,3],g(x)的值域是[-a+2,2a+2]㊂因为对任意的x1ɪ[-1,2],存在x2ɪ[-1, 2],使得g(x1)=f(x2),所以f(x)的值域包含g(x)的值域,即[-a+2,2a+2]⊆[-1, 3],则-1ɤ-a+2<2a+2ɤ3,解得0<aɤ12,即aɪ0,12(]㊂作者单位:江苏省盐城市时杨中学(责任编辑郭正华)33数学部分㊃经典题突破方法高一使用2022年1月Copyright©博看网. All Rights Reserved.。
全称量词与存在量词预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)的否定[(1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略( )(2)“有的等差数列也是等比数列”是特称命题( )(3)“三角形内角和是180°”是全称命题( )答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0答案:C3.下列全称命题为真命题的是( )A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例](1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意] 全称命题可能省略全称量词,特称命题的存在量词一般不能省略. [活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 2>0D .∀x ∈R ,e x>0(2)下列命题中的真命题是( )A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 [解析] (1)对于A ,x =1时,lg x =0; 对于B ,x =k π+π4(k ∈Z)时,tan x =1;对于C ,当x =0时,x 2=0,所以C 中命题为假命题; 对于D ,e x>0恒成立.(2)对于A ,当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;对于B ,令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝ ⎛⎭⎪⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题; 对于C ,向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;对于D ,|x |≤1,即-1≤x ≤1,故充分性成立,若x ≤1,则|x |≤1不一定成立,所以“|x |≤1”为“x ≤1”的充分不必要条件,故D 为假命题.[答案] (1)C (2)B指出下列命题是全称命题,还是特称命题,并判断真假. (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)存在两个相交平面垂直于同一条直线. (4)∃x 0∈R ,使x 20+1<0. 解:(1)是全称命题.∵a x>0(a >0,且a ≠1)恒成立,∴命题(1)是真命题. (2)是全称命题.存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π, ∴命题(2)是假命题. (3)是特称命题.由于垂直于同一条直线的两个平面是互相平行的, ∴命题(3)是假命题. (4)是特称命题.对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.全称命题与特称命题的否定[典例] p n n2n pA.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[解析] (1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案] (1)C (2)D全称命题与特称命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.判断下列命题的真假,并写出它们的否定.(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.解:(1)三角形的内角和为180°,是全称命题,是真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)每个二次函数的图象都开口向下,是全称命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)存在一个四边形不是平行四边形,是特称命题,是真命题.命题的否定:所有的四边形都是平行四边形.利用全称命题与特称命题求参数[典例] 若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[解] 法一:由题意,∀x ∈[-1,+∞), 令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立, 而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,1+a 2+2-a 2,a <-1.由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 法二:x 2-2ax +2≥a , 即x 2-2ax +2-a ≥0, 令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2-42-a >0,a <-1,f -1≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.命题p :∃x 0∈[0,π],使sin ⎝⎛⎭⎪⎫x 0+π3<a ,若p 是真命题,则实数a 的取值范围为________.解析:由0≤x ≤π,得π3≤x +π3≤4π3,所以-32≤sin ⎝⎛⎭⎪⎫x +π3≤1. 而命题p :∃x 0∈[0,π],使sin ⎝ ⎛⎭⎪⎫x 0+π3<a ,因为p 为真命题,所以a >-32. 答案:⎝ ⎛⎭⎪⎫-32,+∞ 2.已知命题p :∃x 0∈R ,使x 20-mx 0+1=0,命题q :∀x ∈R ,有x 2-2x +m >0.若命题q ∨(p ∧q )为真,綈p 为真,求实数m 的取值范围.解:由于綈p 为真,所以p 为假,则p ∧q 为假. 又q ∨(p ∧q )为真,故q 为真,即p 假、q 真.命题p 为假,即关于x 的方程x 2-mx +1=0无实数解,则m 2-4<0,解得-2<m <2; 命题q 为真,则4-4m <0,解得m >1. 故实数m 的取值范围是(1,2).层级一 学业水平达标1.已知命题p :∀x >0,总有e x>1,则綈p 为( ) A .∃x 0≤0,使得e x 0≤1 B .∃x 0>0,使得e x 0≤1 C .∀x >0,总有e x≤1D .∀x ≤0,总有e x<1解析:选B 因为全称命题的否定是特称命题,所以命题p 的否定綈p 为∃x 0>0,使得e x 0≤1.故选B.2.下列四个命题中的真命题为( ) A .若sin A =sin B ,则A =B B .∀x ∈R ,都有x 2+1>0 C .若lg x 2=0,则x =1 D .∃x 0∈Z ,使1<4x 0<3解析:选B A 中,若sin A =sin B ,不一定有A =B ,故A 为假命题,B 显然是真命题;C 中,若lg x 2=0,则x 2=1,解得x =±1,故C 为假命题;D 中,解1<4x <3得14<x <34,故不存在这样的x ∈Z ,故D 为假命题.3.命题“∃x 0∈R,2x 0<12或x 20>x 0”的否定是( )A .∃x 0∈R,2x 0≥12或x 20≤x 0B .∀x ∈R,2x ≥12或x 2≤xC .∀x ∈R,2x ≥12且x 2≤xD .∃x 0∈R,2x 0≥12且x 20≤x 0解析:选C 原命题为特称命题,其否定为全称命题,应选C. 4.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:选B A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号) ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③ ④7.命题“至少有一个正实数x 满足方程x 2+2(a -1)x +2a +6=0”的否定是________. 解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定. 答案:所有正实数x 都不满足方程x 2+2(a -1)x +2a +6=08.已知命题“∃x 0∈R,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:原命题等价于“∀x ∈R,2x 2+(a -1)x +12>0”是真命题,即Δ=(a -1)2-4<0,解得-1<a <3.答案:(-1,3)9.判断下列命题的真假,并写出它们的否定. (1)∀α,β∈R ,sin(α+β)≠sin α+sin β; (2)∃x 0,y 0∈Z,3x 0-4y 0=20;(3)在实数范围内,有些一元二次方程无解; (4)正数的绝对值是它本身.解:(1)当α=β=0时,sin(α+β)=sin α+sin β,故命题为假命题.命题的否定为:∃α0,β0∈R ,sin(α0+β0)=sin α0+sin β0.(2)真命题.命题的否定为:∀x ,y ∈Z,3x -4y ≠20.(3)真命题.命题的否定为:在实数范围内,所有的一元二次方程都有解.(4)省略了量词“所有的”,该命题是全称命题,且为真命题.命题的否定为:有的正数的绝对值不是它本身.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π.(1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值. 解:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π. (2)因为綈p 是假命题,所以p 是真命题, 所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.层级二 应试能力达标1.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 解析:选D 由正弦函数的图象,知∀x ∈⎝⎛⎭⎪⎫0,π2,sin x <x ,又3<π,∴当x ∈⎝⎛⎭⎪⎫0,π2时,3sin x <πx ,即∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0恒成立,∴p 是真命题.又全称命题的否定是特称命题,∴綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0. 2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0= 2.则下列判断正确的是( )A .p 是真命题B .q 是假命题C .p ,q 都是假命题D .綈q 是假命题解析:选D p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x 2+x +14=2x +122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝⎛⎭⎪⎫x 0-π4,∴x 0=34π时成立.故q 为真,而綈q 为假命题. 3.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+12x +34>0.给出下列结论:①命题p 是真命题; ②命题q 是假命题; ③命题(綈p )∧q 是真命题; ④命题p ∨(綈q )是假命题. 其中正确的是( ) A .②④ B .②③ C .③④D .①②③解析:选C 对于命题p ,因为函数y =sin x 的值域为[-1,1],所以命题p 为假命题; 对于命题q ,因为函数y =x 2+12x +34的图象开口向上,最小值在x =-14处取得,且f ⎝ ⎛⎭⎪⎫-14=1116>0,所以命题q 为真命题. 由命题p 为假命题和命题q 为真命题可得:命题(綈p )∧q 是真命题,命题p ∨(綈q )是假命题.故③④正确.4.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.5.有下列四个命题:①∀x ∈R,2x 2-3x +4>0; ②∀x ∈{1,-1,0},2x +1>0; ③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数. 其中真命题有________个.解析:易知①③④正确.当x =-1时,2x +1<0,故②错误. 答案:36.已知命题p :∃c >0,y =(3-c )x在R 上为减函数,命题q :∀x ∈R ,x 2+2c -3>0.若p ∧q 为真命题,则实数c 的取值范围为________.解析:由于p ∧q 为真命题,所以p ,q 都是真命题,所以⎩⎪⎨⎪⎧0<3-c <1,2c -3>0,解得2<c <3.故实数c 的取值范围为(2,3).答案:(2,3)7.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.解:法一:由题意知,x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0.整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二:綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0.解得a ≤-3.故命题p 中,a >-3. 即参数a 的取值范围为(-3,+∞).8.已知f (t )=log 2t ,t ∈[2,8],若命题“对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立”为真命题,求实数x 的取值范围.解:易知f (t )∈⎣⎢⎡⎦⎥⎤12,3. 由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2,则g (m )>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.故实数x 的取值范围是(-∞,-1)∪(2,+∞).(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.3.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D ①的逆命题为1a <1b则,a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.4.已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题B .命题p 是特称命题C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题解析:选C 命题p :实数的平方是非负数,是全称命题,且是真命题,故綈p 是假命题.5.下列命题中,真命题是( ) A .命题“若|a |>b ,则a >b ”B .命题“若“a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b.下列命题p ∧q ,p ∨q ,綈p ,綈q 中,真命题的个数是( )A .1B .2C .3D .4解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,綈p ,綈q 是假命题.7.已知f (x )=e x+x -1,命题p :∀x ∈(0,+∞),f (x )>0,则( ) A .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 B .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0 C .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 D .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0解析:选B 由于函数y =e x 和y =x -1在R 上均是增函数,则f (x )=e x+x -1在R 上是增函数,当x >0时,f (x )>f (0)=0,所以p 为真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0,故选B.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解解析:选A 在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),其余三命题均错误.9.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是( )A.[1,+∞) B.(2,+∞)C.[-1,+∞) D.(-∞,-1)解析:选B3x+1<1⇔x<-1或x>2.又p是q的充分不必要条件,则k>2,故选B.10.下列判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N*,x3>x2”的否定是“∃x0∈N*,x30<x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析:选D 选项A是全称命题,不正确;选项B应该是∃x0∈N*,x30≤x20,不正确;对于选项C,f(x)=cos2ax-sin2ax=cos 2ax,周期T=2π2a=πa,当a=1时,周期是π,当周期是π时,a=1,所以“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的充要条件;选项D正确,故选D.11.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 由f(x)=x2-4x>0,得x<0或x>4.由|x-1|>1,得x<0或x>2.由|x-2|>3,得x<-1或x>5,所以只有C是必要不充分条件.故选C.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.命题“若a ∉A ,则b ∈B ”的逆否命题是________. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序. 答案:若b ∉B ,则a ∈A14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.解析:p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题. 答案:p ∨q ,綈p15.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.解析:p :a -4<x <a +4,q :2<x <3. 由綈p 是綈q 的充分条件可知,q 是p 的充分条件,即q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:[-1,6]16.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析:由题意,知ab ≠0,当ab >0时,1a <1b ⇔ab ·1a <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a>0>1b ,所以原命题是假命题;若1a <1b,则必有1a<0<1b,故a <0<b ,所以原命题的逆命题也是假命题.由命题的等价性,可知四种命题都是假命题,故填ab <0.答案:ab <0三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x>2;(4)∃x 0∈Z ,log 2x 0>2.解:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为假命题. (4)命题中含有存在量词“∃”,是特称命题,且为真命题.18.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.19.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c 在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知, f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 20.(本小题满分12分)已知k ∈R 且k ≠1,直线l 1:y =k 2x +1和l 2:y =1k -1x -k .(1)求直线l 1∥l 2的充要条件;(2)当x ∈[-1,2]时,直线l 1恒在x 轴上方,求k 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧k 2=1k -1,k -1≠0,-k ≠1,解得k =2.当k =2时,l 1:y =x +1,l 2:y =x -2,此时l 1∥l 2. ∴直线l 1∥l 2的充要条件为k =2.(2)设f (x )=k2x +1.由题意,得⎩⎪⎨⎪⎧f-1>0,f 2>0,即⎩⎪⎨⎪⎧k2×-1+1>0,k 2×2+1>0,解得-1<k <2.∴k 的取值范围是(-1,2).21.(本小题满分12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得m ∈⎣⎢⎡⎭⎪⎫-14,2,故M =⎣⎢⎡⎭⎪⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ),则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫94,+∞. 22.(本小题满分12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2, 即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则A B ,∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综上①②③可得a ∈⎣⎢⎡⎭⎪⎫23,+∞.。
专题-含参数不等式恒成立与存在性问题由任意性和存在性条件求参数的取值范围问题,一直是高考数学考试的重点和难点。
通过对近几年高考数学试题的研究,我们发现这类试题往往以压轴题的形式出现,所涉及的知识点内容覆盖面广,其中命题的核心在函数、方程、不等式等内容的交汇处。
下面就对这类问题进行详细的归类、归法,构建知识体系,希望对同学们有所帮助。
一、在不等式恒成立的条件下,求参数的取值范围问题在不等式恒成立条件下求参数的取值范围,一般原理是利用转化与化归思想将其转化为函数的最值或值域问题加以求解,方法可采用“分离参数法”或“不分离参数法”直接移项构造辅助函数的形式.类型1:对于一次函数,则有:],[,)(n m x b kx x f ∈+=(1)如果;()0()0()0f m f x f n >⎧>⇔⎨>⎩恒成立(2)如果.()0()0()0f m f x f n <⎧<⇔⎨<⎩恒成立例1、若不等式对满足的所有都成立,求的范围.)1(122->-x m x 22≤≤-m m x 解:我们可以用改变主元的办法,将视为主元,原不等式化为:,m 0)12()1(2<---x x m 令,则时,恒成立,所以只需)12()1()(2---=x x m m f 22≤≤-m 0)(<m f ⎩⎨⎧<<-0)2(0)2(f f 即,所以的范围是.⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x x )231,271(++-∈x 说明:在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变x 量看成参数,在有些问题中这样的解题过程繁琐。
如果把已知取值范围的变量作为主元,把要求取值范a 围的变量看作参数,则可简化解题过程。
类型2:设,)0()(2≠++=a c bx ax x f R x ∈(1)上恒成立;R x x f ∈>在0)(00<∆>⇔且a (2)上恒成立.R x x f ∈<在0)(00<∆<⇔且a 例2、已知关于的不等式对任意恒成立,求实数的取值范围.x 2210mx mx ++>x R ∈m 解:当时,原不等式化为显然成立;0m =10>当时,则需要满足条件:;0m ≠201440m m m m >⎧⇒<<⎨∆=-<⎩综上,实数的取值范围是.m [0,1)类型3:设)0()(2≠++=a c bx ax x f ],[βα∈x (1)当时,如果上恒成立;0>a ],[0)(βα∈>x x f 在⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或当时,如果上恒成立.0>a ],[0)(βα∈<x x f 在⎩⎨⎧<<⇔0)(0)(βαf f (2)当时,如果上恒成立;0<a ],[0)(βα∈>x x f 在⎩⎨⎧>>⇔0)(0)(βαf f 当时,如果上恒成立.0<a ],[0)(βα∈<x x f 在⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或例3、若时,不等式恒成立,求的取值范围。
高中数学 恒成立、存在性问题的等价转化方法
此类问题经常涉及到诸如“已知不等式恒成立,或不等式、方程有解,求参数的取值范围”等问题,我们不妨将之称之为“恒成立”问题与“有解”问题。
“恒成立”问题与“有解”问题的处理思路是将其等价转化为与函数最值或值域有关,当函数的最大或最小值不存在时,该如何思考?
例1)2,1(∈∀x ,
0ln 2
12>--a x x ,则实数a 的取值范围是 . 分析 )2,1(∈∀x ,0ln 212>--a x x ⇔)2,1(∈∀x ,x x a ln 2
12-<. ∵)2,1(∈x 时, x x x f ln 21)(2-=递增, 其值域为)2ln 2,2
1(-,∴21≤a . 例2 ),1(+∞∈∀x ,0ln 2
12<--a x x ,则实数a 的取值范围是 . 分析 ),1(+∞∈∀x ,0ln 212<--a x x ⇔),1(+∞∈∀x ,x x a ln 2
12->. ∵),1(+∞∈x 时, 函数x x x f ln 21)(2-=递增, 其值域为),2
1(+∞,∴Φ∈a . 例3 )2,1(∈∃x ,0ln 2
12>--a x x ,则实数a 的取值范围是 . 分析 )2,1(∈∃x ,0ln 212>--a x x ⇔)2,1(∈∃x ,x x a ln 2
12-<. ∵)2,1(∈x 时, x x x f ln 21)(2-=递增, 其值域为)2ln 2,21(-,∴2ln 2->a . 小结 当函数)(x f 的最值不存在时的“恒成立”和“有解”问题可以这样处理:
(1)当I x ∈时, 函数)(x f 的值域为),(n m , 则
I x ∈∀,)(x f a <⇔m a ≤; I x ∈∃,)(x f a <⇔n a <;
I x ∈∀,)(x f a ≤⇔m a ≤; I x ∈∃,)(x f a ≤⇔n a <;
I x ∈∀,)(x f a >⇔n a ≥; I x ∈∃,)(x f a >⇔m a >;
I x ∈∀,)(x f a ≥⇔n a ≥; I x ∈∃,)(x f a ≥⇔m a >;
(2)当I x ∈时, 函数)(x f 的值域为),(+∞m , 则
I x ∈∀,)(x f a >⇔Φ∈a ;
I x ∈∀,)(x f a ≥⇔Φ∈a ;
I x ∈∃,)(x f a <⇔R a ∈;
I x ∈∃,)(x f a ≤⇔R a ∈;
(3)当I x ∈时, 函数)(x f 的值域为),(n -∞, 则 I x ∈∀,)(x f a <⇔Φ∈a ;
I x ∈∀,)(x f a ≤⇔Φ∈a ;
I x ∈∃,)(x f a >⇔R a ∈;
I x ∈∃,)(x f a ≥⇔R a ∈.。