热工自动控制系统分析
- 格式:docx
- 大小:28.64 KB
- 文档页数:4
电厂热工自动化系统检修常见问题分析及处理
电厂热工自动化系统是电厂运行中至关重要的一个部分,负责控制和监视电厂的热工过程,确保电厂的安全稳定运行。
由于热工自动化系统中包含大量的设备和复杂的控制逻辑,所以在使用过程中可能会出现一些常见问题。
本文将分析并解决这些常见问题。
一、热工自动化系统无法开机
1. 电源问题:首先检查电源是否正常供电,以及主控制柜电源是否打开。
2. 控制软件故障:检查控制软件是否正常启动,可以尝试重新启动控制软件。
3. 通信故障:检查通信设备是否连接正常,可以尝试重新连接通信设备或更换通信设备。
4. 控制设备故障:检查控制设备是否损坏,可以尝试更换故障设备或修复故障设备。
5. 传感器故障:检查传感器是否损坏或接触不良,可以尝试更换故障传感器或重新固定传感器连接。
二、热工自动化系统温度显示异常
4. 数据传输故障:检查数据传输线路是否正常,可以尝试重新连接数据传输线路或更换传输线路。
3. 过程参数错误:检查传感器测量的过程参数是否准确,可以尝试重新校准传感器或更换传感器。
电厂热工自动化系统在使用过程中可能会出现一些常见问题,但大部分问题都可以通过仔细检查和一些简单的处理来解决。
如果问题无法解决,建议及时联系设备供应商或专业维修人员进行维修和排除故障。
定期对热工自动化系统进行维护和保养,可以增加系统的稳定性和可靠性。
电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。
大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。
过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。
使再热器的对流传热加强,达到调温的目的。
优点:反应灵敏,调温幅度大。
缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。
优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。
自动控制系统基础概论热工对象动态特性常规控制规律PID控制的特点比例控制(P控制)积分控制(I控制)微分控制(D控制)控制规律的选择:单回路控制概述被控对象特性对控制质量的影响:测量元件和变送器特性对控制质量的影响调节机构特性对控制质量的影响单回路系统参数整定串级控制串级控制系统的组成(要求会画控制结构图)串级控制系统的特点串级控制系统的应用范围串级控制系统的设计原则:前馈-反馈控制概述静态前馈,动态前馈前馈-反馈控制前馈-串级控制比值控制分程控制大迟延控制系统补偿纯迟延的常规控制预估补偿控制多变量控制系统耦合程度描述解耦控制系统设计火电厂热工控制系统汽包锅炉蒸汽温度控制系统过热蒸汽温度控制再热蒸汽温度一般控制方案汽包锅炉给水控制系统概述给水流量调节方式给水控制基本方案:给水全程控制:600MW机组给水全程控制实例锅炉燃烧过程控制系统概述被控对象动态特性燃烧过程控制基本方案燃烧控制中的几个问题单元机组协调控制系统概述负荷指令处理回路正常情况下负荷指令处理异常工况下的负荷指令处理负荷指令处理回路原则性方框图机炉主控制器机炉分别控制方式机炉协调控制方式直流锅炉控制系统直流锅炉特点直流锅炉动态特性直流锅炉基本控制方案直流锅炉给水控制系统直流锅炉过热汽温控制系统自动控制系统基础概论1. 控制系统的组成与分类1. 控制系统的组成及术语控制系统的四个组成部分: 被控对象,检测变送单元,控制单元,调节机构.2. 控制系统的分类:按结构分: 单变量控制系统, 多变量控制系统按工艺参数分: 过热汽温控制系统, 主蒸汽压力控制系统按任务分: 比值控制系统, 前馈控制系统按装置分: 常规过程控制系统, 计算机控制系统按闭环分: 开环控制系统, 闭环控制系统按定值的不同分: 定值控制系统, 随动控制系统, 程序控制系统3. 过渡过程: 从扰动发生,经过调节,直到系统重新建立平衡.即系统从一个平衡状态过渡到另一个平衡状态的过程,即为控制系统的过渡过程.2. 控制系统的性能指标1. 衰减比和衰减率: 衡量稳定性2. 最大偏差和超调量: 衡量准确性3. 调节时间: 衡量快速性4. 余差(静态偏差): 衡量静态特性热工对象动态特性1. 有自平衡能力对象1. 一阶惯性环节:2. 一阶惯性环节加纯迟延:3. 高阶惯性环节:4. 高阶惯性环节加纯迟延:2. 无自平衡能力对象1. 积分环节:2. 积分环节加纯迟延:3. 有积分的高阶惯性环节:4. 有纯迟延和积分的高阶惯性环节:常规控制规律PID控制的特点1. 原理简单,使用方便2. 适应性强3. 鲁棒性强比例控制(P控制)1. 控制规律: ; :比例增益:比例带,工程上用来描述控制作用的强弱.比例带越大,偏差越大.2. 控制特点:动作快有差控制积分控制(I控制)1. 控制规律:; :积分时间2. 控制特点:动作不及时无差控制3. PI控制: I控制响应慢,工程上很少有单独使用,一般都是PI控制控制规律:; P控制看作粗调,I控制看作细调.控制作用具有: 比例及时作用和积分作用消除偏差的优点.4. 积分饱和及其措施:积分饱和: 积分过量,在单方面偏差信号长时间作用下,其输出达到上下限时,其执行机构无法再增大.措施: 积分分离手段: 当偏差较大时,在控制过程的开始阶段,取消积分作用,控制器按比例动作,等到被调量快要接近给定值时,才能产生积分作用,依靠积分作用消除静态偏差.微分控制(D控制)1. 控制规律: ;2. 控制特点:超前控制3. 实际微分: 为什么采用实际微分控制:理想微分物理上不可能实现避免动作频繁,影响调节元件寿命4. PD控制: 控制规律: ;扰动进入系统的位置离输出(被调量)越远,对系统工作的影响就越小.控制通道的时间常数和迟延时间对控制质量的影响前馈-串级控制的应用场景:分程控制扩大调节阀的可调比大迟延控制系统补偿纯迟延的常规控制1. 微分先行控制方案2. 中间反馈控制方案前馈解耦导前温度: 刚通过减温器之后的蒸汽温度以导前蒸汽温度为副参数,过热蒸汽温度为主参数的串级控制系统3. 过热蒸汽温度分段控制系统:1. 过热蒸汽温度分段控制系统:缺点: 当机组负荷大范围变化时,由于过热器吸热方式不同.一级减温器出口蒸汽温度降低,为保持不变,必须减少一级减温器喷水量;二级减温器出口蒸汽温度升高,因此要增加二级减温器喷水量.造成负荷变化时两级减温器喷水量相差很大,使整个过热器喷水不均匀,恶化二级喷水减温调控能力,导致二级过热器出口温度超温.2. 按温差控制的分段控制系统:与第一种方案的差别在于: 这里以二级减温器前后的温差(-)作为第一段控制系统的被调量信号送入第一段串级的主调节器PI3.当负荷增大时,主调节器PI3的设定值随之减小,这样有(-)>T0,PI3入口偏差值增大,这意味着必须增大一级喷水量才能使下降,从而使温差(-)减小.这样平衡了负荷增加时一级喷水量和二级喷水量.该方案为串级+前馈控制策略. 后屏出口过热器出口蒸汽温度设定值由两部分组成,第一部分由蒸汽流量代表的锅炉负荷经函数发生器后给出基本设定值,第二部分是运行人员可根据机组的实际运行工况在上述基本设定值的基础上手动进行设置.虽然系统是控制后屏过热器出口温度蒸汽,用蒸汽温度信号经过比例器乘以常数K后代表后屏过热器出口蒸汽温度,其原因是蒸汽温度与蒸汽温度变化方向一致;且蒸汽温度信号比蒸汽温度信号动态响应快,能提前反映扰动对蒸汽温度的影响,有利于控制系统快速消除干扰.主调节器PID1的输出与总风量,燃烧器摆角前馈信号组合构成副调节器PID2的设定值,副调节器的测量值为一级减温器出口温度.PID2输出控制一级其控制原理如下:正常情况下即当再热蒸汽温度处于设定值附近变化时,由调节器PID1改变烟气挡板开度来消除再热蒸汽温度的偏差,蒸汽流量D作为负荷前馈信号通过函数模块去直接控制烟气挡板.当的参数整定合适时,能使负荷变化时的再热蒸汽温度保持基本不变或变化很小.反向器-K用以使过热挡板与再热挡板反向动作.喷水减温调节器PID2也是以再热蒸汽温度作为被调信号,但此信号通过比例偏置器±Δ被叠加了一个负偏置信号(它的大小相当于再热蒸汽温度允许的超温限值).这样,当再热蒸汽温度正常时,调节器PID2的入口端始终只有一个负偏差信号,它使喷水阀全关.只有当再热蒸汽温度超过规定的限值时,调节器的入口偏差才会变为正,从而发出喷水减温阀开的指令,这样可防止喷水门过分频繁的动作而降低机组热经济性.2. 采用烟气再循环调节手段的再热蒸汽温度控制系统其控制原理如下:再热蒸汽温度T 在比较器Δ内与设定值(由A 产生)比较,当蒸汽温度低时,偏差值为正信号,此信号进入调节器PID1,其输出经执行器去调节烟气挡板开度,增大烟气再循环量,以控制再热蒸汽温度.在加法器2中引入了送风量信号V 作为前馈控制信号和烟气热量(烟温×烟气流量)修正信号,送风量V 反映了锅炉负荷大小,同时能提前反映蒸汽温度的变化.当V 增加时,蒸汽温度升高,相应的烟气再循环量应减少,故V 按负向送入调节器.函数模块是用来修正风量和再循环烟气量的关系的.通过乘法器由烟温信号调整再循环烟气流量.当再热蒸汽超温时,比较器输出为负值,PID1输出负信号直至关闭烟气再循环挡板,烟气再循环失去调温作用.同时,比较器的输出通过反相器- K 1,比例偏置器±Δ去喷水调节器PID2,开动喷水调节阀去控制再热蒸汽温度,蒸汽温度负偏差信号经反相器-K2去偏差报警器,实现超温报警,同时继电器打开热风门,用热风将循环烟道堵住,防止因高温炉烟倒流入再循环烟道而烧坏设备.当再热蒸汽温度恢复到设定值时,比较器输出为零,PID2关闭喷水门,偏差报警信号通过继电器关闭热风门,烟气再循环系统重新投入工作.3. 采用摆动燃烧器调节手段的再热蒸汽温度控制系统燃烧器上倾可以提高炉膛出口烟气温度,燃烧器下倾可以降低炉膛出口烟气温度.燃烧器控制系统是一个加前馈的单回路控制系统,再热蒸汽温度设定值是主蒸汽流量经函数发生器,再加操作员可调整的偏置量A构成.PID1调节器根据再热器出口蒸汽温度T与再热蒸汽温度设定值偏差来调整燃烧器摆角.为了抑制负荷扰动引起的再热蒸汽温度变化,系统引入了送风量前馈信号,该信号能反映负荷和烟气侧的变化.送风量前馈信号和反馈控制信号经加法器4共同控制燃烧器摆角.A侧再热器出口蒸汽温度和B侧再热器出口蒸汽温度各有两个测量信号,正常情况下选择A,B两侧的平均值作为燃烧器摆角控制的被调量.燃烧器摆角控制为单回路的前馈-反馈控制系统,再热器出口蒸汽温度设定值由运行人员手动给出.再热器出口蒸汽温度设定值和实际值的偏差经PID调节器后加上前馈信号分别作为燃烧器摆角的控制指令.前馈信号由蒸汽流量经函数发生器后给出.当再热蒸汽温度偏低时,燃烧器摆角向上动作;当再热蒸汽温度偏高时,燃烧器摆角向下动作. 2. 再热蒸汽温度喷水减温控制系统汽包锅炉给水控制系统给水控制任务: 使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内,同时保持稳定的给水流量.对象特性: 给水流量扰动的三个体现方面:4. 虚假水位现象: 当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增强,从而使水位升高.给水控制基本方案:1. 单冲量给水控制系统: 汽包水位和水位给定值调节的反馈控制系统某600MW发电机组给水热力系统示意图,机组配三台给水泵,其中一台容量为额定容量30%的电动给水泵,两台容量各为额定容量50%的汽动给水泵.电动给水泵一般是作为启动泵和备用泵,正常运行时用两台汽动给水泵,两台汽动给水泵由小汽轮机驱动,其转速控制由独立的小汽轮机电液控制系统(micro-electro hydraulic control system,MEH)完成,MEH系统的转速给定值是由给水控制系统设置,MEH 系统只相当于给水控制系统的执行机构.在高压加热器与省煤器之间有主给水电动截止阀、给水旁路截止阀和约15%容量的给水旁路调节阀.2. 给水控制系统1. 水位控制系统汽包水位控制系统如图所示,它是单冲量和串级三冲量两套控制系统构成,汽包水位设定值由运行人员在操作台面上手动设定.当锅炉启动或负荷小于15%额定负荷阶段,控制系统是通过调节器PID1调节给水旁路的调节阀开度来控制给水量以维持汽包水位,而此时切换器T2接Y端,通过调节器PID5调节电动给水泵的转速来维持给水泵出口母管压力与汽包压力之差.当旁路调节阀开到80%时,由SCS (Sequence control system, 顺序控制系统)完成开主给水电动阀,关旁路截止阀.当负荷在15%额定负荷以上,但小于30%额定负荷时,切换器T1接Y端,切换器T2接N端,这时汽包水位设定值的偏差经调节器PID2,并经调节器PID6控制给水泵转速来调节给水流量达到维持汽包水位目的.同时当机组负荷升至20%额定负荷时,第一台给水泵开始冲转升速.当负荷大于30%额定负荷,切换器T1接N端,给水控制切换为三冲量给水控制.汽包水位控制指令由两个串级调节器PID3和PID4根据汽包水位偏差、主给水流量和主蒸汽流量三个信号形成.水位设定值与汽包水位偏差经调节器PID3 后,加主蒸汽流量信号作为副回路PID4的设定值,副回路副参数为主给水流量,经PID运算后作为给水泵控制的设定值.当负荷大于30%额定负荷时,第一台汽动给水泵并入给水系统.当负荷达40%额定负荷时,第二台汽动给水泵开始冲转升速.当负荷达60%额定负荷时,第二台汽动给水泵并入给水系统,撤出电动给水泵,将其投入热备用.机组正常时,是通过改变两台汽动给水泵的转速来调节给水量.由于给水泵的工作特性不完全相同,为稳定各台给水泵的并列运行特性,避免发生负荷不平衡现象,设计了各给水泵出口流量调节回路,将各给水泵的出口流量和转速指令的偏差送入各给水泵调节器(PID6、 PID7 和PID8)的入口,以实现多台给水泵的输出同步功能.GAIN CHANGER & BALANCER作用是根据给水泵投入自动的数量,调整控制信号的大小.拇入自动数目越大,控制信号越小.2. 给水泵最小流量控制汽机跟随控制方式:控制特点: 锅炉侧调负荷,汽机侧调汽压. 在保证主蒸汽压力稳定的情况下,汽轮机跟随锅炉而动作.优点: 在运行中主蒸汽压力相对稳定,有利于发电机组的安全经济运行.机炉协调控制方式控制特点: 在负荷调节动态过程中,机炉协调控制可以使汽压在允许的范围内波动,这样可以充分利用锅炉蓄热,使单元机组较快适应负荷变化,同时主蒸汽压力p T的变动范围也不大,因而机组的运行工况比较稳定.调节燃料量M控制主蒸汽压力p T(或机组负荷) 调节送风量V控制过剩空气系数(烟气含氧量) 调节引风量V控制炉膛压力p汽轮机控制系统为工频电液控制系统时:另一种送风控制系统方案. 锅炉指令BD经过函数发生器f2(x)后形成一个风量指令,氧量调节器输出σ对锅炉指令BD进行修正.3. 引风控制系统: 引风控制系统的任务是保证一定的炉膛压力. 由引风量改变到炉膛压力变化其动态响应快,测量也容易,因此一般采用单回路即可.3. 燃烧控制系统基本方案锅炉指令BD作为给定值送到燃料控制系统和送风控制系统,使燃料量和送风量同时改变,使燃烧率与机组要求的燃烧率相适应,保证风量与燃料量比例变化; 同时送风量作为前馈信号通过引到引风调节器PI4,改变引风量以平衡送风量的变化,使炉膛压力p s不变或变化很小.由于所有调节器都采用PI控制规律,因此,调节过程结束时,主蒸汽压力P T,燃烧经济性指标O2和炉膛压力p s,都稳定在给定值上;而锅炉的燃料量M,送风量V和引风量V都改变到与要求的燃烧率相适应的新数值上.总燃料量(总发热量)的构成形式为其中: O为燃油量,k o为燃油发热系数,M c为总煤量,k MQ为煤发热系数.当M c不变,而煤种变化造成发热量增加时,刚开始M也不变,但随着炉膛发热量的增加,D Q增大,D Q>M,由积分器正向积分增大k MQ,使M增大,直至M=D Q3. 增益自动调整乘法器为燃料调节对象的一部分,选择合适的函数,则可以做到不管给煤机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃料调节器的控制参数了.增益调整与平衡器,就是完成该功能.4. 风煤交叉限制在机组增减负荷动态过程中,为了使燃料得到充分燃烧,需要保持一定的过量空气系数. 因此,在机组增负荷时,就要求先加风后加煤;在机组减负荷时,就要求先减煤后减风.这样就存在一个风煤交叉限制.锅炉指令BD经函数器f1(x)后转换为所需的风量,风量经函数器f2(x)转换为相应风量下的最大燃料量,燃料量经函数器后转换为该燃料量下的最小风量.当增加负荷时,锅炉指令BD增大,在原风量未变化前,低值选择器输出为原风量下的最大燃料量指令,即仍为原来锅炉指令BD.在风量侧,锅炉指令BD增大,则其对应的风量指令增大,大于原燃料量所需最小风量,经高值选择后作为给定值送至送风控制系统以增大风量.只有待风量增加后,锅炉燃料的给定值才随之增加,直到与锅炉指令BD一致.由此可见,由于高值选择器的作用,风量控制系统先于燃料控制系统动作.由于低值选择器的作用,使燃料给定值受到风量的限制,燃料控制系统要等风量增加后再增加燃料量.同理,减负荷时,由于低值选择器的作用,燃料给定值先减少.由于高值选择器的作用,使风量给定值受到燃料量限制,风量控制系统要等待燃料量降低后再减少风量.上图为煤粉锅炉燃料系统的一般控制方案.其中虚框1的功能是完成总燃料量(发热量)的测量与修正.虚框2的功能是燃料侧的风煤交叉限制.5. 风机调节本节下略单元机组协调控制系统概述1. 单元机组协调控制系统的基本组成2. 机组负荷控制系统被控对象动态特性3. 机组负荷控制系统被控对象动态特性1. 单元机组动态特性:当汽轮机调门开度动作时,被调量p E和p T的响应都很快,即热惯性小.当锅炉燃烧率改变时,被调量p E和p T的响应都很快,即热惯性小.2. 负荷控制系统被控对象动态特性1. 机组主机,主要辅机或设备的故障原因有两类跳闸或切除,这类故障的来源是明确的,可根据切投状况加以确定工作异常,其故障来源是不明确的,无法直接确定,只能通过测量有关运行参数的偏差间接确定.2. 对机组实际负荷指令的处理方法有四种: 负荷返回RB, 快速负荷切断FCB, 负荷闭锁增/减BI/BD, 负荷迫升/迫降RU/RD. 其中,负荷返回RB和快速负荷切断FCB是处理第一类故障的;负荷闭锁增/减BI/BD 和负荷迫升/迫降RU/RD是处理第二类故障的.1. 负荷返回RB负荷返回回路具有两个主要功能: 计算机组的最大可能出力值;规定机组的负荷返回速率.发电机组负荷返回回路的设计方案: 该机组主要选择送风机,引风机,一次风机,汽动给水泵,电动给水泵及空气预热器为负荷返回监测设备.当其中设备因故跳闸,则发出负荷返回请求,同时计算出负荷返回速率.RB目标值和RB返回速率送到如图13-9所示的负荷指令处理回路中去.2. 负荷快速切断FCB当机组突然与电网解列,或发电机,汽轮机跳闸时,快速切断负荷指令,实现机组快速甩负荷.主机跳闸的负荷快速切断通常考虑两种情况: 一种是送电负荷跳闸,机组仍维持厂用电运行,即不停机不停炉; 另一种是发电机跳闸,汽轮机跳闸,由旁路系统维持锅炉继续运行,即停机不停炉.负荷指令应快速切到0(锅炉仍维持最小负荷运行).负荷快速切断回路的功能与实现和负荷返回回路相似.只不过减负荷的速率要大得多.3. 负荷闭锁增/减BI/BD当机组在运行过程中,如果出现下述任一种情况:任一主要辅机已工作在极限状态,比如给风机等工作在最大极限状态燃料量,空气量,给水流量等任一运行参数与其给定值的偏差已超出规定限值.认为设备工作异常,出现故障.该回路就对实际负荷指令加以限制,即不让机组实际负荷指令朝着超越工作极限或扩大偏差的方向进一步变化,直至偏差回到规定限值内才解除闭锁.4. 负荷迫升/迫降RU/RD对于第二类故障,采取负荷闭锁增/减BI/BD措施是机组安全运行的第一道防线.当采用BI/BD措施后,监测的燃料量,空气量,给水流量等运行参数中的任一参数依然偏差增大,这样需采取进一步措施,使负荷实际负荷指令减小/增大,直到偏差回到允许范围内.从而达到缩小故障危害的目的.这就是实际负荷指令的迫升/迫降RU/RD,负荷迫升/迫降是机组安全运行的第二道防线.负荷指令处理回路原则性方框图该负荷指令处理回路功能的1原则性框图,是在正常工况下符合指令处理原则性方案上,添加了异常工况下相应负荷指令处理功能.锅炉跟随方式在大型单元机组负荷控制中只是作为一种辅助运行方式.一般当锅炉侧正常,机组输出电功率因汽轮机侧的原因而受到限制时,如汽轮机侧的主、辅机或控制系统故障,汽轮机控制系统处2. 汽轮机跟随方式机组负荷响应速度慢,不利于带变动负荷和参加电网调频.这种负荷控制方式适用于带基本负荷的单为了克服正反馈,应以汽轮机的能量需求信号而不是实际的消耗能量信号作为对锅炉的能量要求信号,即应以蒸汽流量的需求(称为目标蒸汽流量)而不是实际蒸汽流量作为锅炉的前馈控制信号.为此必须对p1进行修正,以形成目标蒸汽流量信号.直流锅炉控制系统上面两种控制方案均没有考虑过热汽温对燃料量和给水流量的动态响应时间差异,,会造成燃水比的动态不匹配,使得过热汽温波动大.为此提出一种燃料-给水控制原则性方案:可以选择锅炉受热面中间位置某点蒸汽温度(又称为中间点温度或微过热温度)作为燃水比是否适当的信号.这是一个前馈-串级调节系统,副调节器PID2输出为给水流量控制指令,通过控制给水泵的转速使得锅炉总给水流量等于给水给定值,以保持合适的燃水比.主调节器PID1以中间点温度为被调量,其输出按锅炉指令BD形成的给水流量基本指令进行校正,以控制锅炉中间点汽温在适当范围内.控制系统可分同负荷下的分离器出口焓值给定值.焓值给定值加上PID1输出的校正信号构成给定值SP2,由分离器出口压力和温度经焓值计算模块算出分离器出口焓值,该出口焓值与给定值SP2的偏差经调节器PID2 进行PID运算后,作为校正信号,对给水基本指令进行燃水比校正. 调节器PID3的给定值SP3是由,锅炉指令BD指令给出的给水流量基本指令加上调节器PID2输出的校正信号构成.调节器PID3根据锅炉总给水流最与流量给定值SP3的偏差进行PID运算,输出作为给水流量控制指令调节给水泵转速来满足机组负荷变化对锅炉总给水流量的需求.3. 采用焓增信号的给水控制方案在上图所示的给水控制系统中,由调节器PID3根据给定值SP3与省煤器入口给水流量(锅炉给水流量)的偏差向给水泵控制回路发出给水流量控制指令,在给水泵控制回路中,通过调节给水泵转速来实现调节给水流量的要求.在此重点分析给水流量给定值SP3的形成.当锅炉负荷在35%~ 100%MCR范围内,没有循环水流量和省煤器入口最小流量限制时,省煤器入口给水流量(锅炉给水流量)给定值SP3为水吸收的热量焓增焓增修正其中的水吸收的热量和焓增如图所示给出.。
热工自动控制系统的主要内容
1. 热工自动控制系统能精准控制温度啊!就像妈妈能精准掌握你最爱吃的菜的火候一样,比如在炼钢的时候,它能确保温度恰到好处,钢材质量杠杠的!
2. 它还可以稳定压力呢!这就像人要保持情绪稳定一样重要,在化工厂里,它让压力始终处在安全范围内,避免出大问题呀!
3. 流量控制也是热工自动控制系统的拿手好戏哟!就如同水龙头调节水流一样,在管道运输中,它能精确控制物料的流量。
比如说石油输送,那可全靠它来把关呢!
4. 它对液位的控制那也是超厉害的呀!好比给杯子倒水要控制好水位,在蓄水池中,热工自动控制系统能确保液位高度正合适。
你能想象没有它会怎样吗?
5. 热工自动控制系统还能实现自动化调节呢!就像你设定好闹钟,它就会自动响一样方便,工厂里不用人工时刻盯着就能自动运作啦,多厉害呀!
6. 它的监控功能也不容忽视啊!这就如同有一双眼睛时刻盯着,一有异常就能马上发现,比如在电站里,它时刻保障着各项参数正常呢!
7. 故障诊断也是热工自动控制系统的强项咧!就好像医生能快速找出病因,它能迅速发现系统的毛病,及时进行处理。
这可太重要了吧!
8. 而且它的适应性很强哦!不管环境多复杂,它都能应对自如,就像一个全能战士,在各种场合都能发挥作用,比如在高温高湿的环境下也能正常工作呢!
9. 热工自动控制系统真的好牛啊!在工业生产中简直就是不可或缺的存在,有了它,我们的生产才能又稳又高效!
我的观点结论:热工自动控制系统具有极其重要的作用,在各个领域都能大显身手,我们真的应该重视并好好利用它!。
热工自动化系统检修常见问题分析及处理发布时间:2021-07-20T10:29:20.580Z 来源:《当代电力文化》2021年8期作者:吝江[导读] 在火力发电过程中,热工自动化装置的应用能够在很大程度上节省人工成本,提高发电机组运行效率,取代人力进行一系列发电生产操作吝江河北蔚州能源综合开发有限公司河北张家口 075700摘要:在火力发电过程中,热工自动化装置的应用能够在很大程度上节省人工成本,提高发电机组运行效率,取代人力进行一系列发电生产操作,同时也能够通过热工自动化从不同层面进行数据监测的优化,增强控制自动化的水平。
另外,在实际运行过程中,热工系统易受到其他因素的影响,导致系统可靠性下降,从而产生一些安全隐患。
而热工自动化系统检修则是保证热工自动化系统安全运行的必要措施,因此将主要分析和探讨热工自动化系统检修的常见问题及相关的处理方式。
关键词:热工自动化系统;检修常见问题;处理1热工自动化概述火电厂热工自动化主要是指运用先进设备仪器,通过自动化测量、处理和控制等功能来为实现火电厂全程生产自动化提供有力的保障,其能够帮助火电厂企业提高设备运行的整体安全性与稳定性,真正达到节约成本、节能降耗的目的,为火电厂经济效益最大化提供保证。
火电厂热工自动化下,人力资源成本也会得到缩减,员工劳动强度也得到有效降低,工作环境得到大幅优化,特别是我国目前社会经济高速发展,对电力能源需求不断剧增,我国火力发电机组容量在这一背景下迎来巨大挑战,而热工自动化的应用能够促使火电厂设备运行和产能的提升。
为了促使火电厂热工自动化水平得到不断进步,作为多学科知识结合下研发的产物,火电厂热工自动化基本涵盖了计算机、互联网技术、通信技术、智能仪器仪表技术等多项专业领域的知识和相关技术,为了确保火电厂发电机组全程自动化,需要在进一步提高生产过程管理、保护基础上,充分重视和研究各项数据参数的合理调控与优化改进,尤其要注重自动化技术应用的完善,要实现设备全面监管和各操作环节的自动化技术应用研究。
热工自动控制在火电厂的可靠性分析摘要:基于低碳环保理念下,电厂热工自动控制系统能够保障相关设备的稳定、安全运行,降低设备运行成本,减少控制人员投入,提升电厂生产节能效率。
由此看出,电厂热工自动控制系统也是未来发展的主流趋势,热工自控系统作为整个电厂的核心系统,还会受到各种因素影响威胁稳定运行,为此需要综合考虑热工自控系统实际运行特征,总结其在运行中的具体问题,形成有效解决策略,提升电厂生产的安全性。
关键词:热工自动控制;火电厂;应用中图分类号:TM621文献标识码:A引言当热工保护装置及时发出报警信号,必要时自动启动或切除某些设备或系统,使机组仍然维持原负荷运行或者减负荷运行,从而有效的消除故障,或者防止故障的进一步扩大化。
因此热工保护控制系统作为电厂机组必不可少的组成部分,其可靠性和稳定性直接关系到机组的安全稳定运行。
通过对火电厂热工保护工作控制系统可靠性的管理与分析,为我国电力行业朝着自动化、智能化方法发展提供可靠保障。
1火电厂热工保护控制系统可靠性中存在的问题1.1热工保护项目功能设置不合理在我国电力行业实际发展与进步的过程当中,热工保护项目功能设置的不合理问题,严重影响火电厂热工保护工作价值的体现。
尤其是在相关技术监督与检测环境当中,大多数的电厂热工保护项目功能设置都是存在缺陷的。
只有在现代化新型技术手段的运用过程当中,才能够更好地将这一问题产生的原因表现出来。
1.2保护系统设备故障频发随着时代的进一步发展,我国在科学技术领域层面也都得到了前所未有的发展与进步。
为了能够更加全面地保证火电厂热工保护工作价值的充分体现,很多火电厂内部的管理人员忽视了工作的合理性,使得最终一些设备出现了比较严重的运行故障。
其中比较常见的问题主要体现在,接线端子松动,令最终保护工作效能不能得到充分体现。
就地设备信号线接地保护的不合理,也很有可能会出现接线明显熔化的现象。
由此可见,保护系统设备故障频发,在一定的层面上为我国火电行业的发展带来了比较明显的阻碍。
热工过程自动控制1. 什么是热工过程自动控制热工过程自动控制是指利用自动控制系统来监测和调整热工过程中的参数,以达到预定的目标。
这些参数可能包括温度、压力、流量等。
通过自动控制,可以提高热工过程的效率、稳定性和安全性。
2. 热工过程自动控制的原理是什么热工过程自动控制的原理基于控制系统的闭环反馈原理。
首先,通过传感器获取热工过程中的参数信息,如温度传感器可以测量温度值。
然后,将这些参数信息与预定的目标值进行比较,得到误差。
接下来,根据误差,控制器会采取相应的控制策略,如调整阀门开度或启动/停止加热器等,来实现热工过程的控制。
最后,通过执行器将控制信号转换为实际的操作,如控制阀门的开闭或调节加热器的功率。
3. 热工过程自动控制的优势是什么热工过程自动控制具有以下优势:- 提高效率:通过自动控制热工过程中的参数,可以优化操作条件,提高能源利用效率。
例如,根据实时需求调整加热器功率,避免能源的浪费。
- 提高稳定性:自动控制系统能够实时监测和调整热工过程中的参数,使其保持在预定的范围内。
这有助于防止过程变量的偏离和不稳定,提高过程的稳定性。
- 提高安全性:自动控制系统可以及时响应异常情况,并采取相应的措施来保护设备和人员的安全。
例如,在温度超过设定范围时,自动控制系统可以自动关闭加热器或启动冷却装置。
- 提高生产质量:通过自动控制热工过程,可以减少人为操作的误差,提高产品的一致性和质量。
4. 热工过程自动控制中常用的控制策略有哪些在热工过程自动控制中,常用的控制策略包括:- 比例控制:根据误差的大小,按比例调整控制信号。
这种控制策略适用于线性响应的系统,但可能会导致超调和稳定性问题。
- 积分控制:根据误差的累积值,进行控制信号的调整。
积分控制可以消除稳态误差,但可能导致系统的迟滞和震荡。
- 微分控制:根据误差的变化率,调整控制信号。
微分控制可以提高系统的响应速度,但对测量噪声敏感,可能引入噪声放大问题。
热工自动控制系统分析
内蒙古通辽市霍林郭勒市029200
摘要:本文针对发电厂的自动控制系统,重点介绍DCS分散控制系统、电厂的水自动系统和汽轮机热工保护系统,对发电厂自动控制现状提出了技术改造的方案.
关键词:热工系统;自动控制系统;策略分析
引言
通过正确分析以及精准描述热工自动控制系统中热工对象的动态特性,探索与监测热工自动控制系统的调节品质以及实时计算热工自动控制系统的调节器参数,能够实时掌握热工自动控制系统的运行状态,确保热工自动控制系统的运行质量与运行安全。
1优化热工自动控制系统的调节器参数
比如,为了能够进一步优化热工自动控制系统的工作质量和工作效率,相关技术人员需要进一步优化热工自动控制系统的调节器参数。
在整个过程中,技术人员需要等到热工自动控制系统的闭环系统扰动结束之后,依照相关的规范与标准分别计算热工自动控制系统工作过程中响应曲线的多个参数,其中不仅仅包括调节器的超调量以及衰减率等数据,还包括衰减振荡的周期数据等内容。
之后,技术人员需要将计算出来的这些特性参数数据与相关的规范标准,也就是提前设定好的特性参数数据进行对比,其中两个数据之间的偏离量需要直接送入到自整定程序之中。
通过专业的自整定程序能够在线分析出偏离量的出现原因,并消除不同特性参数的偏离量。
与此同时,计算出来的调节器参数应该按照相关的IPD 参数调节方向进行调节,并通过不断的校正确保IPD调节器参数能够适应不断变化的热工自动控制系统,指导系统工作过程中的响应曲线的相关特性参数能够满足不同用户的使用需求。
除此之外,技术人员还应该注意寻找调节器参数的第二
个峰值,在最大等待时间内,如果调节器的第二峰值始终没有出现的话,则说明
相关的热工自动控制系统处于阻尼状态,技术人员需要结合程序的帮助在过阻尼
状态下进行相关参数的调整与优化。
.
2调节以及在线监测热工自动控制系统的品质
.
在进行热工自动控制系统的品质调节的过程中,相关技术人员可以通过做
“定制扰动试验”的方式来实现。
在整个过程中,技术人员需要严格记录热工自
动控制系统的输入曲线和输出曲线并按照相关的调节品质所指定的规范定义与标
准进行相关的计算。
具体的调节品质指标主要是包括衰减率、稳态偏差以及调节
时间等要素,其中所谓的衰减率数值计算需要用到热工自动控制系统过渡过程中
的第一个峰值数据以及第三个峰值数据才能够计算出来;而稳态偏差指的则是在
热工自动控制的过渡过程结束之后被控量与相关给定值的偏差。
在进行调节的过
程中,技术人员可以用相关的调节时间来衡量系统的快速性与稳定性。
除此之外,在这种实试验模式下,需要在人为的定值扰动下才能够精准计算出系统的品质参数。
因此,技术人员需要在热工自动控制系统的实施运行中不断检测系统是否一
直处于被扰动的状态之下,并判断其过渡过程的产生,从而实现对热工自动控制
系统的调节品质的实时评估。
热工自动控制系统调节品质的良莠将直接决定其克服外界干扰能力的大小。
因此,在分析与研究相关的热工自动控制系统的时候,讨论总控制系统的调节品
质就显得至关重要。
通常情况下,一个热工自动控制系统的调节品质的好坏在系
统相对比较稳定的状态下是相对比较难以判断的,只有在过度过程等不够稳定的
状态下才能够更加真实地鉴别出热工自动控制系统的调节品质。
在实际生产过程中,相关技术人员需要提高对热工自动控制系统调节品质检测工作的关注与重视,通过严格控制检测时间段,即在过渡阶段进行检测来确保检测结果的真实性和精
准度。
3电气自动控制系统的功能探讨
3.1 保护功能
为了实现电气自动控制系统的运行的安全性和稳定性,必须满足重要的系统
保护功能。
由于电气自动系统是在脱离人工方式的自动化工作程序,不可避免的
出现运行故障,并存在不可获知的隐形安全风险。
例如,在电气运行过程,由于
各种电路安全性能的不足,导致电流和电压的过低,或正常通电设备受到干扰,
电气设备受到通电的非持续性或非稳定性的影响,轻则造成电气设备的故障,重
则造成电气控制系统瘫痪。
同时,电气自动控制系统需要在大型的电气设备基础
上运行,设备功率较大,若无法提供良好的保护装置,使电气设备在保护状态下
运转,必然造成系统的破坏。
因此,电气自动控制系统就要求具备了足够强大的
保护功能,通过传输故障信号的方式,人为或自动地做出及时预警措施,达到保
护功能。
3.2监控功能
监控功能是电气设备的基本功能,大部分的电气自动控制系统都具备了该功能,这是由于电气自动控制系统的源动力是电能,这是我们人类不能通过肉眼能
判断其性能的能源,因此需要通过系统自带的监控功能,弥补了工作人员不能识
别导电的不足。
监控功能的体现之一在于系统通过传感器来传输信号,从而从对
系统内部进行优化,并依据传感器监控传输的视听信号,一旦监控子系统监控出
系统异常,则会传输报警信号,不仅能自动调整系统,还能提醒工作人员,达到
人机一体化化。
具体而言,监控功能的实现分为三类:集中监控、远程监控、现
场总线监控。
第一,集中监控更注重集成化,加重了集中监控处理器的运转负担,但此种方式便于监控、方便操作;第二,远程监控则需要电缆电线等配套设备较多,系统维护负担加重,同时,现场总线的监控容易受到干扰,因此远程监控主
要适用于小型系统;第三,现场总线监控降低了对隔离设备的投入,且现场监控
降低了远距离的干扰程度,不仅减少了经济成本,还增加了对监控的针对性,是
一种较为灵活的监控方式。
3.3测量功能
电气自动控制系统实现了自带测量功能,无需借助测量仪器对电气系统的各
项参数指标进行检测,进而确定其准确性。
过去的电控制系统,依靠人工方式对
电气设备的表征来判断参数设定和合理性,或借助特定的仪器设备对电压、电流、
功率等设备运转参数测定。
现在的电气自动控制系统具备了自带测量功能,减少
了工作人员的工作量,也对测量的数据准确度有积极作用。
此外,测量功能的配
套功能也在逐渐开发并利用,例如参数调试功能、参数合理性配置功能。
4结语
综上所述,电厂热工自动控制技术是一项非常复杂的工程,在电厂热工控制
系统中,每一个环节都对整体操作系统有着重要的影响,这就要求每个操作环节
都要做到零失误,这样才能保障整个电厂热工控制系统的安全性、高效性。
在
市场经济体制变革中,我国的综合实力在不断加强,不仅仅注重了人才的培养,
技术的革新,还更加注重科技发展方向的深入研究。
在电气自动化的实际功能应
用中,能够针对实际的生产概况进行实时监控与分析,代替人工实行系统化和智
能化的机械操作,保证了机械的工作安全与效率性。
在未来的发展中,电气自动
化将会进一步提高,实现更高要求的自动化与智能化技术体验。
参考文献:
[1]朱清,杨景萍.浅谈电厂热工自动化的现状与展望[J].科技促进发展(应
用版),2011(2):27-28.
[2] 刘艳丽 . 谈热工自动化控制在火电厂的应用及发
展 [J]. 科学技术创新 ,2018(30):93-93.
[3] 包图雅 . 谈热工自动控制在火电厂的应用及发展 [J]. 通讯世
界 ,2016(04):133- 133.
[4] 李艳红.电气自动控制系统功能及发展趋势探讨[J].中国高新技术企业,2016.
[5] 莫荣侦 . 热工自动化 DCS 控制系统的应用实践论述 [J]. 中国科技
投资 ,2016(18).。