射频同轴电缆的技术参数
- 格式:doc
- 大小:87.50 KB
- 文档页数:5
同轴电缆 技术要求
同轴电缆是一种常见的传输线,用于传输高频信号,如射频信号、视频信号等。
以下是同轴电缆的技术要求:
1. 阻抗匹配:同轴电缆的阻抗应该与连接器、放大器等设备的输入/输出阻抗匹配,以避免信号反射和失真。
2. 衰减:同轴电缆的衰减应该尽可能小,以保证信号的传输质量。
3. 屏蔽:同轴电缆应该有良好的屏蔽性能,以避免外部干扰对信号的影响。
4. 绝缘:同轴电缆的绝缘层应该具有足够的绝缘性能,以避免信号泄漏。
5. 弯曲半径:同轴电缆的弯曲半径应该尽可能大,以避免信号损失和电缆损坏。
6. 温度范围:同轴电缆的工作温度应该在一定的范围内,以保证其工作稳定性。
7. 阻燃性:同轴电缆应该具有一定的阻燃性,以避免火灾危险。
不同类型的同轴电缆可能有不同的技术要求,具体的技术要求可以参考相关的行业标准或企业标准。
同轴射频电缆阻抗计算射频同轴电缆是一种广泛应用于通信、雷达、导航等领域的传输线。
它由内导体、绝缘层、外导体和护套组成,具有低损耗、高带宽、抗干扰能力强等优点。
在射频系统中,阻抗匹配是非常重要的一个环节,因为它直接影响到信号的传输质量和系统的性能。
因此,对射频同轴电缆的阻抗计算具有重要意义。
一、射频同轴电缆的基本参数1. 内导体:射频同轴电缆的内导体通常采用铜或铝制成,其截面积和长度会影响电缆的阻抗。
2. 绝缘层:绝缘层的主要作用是防止内外导体之间的短路,同时保证射频信号的传输。
绝缘层的材料和厚度也会影响电缆的阻抗。
3. 外导体:外导体通常采用铜管或铝管制成,其直径和长度会影响电缆的阻抗。
4. 护套:护套的主要作用是保护电缆,防止外部环境对电缆的影响。
护套的材料和厚度也会影响电缆的阻抗。
二、射频同轴电缆的阻抗计算公式射频同轴电缆的阻抗计算公式为:Z = R + jX,其中Z表示阻抗,R表示电阻,X表示电抗,j表示虚数单位。
1. 电阻R的计算:电阻R主要由内导体的电阻决定,其计算公式为:R = ρL/A,其中ρ表示导体材料的电阻率,L表示内导体的长度,A表示内导体的截面积。
2. 电抗X的计算:电抗X主要由绝缘层的电容和外导体的电感决定,其计算公式为:X = 2πfL/D,其中f表示射频信号的频率,L表示外导体的长度,D表示外导体的直径。
三、射频同轴电缆阻抗计算实例假设我们要设计一根射频同轴电缆,要求其工作频率为10GHz,内导体采用铜制,截面积为1mm²,长度为1m;绝缘层采用聚乙烯材料,厚度为0.05mm;外导体采用铜管,直径为0.5mm,长度为1m;护套采用聚氨酯材料。
根据上述参数,我们可以计算出射频同轴电缆的阻抗。
1. 计算内导体的电阻:首先我们需要知道铜的电阻率ρ约为1.68×10^-8Ω·m。
代入公式R = ρL/A,得到R = 1.68×10^-8 ×1000/1 = 1.68×10^-7Ω。
射频同轴电缆结构及主要技术性能射频同轴电缆是一种由内部导体、绝缘层、外部导体和外套构成的电缆结构。
它具有良好的射频性能,用于传输高频信号和数据,被广泛应用于通信、广播、电视、雷达、无线电设备等领域。
以下是射频同轴电缆结构及其主要技术性能的详细介绍。
1.结构-内部导体:内部导体是射频信号的传输介质,通常由铜或铝制成的中心导线构成。
-绝缘层:绝缘层包裹在内部导体的外部,阻止射频信号的漏电流。
常用的绝缘材料有聚乙烯、聚四氟乙烯等。
-外部导体:外部导体是绝缘层的外部层,用于屏蔽外界电磁干扰,通常由编织金属或箔制成。
-外套:外套是覆盖在外部导体外面的保护层,用于保护电缆免受外部环境的损害。
通常由聚氯乙烯(PVC)或低烟无卤材料制成。
2.技术性能-电压容量:射频同轴电缆的电压容量是指电缆能够承受的最大电压,通常以伏特(V)为单位。
电压容量的大小决定了电缆的适用范围和应用场景。
-阻抗:射频同轴电缆的阻抗是指电缆内部导体和外部导体之间的电阻和电感的综合效果。
常见的阻抗值有50欧姆和75欧姆。
不同的阻抗适用于不同的应用场景。
-传输损耗:射频同轴电缆的传输损耗是指信号在传输过程中由于电缆本身的电阻、电感和电容而损失的能量。
传输损耗越小,信号传输质量越好。
-带宽:射频同轴电缆的带宽是指电缆能够传输的最高频率范围。
带宽越大,电缆能够传输的频率范围越广。
-屏蔽效果:射频同轴电缆的屏蔽效果是指电缆对外界电磁干扰的屏蔽能力。
屏蔽效果越好,电缆内部信号不受外界干扰的影响程度越小。
-弯曲半径:射频同轴电缆的弯曲半径是指电缆可以安全弯曲的最小半径。
弯曲半径越小,电缆的安装和布线更加方便。
综上所述,射频同轴电缆结构及其主要技术性能包括内部导体、绝缘层、外部导体和外套四个部分,其主要技术性能包括电压容量、阻抗、传输损耗、带宽、屏蔽效果和弯曲半径等。
这些性能决定了射频同轴电缆的适用范围和应用场景。
射频电缆参数报告射频电缆参数: 一.特性阻抗特性阻抗的大小取决于导体直径以及绝缘结构的等效介电常数 特性阻抗应尽可能和发射天线阻抗一致,避免驻波的出现 同轴电缆阻抗公式:Zc =)/()(C j G L j R ωω++R <<ωL ,G <<ωC则Zc =C L / =60•ln(D/d)/ε =138•l g(D/d)/ε (欧姆)式中,D 为外导体内直径 (mm ) d 为内导体外直径 (mm ) ε为绝缘相对介电常数 表1常用介质材料的特性三种标准阻抗为:50±2欧姆:适用于射频及微波75±3欧姆 :适用于视频以及脉冲数据100±5欧姆:适用于低电容电缆以及其他特种电缆二.电容同轴电缆电容计算公式:C =1000ε/(18lnD/d )=24.13ε/(lgD/d ) (pF/m )三.衰减在射频下,同轴电缆衰减通常可以用下式表示:α=αR +αG =R/2·L C /+G/2·C L /式中,αR 为导体电阻损耗引起的衰减分量,称为导体衰减 αG 为绝缘损耗引起的衰减分量,称为介质衰减 其中αR =2.61×10-3εf (1/d +1/D )/lgD/d (dB/km )式中,f 为频率(Hz )ε为绝缘介电常数 D 为外导体内径(mm )d 为内导体外径(mm )在大功率射频电缆中,内外导体的温度会升高,因此电阻也随着升高,从而使衰减增大,因此在公式中引入衰减的温度系数:Kt =)20(1-+t t α式中,t α为导体温度系数,对于铜,可取t α=0.00393 1/℃标准软铝,可取t α=0.00407 1/℃绝缘介质衰减可以按照下式计算:G α=9.1×10-5f εtg δ (dB/km )对于组合绝缘,如果介质1是固体材料,介质2是空气,即有:tg e δ=tg δ+2εtg δ(1-P)/{2ε+1-2P (ε-1)}-εtg δ(2+P)/{ 2ε+1+ P (ε-1)}式中,P 为发泡度,ε、tg δ为固体介质相应参数。
50-22射频同轴电缆技术指标要求50-22射频同轴电缆是一种广泛应用于通信网络、电视信号传输、无线电频率传输等领域的电缆。
其技术指标要求主要包括以下几个方面:1.增益稳定性:射频同轴电缆的增益稳定性是指在频率范围内,电缆传输信号经损耗后,能够保持相对稳定的信号增益。
对于50-22射频同轴电缆而言,增益稳定性要求高,可以确保信号传输的质量和可靠性。
2.阻抗匹配:阻抗匹配是指射频同轴电缆输入和输出端口之间的电气特性阻抗相匹配。
50-22射频同轴电缆要求输入和输出的阻抗匹配度高,以减小信号反射和传输损耗,提高传输效率。
3.传输损耗:传输损耗是指在信号传输过程中由于电缆中的电阻、电感、电容等元件引起的能量损失。
50-22射频同轴电缆要求在频率范围内传输损耗低,以确保信号的强度和质量。
4.平衡度:平衡度是指射频同轴电缆在传输过程中两个导线之间的电信号平衡性。
高平衡度可以减少噪声和干扰,提高信号传输的可靠性。
50-22射频同轴电缆要求具有良好的平衡度。
5.带宽:带宽是指射频同轴电缆能够传输的频率范围。
50-22射频同轴电缆要求具有较宽的带宽,可以传输更多的频率信号,满足不同应用领域的需求。
6.温度范围:温度范围是指射频同轴电缆能够正常工作的环境温度范围。
50-22射频同轴电缆要求能够在较高或较低的温度下正常工作,以满足不同环境条件下的使用需求。
通过以上几个方面的技术指标要求,可以确保50-22射频同轴电缆在通信、传输等领域中的稳定性、可靠性和传输效率。
同时,在不同应用场景中,还可以根据实际需求,进一步提高技术指标要求,以满足更高级别的信号传输需求。
射频同轴电缆的技术参数1.频率范围:射频同轴电缆的频率范围决定了它适用的应用场景。
常见的射频同轴电缆能够覆盖几百兆赫兹到数十吉赫兹的频率范围。
2.阻抗:阻抗是射频同轴电缆中一个重要的参数,一般标准的射频同轴电缆的阻抗为50欧姆(Ω),也有75Ω的电视同轴电缆。
3.传输损耗:射频同轴电缆的传输损耗是指信号在电缆中传输过程中的能量损耗。
它与电缆中的材料、结构、频率等因素相关。
传输损耗常用单位为分贝(dB)。
4.衰减:衰减是射频同轴电缆传输过程中信号强度衰减的程度。
一般情况下,高频信号的衰减更加显著。
复杂的传输线结构及金属外屏蔽层可以减小衰减。
5.速度:射频同轴电缆中信号的传播速度决定了信号的延迟。
一般情况下,电缆中信号的传播速度为约200-300兆米/秒。
6.容量:射频同轴电缆的容量是指电缆内部存储能量的能力。
容量与电缆的电容有关,一般单位为皮法/米(pF/m)。
7.耐压:射频同轴电缆应具备一定的耐压能力,在正常工作环境下不会发生电脑闪击等危险。
8.抗干扰:射频同轴电缆应具备较好的抗干扰能力,能在高频信号传输过程中减小对外界干扰信号的感应和传导。
9.绝缘材料:射频同轴电缆的绝缘材料应具备良好的绝缘性能和耐高温性能,以防止信号在传输过程中出现串扰或关断现象。
10.外屏蔽:射频同轴电缆的外屏蔽是用来保护内部信号不受外界电磁干扰的。
常见的外屏蔽材料有铝箔屏蔽、铜网屏蔽等。
不同应用需要的射频同轴电缆具备不同的技术参数,因此在选购射频同轴电缆时需要根据具体需求选择合适的产品。
以上列举的技术参数仅为射频同轴电缆重要的几个方面,具体参数还需根据具体型号和厂商提供的产品参数进行确认。
射频同轴电缆的技术参数一、工程常用同轴电缆类型及性能:1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。
近些年有人把它称为“视频电缆”;2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。
有人把它称为“射频电缆”;3)基本性能:l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆;l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。
厂家给出的测试数据也说明了这一点;l 同轴电缆都可以在直流、射频、微波波段应用。
按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些;l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。
但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。
二、了解同轴电缆的视频传输特性——“衰减频率特性”同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一:同轴传输特性基本特点:1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当;2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。
依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了;3. 频率失真特性:低频衰减少,高频衰减大。
高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。
电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题;三、工程应用设计要点网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。
为什么会有这么多答案呢?原因是没有一个统一的标准。
既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。
1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。
视频图像信号是由0-6M不同频率分量组成的。
低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。
显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。
“恢复”不可能是100%,而是允许有一个“失真度”范围要求的标准。
这个“标准”的“失真度范围”,在图像上用肉眼应该是分辨不出来的。
反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。
要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。
这一点,从网站技术论坛讨论的情况看,还远没引起足够认识。
宏观来看,我国监控行业发展了20多年,工程图像质量不仅没有提高反而有些下降,这不能不引起我们的关注和思考。
2. “视频传输”标准:由图二可见,对于视频传输,我国广播级视频失真度标准要求如图a):5M以下幅频特性误差范围为±0.75db, 即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,如图b),0—6M全范围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:要保证图像质量,视频传输系统(产品)的频率失真范围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。
但还有一个误区:在工程中还是有不少人用主观评价“工程图像质量好坏”,甚至于用双方是否认可验收来说明“传输系统(设备)”是否合格,这就有些本末倒置了。
工程商这么做可能是“糊涂”;传输设备厂家如果这么做,那可就是“蒙人”了,如果再利用媒体这么宣传,那就是诚心“误导”了。
3..摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:1000米20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。
不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。
(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减——原作注)4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。
所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。
如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;5.高编电缆:尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以3db带宽传输距离,反而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大;6.同轴电缆加放大补偿的视频传输方式:这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的“增益频率特性”之和,放大补偿的“增益频率特性”,应该能有效补偿电缆的频率衰减特性,且二者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。
目前这项同轴视频传输技术,产品已经达到的技术水平是:只用一级末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km范围以内的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控范围扩展到了2-3公里,且是我国自有知识产权技术。
7.工程中确有不少工程是按照“只要图像质量双方认可验收”就是“硬道理”的做法,这实际是无标准可言,不属本文讨论范围。
不过这里可以进一言:还是多做些有影响的样板工程才是长远之计;四、同轴电缆的抗干扰性能[工程经验]:一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。
重新焊好后,干扰消失了,图像恢复正常。
这说明什么问题呢?一是说明周围环境确有外界电磁干扰存在,二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉,三是说明BNC电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。
这就是我们探讨干扰产生原理的启发点。
对于干扰的探讨,eie实验室的研究成果表明:1. 同轴干扰形成原理:就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。
这就是同轴干扰形成原理,见图三。
2. 显然:当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。
这就是同轴电缆屏蔽干扰的作用;3. 在上面工程经验中,当接头没有焊接好、接触不良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;4. 工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除;5. 四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。
对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大;需要明确的是:与低编电缆比较,四屏蔽高编(128)电缆这种能够“适当减弱”低频干扰的效果,其减弱程度是与两种电缆外导体电阻成反比关系;工程上值得认真考虑的是这点减弱干扰的效果,与高编电缆的高投入成本是否值得?五、视频传输中的抗干扰措施工程中产生干扰的情况很多很复杂,但可以大致分为两大类:一类是电缆传输线路“外部电磁干扰”的入侵,如地电位干扰、电台干扰、电火花干扰、并行电缆耦合干扰等。
这是影响最大、设计和施工中又很难预测的干扰。
第二类是两端设备问题和故障引入的干扰,如设备电源故障引来的50/100周电源干扰,或开关电源的高频电源干扰等,不妨把这一类叫着“内部干扰”,这部分比较好解决。
我们主要谈第一类的外部干扰。
工程中比较成熟的经验有:1. 防止“地电位”的单端接地或不接大地;2. 电缆穿金属管,或走金属线槽;此法十分有效,但成本较高,施工有一定复杂度;3. 埋地;4. “远离”其他动力电缆或信号控制电缆,并尽量避免或减少并行;5. 集中供电和控制信号传输采用屏蔽电缆,但屏蔽层不能两端都接视频地;6. 施工穿管时,把“布线这种粗活”在当地雇临时工来做,结果多处拉断同轴电缆编织网,使外导体电阻增大,产生干扰,这种情况十分多。
但这属于可以避免,发生概率又最高的“人为因素”。
7. 电缆中间接头连接方法,不是采用F型接头和双通连接,而是采用“焊接”或“扭接”的方法,这就破坏了电缆的同轴性和特性阻抗的连续性,容易引起反射和干扰。
这属于经验不足的人为因素;8. 采用抗干扰器,用平衡抵销原理抗干扰。
但局限性较大,现场调试交麻烦;六、同轴抗干扰技术新进展——抗干扰同轴电缆在外部强干扰源仍然存在的情况下,为什么电缆穿金属管,或走金属线槽后,就可以有效抗干扰呢?正确的回答也应该是“屏蔽的效果”。