电源滤波器的设计共109页文档
- 格式:ppt
- 大小:9.40 MB
- 文档页数:109
直流电源EMI滤波器的设计直流电源EMI滤波器的设计原则、网络结构、参数选择1 设计原则-满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。
设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。
所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。
同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。
即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。
2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM 和差模干扰信号DM,CM 和DM 的分布如图1所示。
它可用来指导如何确定EMI滤波器的网络结构和参数。
EMI滤波器的基本网络结构如图2 所示。
上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:双向滤波功能——电网对电源、电源对电网都应该有滤波功能。
能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。
最大程度地满足阻抗失配原则。
几种实际使用的电源EMI滤波器的网络结构如图3 所示。
3 电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。
降额系数为0.75 V,0. 6 W。
根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。
电源滤波器的设计方法招生对象---------------------------------【主办单位】中国电子标准协会【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生【报名邮箱】martin# (请将#换成@)课程内容---------------------------------1. 高次谐波问题的现状1.1 电力变换装置和高次谐波1.2 高次谐波的危害1.3 谐波标准和国外实践2. 有源滤波器的原理和结构2.1 有源滤波器的基本原理2.2 有源滤波器的主电路结构3. 有源滤波器的控制3.1 控制器的基本组成3.2 补偿信号的检测方法3.3 高次谐波检测位置和补偿效果3.4 调制信号的产生4. 应用实例4.1 清洁电源----办公机器4.2 负荷补偿5. 存在的问题和发展前景讲师介绍---------------------------------陈建业研究员简历1946年12月出生于江苏南京,1982年取得硕士学位,现为清华电机工程与应用电子技术系研究员。
主要成就:从事电力电子技术,特别是计算机控制和计算机仿真在电力电子技术中应用的研究和教学工作。
1998-1999年,曾作为名誉研究员在英国伯明翰大学从事地下城市轻轨交通供电系统的计算机仿真研究。
1992-1994年受英国通用电气与阿尔斯通联合公司牵引分公司系统发展部的邀请,在该公司与曼彻斯特工学院从事电力机车矢量控制系统的研究。
1999年1-10月在英国布鲁耐尔大学产生柔性交流输电系统的研究。
1994年回国后在清华大学主要从事电力电子技术在电力系统,特别是交流输配电系统中应用(FACTS)的教学与研究。
所参加的饿国内第一台±20Mvar静止同步补偿器(STATCOM)先后于1999和2001年获电力公司电力科学技术一等奖,二等奖各一次,并被国家教委评为2000年十大科技进展之一,和2002年国家科技进步二等奖。
电源滤波器的设计
不包含图片
1.什么是电源滤波器
2.电源滤波器的结构
(1)电容,电容是用小容量的多层绕组做成,工作温度范围较宽,抗电磁干扰能力强,是低频级中的主要成分。
(2)电感器,电感器也是电容的补充,其特点是高频屏蔽能力强,但可偏振性较弱,因此,需要将它与电容组合使用,以获得更好的抗电磁干扰能力。
(3)限流元件,限流元件主要是控制瞬变电流环形,以减少电源线的高频抖动,提高滤波效果。
(4)反向导通,在实际应用中,反向导通也会用于电源滤波器,它的作用是防止后端的瞬变电流反向流动,从而阻止电磁干扰被传播出去。
(1)选取滤波器元件:在设计电源滤波器时,元件的选取对系统的屏蔽效果影响至关重要,而电感器和电容。
技术方案总体说明宁夏佳盛远达铝镁新材料有限公司整流机组滤波补偿装置是依据招标文件提供的技术参数,并且参考了同等规模、同类负荷项目的基础上经进一步优化得出,主要参考工程如下:一、本技术方案的特点(1)无功补偿量的确定参考了上述项目的经验,确保不欠补也不过补。
本方案设计单机组总安装容量26000kvar,基波补偿容量19700kvar。
(2)滤波装置设5次、7次以及11次高通滤波支路,其中5、7次单调谐支路以补偿为主,同时防止11次以下非特征谐波放大,11次(高通)作为主滤波通道,以滤除12脉特征谐波.(3)滤波装置采用双星型中性点不平衡电流保护,该保护方式可以很灵敏地检测出电容器内部故障。
同时在滤波支路中加装避雷器和中性点避雷器,以消除由于电容器投切过程中产生的过电压,保护第三绕组系统及电容器装置使其免受到过电压的冲击。
(4)装设滤波补偿成套装置后,公共考核点电能质量能够达到如下指标:滤波补偿装置在电解系列电流500 KA运行时,以及在8台机组和7台机组运行,以及全系列和半系列运行时,整流机组注入电网的谐波电流及谐波电压畸变率应满足GB/T14549—93国家标准的要求。
电压总谐波畸变率THDu≤1%。
允许注入公共联接点的谐波电流允许值按国家标准要求考核.在8套机组运行时,整流装置的总功率因数为≥0。
95,任何运行情况下总功率因数≯1;在7套机组运行时,整流装置的总功率因数为≥0。
90,在任何情况下运行均不会产生谐振。
不损坏电容器等设备。
滤波通道设置5次、7次、11次共3个滤波通道,满足在任何运行方式(8套机组运行或7套机组运行)时,供电系统均不发生谐振,且谐波含量均满足本技术要求中“允许注入公共联接点的谐波电流允许值"要求。
二、本次方案针对铝厂的特殊考虑1、针对国内电解铝行业整流变第三绕组发生事故较多的现象,本方案采取以下措施来保证第三绕组的安全性.装设谐波保护单元,当检测谐波电流超过设计整定值时跳开电容器。
这节非常深入地介绍了用运放组成的有源滤波器。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。
图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。
图十四3.1.3 文氏滤波器文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
电力电子技术中的电源滤波器设计与优化电力电子技术是现代电力工程领域中的重要分支,它主要研究电能流动和转换过程中的电流、电压以及功率的控制与调节。
而电源滤波器作为电力电子设备的重要组成部分,在电能转换和控制过程中起到了至关重要的作用。
本文将探讨电力电子技术中的电源滤波器设计与优化的相关内容,以帮助读者更好地理解和应用该技术。
一、电源滤波器的基本原理为了保证电力电子设备的正常运行,电源滤波器需要对从电源中提取的电能进行有效的滤波处理,去除掉电能中的高频噪声和谐波成分,以保证设备工作时的电流和电压波形符合工作要求。
电源滤波器的基本原理是利用电感元件和电容元件组成的LC滤波回路对电能进行滤波处理。
电感元件主要起到串联电阻的作用,对高频噪声和谐波进行阻断;而电容元件则起到并联电阻的作用,对直流分量和其他低频噪声进行阻隔。
通过合理的电源滤波器设计和优化,可以有效地提高电力电子设备的工作效率和稳定性。
二、电源滤波器的设计要点1. 频率响应特性的优化电源滤波器的频率响应特性对于设备的电能转换效率和输出波形质量具有重要影响。
在滤波器的设计过程中,需要根据设备的工作要求和工作频率范围来选择合适的滤波器参数,如电感值、电容值等。
同时,还需要注意避免频率特性的失真和谐振现象的发生,以确保滤波器在整个工作频率范围内都能保持良好的滤波效果。
2. 抑制谐波成分电力电子设备在工作过程中常常会引入大量的谐波成分,这些谐波成分会对电网和其他设备产生干扰和损害。
因此,电源滤波器的设计需要考虑如何抑制谐波成分的传输和反射,以减少谐波对电力系统的影响。
常见的解决方法包括增加滤波器的阻抗,采用谐振电路来吸收谐波等。
3. 降低滤波器的损耗虽然电源滤波器在滤波过程中能够有效地去除电能中的噪声和谐波,但在滤波过程中也会引入一定的能量损耗。
因此,在滤波器的设计中需要平衡滤波效果和损耗,尽可能降低滤波器的损耗。
可以通过合理选择滤波器的电感和电容元件以及优化滤波器的拓扑结构等方法来实现。
开关电源滤波器设计(一)一、前言传导EMI 是由电源、信号线传导的噪声,连接在同一电网系统中的设备所产生的EMI会经过电源线相互干扰,为了对传到EMI进行抑制,通常在设备宇电源之间加装滤波器,本文主要探讨开关电源的EMI滤波器设计方法。
二、开关电源的传到EMI来源与组成开关电源的噪声包含有共模和差模两个分量,此两分量分别是由共模电流和差模电流所造成的。
图一所示为共模电流和差模电流的关系图,其中LISN 为电源传输阻抗稳定网络,是传导性EMI 量测的重要工具。
在三线式的电力系统中,由电源所取得的电流依其流向可分为共模电流和差模噪声电流。
其中,共模噪声电流ICM 指的是Line、Neutral 两线相对于接地线(Ground)之噪声电流分量,而差模噪声电流IDM 指的是直接流经Line 和Neutral两线之间而不流经过地线之噪声电流分量。
开关电源图一共模电流和差模电流之关系图在Line 上,共模噪声电流和差模噪声电流分量是以向量和的关系结合,而在Neutral 上,共模噪声电流和差模噪声电流分量则是以向量差的关系结合,两者的关系以数学式表示如下:其中,为流经Line 之总噪声电流,为流经Neutral 之总噪声电流。
为了有效抑制噪声,我们必须针对噪声源的产生及其耦合路径进行分析。
共模噪声主要是由电路上之Power MOSFET(Cq)、快速二极体(Cd)及高频变压器(Ct)上之寄生电容和杂散电容所造成的,如图二所示。
而差模噪声则由电源电路初级端的非连续电流及输入端滤波大电容(CB)上的寄生电阻及电感所造成,如图三所示。
图二共模电流耦合路径图三差模电流耦合路径开关电源滤波器设计(二)三、EMI 滤波器的基本架构本文所使用的EMI 滤波器的架构如图四所示,其中的元件包含了共模电感(LC)、差模电感(LD)、X 电容(CX1、CX2)、Y 电容(CY),以下将对各元件作一一介绍:图四EMI滤波器的架构1 共模电感(CM inductor):共模电感是将两组线圈依图五的绕线方式绕在一个铁心上,这种铁心一般是采用高值的Ferrite core,由于值较高,故电感值较高,典型值是数mH 到数十mH 之间。
电源滤波器的电磁兼容性设计0 引言电磁兼容性(EMC)是指电子、电器设备共处一个环境中能互不干扰、兼容工作的能力。
一个现代电子和电器产品(设备、系统)的电磁兼容性对保证产品正常功能的发挥起着至关重要的作用,这已是国内外业界公认的事实。
本文结合国军标的电磁兼容实验传导干扰项目及实验中遇到的问题分析了传导干扰产生的原因及测试方法,介绍了电源滤波器的设计及设备的电磁兼容设计中滤波器的选择方法。
首先介绍传导干扰产生的原因。
1 传导干扰在对某设备的电磁兼容实验中发现,传导干扰项目CE102 超标,测试结果如图1 所示。
产品电源线上的噪声电流是产生传导干扰的原因,因为一旦这些电流传到供电网上,它们将有效辐射,产生干扰。
传导干扰的耦合途径是直接相通的电路,干扰信号正是通过此电路由干扰源耦合到敏感设备。
解决传导耦合的办法是防止导线感应噪声,即采用适当的屏蔽并将导线分离,或者在干扰进入敏感电路之前,用滤波方法从导线上除去噪声。
图1 某设备CE102 测试图1. 1 设备的传导干扰进入供电网络被测设备电源线上的噪声电流进入供电网络的路径如图2 所示。
图2 在一个装置中产生的噪声链通过电源线图1. 2 利用阻抗稳定网络测量传导干扰利用阻抗稳定网络测量传导干扰的布置图如图3 所示。
图3 利用阻抗稳定网络测量传导发射图典型的阻抗稳定网络电原理图如图4 所示。
图4 典型FCC 阻抗稳定网络电原理图测量的电压由差模和共模电流两部分组成,用这些电流表示的相电压和中线电压为:用理想的L ISN 测量的共模和差模电流对传导干扰的影响见图5 .图5 用理想L ISN 测量的共模和差模电流对传导干扰的影响图从图5 中可看出共模噪声电流可对测量的传导干扰做出贡献,而且它们是通过地线返回,这一事实给出了减小传导干扰的一种有效方法,就是在地线中放一个电感来抑制共模电流,如图6 所示。
图6 利用安全地线电感阻隔共模电流双线制产品不采用地线连接,因此可认为没有共模电流,然而机壳与场地金属墙之间的电容也会构成共模电流回路。