x p
y02
2 p
.
2p 2
联立可得点B的纵坐标为y
p2
.
y0
DB
所以DB// x轴。
例4.已知拋物線y=x2,動弦AB的長為2,求AB中 點縱坐標的最小值。
y
M
AF
o
解:设A(x , y ), B(x y ), AB中点M (x, y)
11
22
B
2 MN
AD BC ,
MN
p y 1 y,
证明:以抛物线的对称 轴为x轴,它的顶点为原点,
建立直角坐标系。设抛 物线的方程为 y2 2 px,
点A的坐标为( y02 2p
抛物线的准线是
, y0),则直线OA的方程为y x p
2p y0
x,
y
A
2 联立可得点D的纵坐标为y
p2
.
因为点F的坐标是(
p
y0
,0),所以直线A
F的
2
OF
x
方程为 y y0
焦點F,且與拋物線相交於A,B兩點,求線 段AB的長。
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大);
法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:设而不求,数形结合,活用定义,运用韦达定理,计 算弦长.
例2、已知過拋物線 y2 2 px( p 0) 的焦點F的
直線交拋物線於 A(x1, y1)、B(x2, y2)兩點。
(1)x1 x2 是否為定值?y1 y2 呢?
(2)|
1 FA
|
|
1 FB
|
是否為定值?
y
A ( x1, y1)