2017秋人教版数学八年级上册131《轴对称》随堂测试
- 格式:doc
- 大小:5.67 MB
- 文档页数:5
八年级上册13.1 轴对称专项练习(含答案)(满分:100分)班级:______ 姓名:______ 学号:____ 成绩:____一、选择题(每小题3分,共36分)1、点M 关于x轴的对称点的坐标是A.B.C.D.2、下列图形是轴对称图形的有()A、2个B、3个C、4个D、5个3、如图,将矩形纸片ABCD沿EF折叠,使得点C落在边AB上的点H处,点D落在点G处,若∠AHG= 40°,则∠GEF的度数为( )A.100°B.110° C.120°D.135°4、如右图所示,在RtΔACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是()A.9B.8C.7D.65、如图,△ABC中,AB=AC,∠A=45º,AC的垂直平分线分别交AB、AC于D、E,若CD=1,则BD等于( )A.1 B.C.D.6、下列图形中,不是轴对称图形的是( )A B C D7、如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm8、在下列几何图形中一定是轴对称图形的有()圆平行四边形抛物线三角形A、1个B、2个C、3个D、4个9、如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )A.130° B.120° C.110°D.100°10、点P( 2,-3 )关于x轴的对称点是( )A.(-2,3 ) B.(2,3) C.(-2,3 ) D.(2,-3 )11、如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A.30°B.35°C.40°D.45°12、如图,△ABC中,∠CAB=120º,A B,AC的垂直平分线分别交BC于点E、F,则∠EAF等于()A.40ºB.50ºC.60ºD.80º二、填空题13、如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA 于M,交OB于N,P1P2=15,则△PMN的周长为;14、如图,在△ABC中,EF是AC的垂直平分线,AF=12,BF=3,则BC=__________.15、如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于 .16、如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC外,若∠2=20°则∠1的度数为度。
人教版八年级数学上册《第十三章轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下列图形不是轴对称图形的是()2.若点P(a,1)关于y轴的对称点为Q(2,b),则a+b的值是( )A.-1 B.0 C.1 D.23.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有( )①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个4.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )A.30° B.35° C.40° D.45°5.如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0) B.(4,0) C.(2,0) D.(0,0)6.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10B.8C.6D.48.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.下列五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确结论的个数是( )A.2个B.3个C.4个D.5个二、填空题(共6小题,4*6=24)9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是__ __.(只需写一个,不添加辅助线)10.在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a+b的值是______.11.如图,在△ABC中,AB=BC,AB=12 cm,F是AB边上一点,过点F作FE∥BC交AC于点E,过点E作ED∥AB交BC于点D,则四边形BDEF的周长是_____cm.12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD的周长为13 cm,则AE的长为__ __cm.13.如图,小明上午在理发店时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时的时间是__________.14.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE =1,则BC的长是__ __.三、解答题(共5小题,44分)15.(6分) 在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)中作出点P后,写出点P的坐标.16.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.17.(8分) 如图,△ABC,△ADE是等边三角形,B,C,D在同一直线上.求证:(1)CE=AC+CD;(2)∠ECD=60°.18.(10分) 如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.19.(12分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.参考答案1-4CABC 5-8CBCC9.AD=CD10.411.2412.313.10:4514.315.解:(1)如图所示(2)P(3,3)16.解:(1)∠DAC=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB17.解:(1)∵△ABC,△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC.∵BD=BC+CD =AC+CD,∴CE=BD=AC+CD(2)由(1)知△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°-∠ACB-∠ACE=60°18.解:(1)∵点M与点P关于OA对称,∴OA垂直平分MP.∴EM=EP.又∵点N 与点P关于OB对称,∴OB垂直平分PN.∴FP=FN.∴△PEF的周长为PE+PF+EF=ME+FN+EF=MN=20 cm(2)连接OM,ON,OP.∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.又∵ME=PE,OE=OE,PF=NF,OF=OF,∴△MOE≌△POE(SSS),△POF ≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°.∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°19.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB-∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF =CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.。
第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。
人教版八年级数学上册 《第十三章 轴对称》单元测试卷一、选择题(共8小题,4*8=32)1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 43.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的两个底角相等D .等腰三角形一边不可以是另一边的2倍4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 的长为( )A .2B .3C .4D .以上都不对5.如图,在△ABC 中,AB =AC ,∠A =36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线,BD ,CE 相交于点F ,则图中的等腰三角形有( )A .6个B .7个C .8个D .9个6.如图,在已知的△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12 BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为( )A.90° B.95° C.100° D.105°7.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10 B.8 C.6 D.48.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个二、填空题(共6小题,4*6=24)9.如图,△ABC沿着直线MN折叠后,与△DEF完全重合,AC,DF交于点P.△ABC与△DEF 关于直线_______对称,直线MN是_________;10.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为点D,则∠EBC的度数为_____.11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C 落在C′处,连接BC′,则BC′的长为________.12.已知a>0,b<0,则点P(a+1,b-1)关于y轴的对称点一定在第__ __象限.13.如图,在三角形纸片ABC中,∠C=90°,∠A=30°,AC=6,折叠该纸片,使点C落在AB边上的点D处,折痕BE与AC交于点E,则折痕BE的长为__ __.14.如图,在四边形ABCD中,AB=BC=CD=AD,点D到AB的距离为3,∠BAD=60°,点F为AB的中点,点E为AC上的任意一点,则EF+EB的最小值为________.三、解答题(共5小题,44分)15.(6分) 如图,在△AOB中,点C在OA上,点E,D在OB上,且CD∥AB,CE∥AD,AB=AD,求证:△CDE是等腰三角形.16.(8分) 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC +∠BCF=150°,求∠AFE+∠BCD的大小.17.(8分) 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.18.(10分) 如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.(1)求证△BCE≌△ACD;(2)求证CF=CH;(3)判断△CFH的形状并说明理由.19.(12分) (1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC 得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.因此,AB,AD,DC之间的等量关系是__ __;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1-4DCCA 5-8CDCD9.MN,对称轴10.100°11.312.三13.414.315.解:∵CD∥AB,∴∠CDE=∠B.又∵CE∥AD,∴∠CED=∠ADB,又AB=AD,∴∠B=∠ADB,∴∠CDE=∠CED,∴△CDE是等腰三角形16.解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∠AFC+∠BCF =150°,∴∠AFC=∠EFC,∠BCF=∠DCF,∴∠AFE+∠BCD=2(∠AFC+∠BCF)=300°17.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD=120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB18.(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD =60°.∴∠BCE=60°+∠ACE=∠ACD.∴△BCE≌△ACD(SAS).(2)证明:∵△BCE≌△ACD,∴∠FBC=∠HAC.∵∠ACB=60°,∠FCH=180°-∠ACB -∠ECD=60°,∴∠BCF=∠ACH.又∵BC=AC,∴△BCF≌△ACH(ASA).∴CF=CH.(3)解:△CFH是等边三角形.理由:∵CF=CH,∠FCH=60°,∴△CFH是等边三角形.19.解:(1)AD=AB+DC(2)AB=AF+CF.证明如下:如图,延长AE交DF的延长线于点G,∵AB∥DC,∴∠BAE =∠G,又∵BE=CE,∠AEB=∠GEC,∴△AEB≌△GEC(AAS),∴AB=GC.∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵∠BAG=∠G,∴∠FAG=∠G,∴AF=FG.∵CG=FG+CF,∴AB=AF+CF。
人教版八年级上册数学13.1 ---13.4随堂测试题含答案13.1 轴对称一、选择题(本大题共10道小题)1. 如图所示的轴对称图形中,只用平移就可以使对称轴两边的图形重合的有()A.1个B.2个C.3个D.4个2. P是∠AOB内一点,分别作点P关于直线OA,OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是()A. OP1⊥OP2B. OP1=OP2C. OP1⊥OP2且OP1=OP2D. OP1≠OP23. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-54. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 如图,点A在直线l上,△ABC与△AB'C'关于直线l对称,连接BB'分别交AC,AC'于点D,D',连接CC',下列结论不一定正确的是()A.∠BAC=∠B'AC''∥BB'C.BD=B'D'D.AD=DD'6. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行7. 对于△ABC,嘉淇用尺规进行如下操作:如图,(1)分别以点B 和点C 为圆心,BA ,CA 为半径作弧,两弧相交于点D ; (2)作直线AD 交BC 边于点E .根据嘉淇的操作方法,可知线段AE 是( )A .△ABC 的高线B .△ABC 的中线C .边BC 的垂直平分线D .△ABC 的角平分线8. 将平面直角坐标系内某个图形的各个点的横坐标都乘-1,纵坐标不变,则所得图形与原图形的关系是( ) A .关于x 轴对称 B .关于y 轴对称 C .图形向左平移D .图形向下平移9. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A.52B.3C.2D.7 210. 如图,点P在直线l外,以点P为圆心,大于点P到直线l的距离为半径画弧,交直线l于点A,B;保持半径不变,分别以点A,B为圆心画弧,两弧相交于点Q,则PQ⊥l.上述尺规作图的依据是()A.一条直线与两平行线中的一条垂直,必然与另一条直线也垂直B.线段垂直平分线上的点与这条线段两个端点的距离相等,两点确定一条直线C.与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线D.角的内部到角的两边的距离相等的点在角的平分线上二、填空题(本大题共7道小题)11. 如图所示的五角星是轴对称图形,它的对称轴共有________条.12. 如图所示的4组图形中,左右两个图形成轴对称的是第________组(填序号).13. 如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是________.14. 如图,DE是△ABC的边AC的垂直平分线,若BC=9,AD=4,则BD=________.15. 在平面直角坐标系中,点A的坐标是(-1,2).作点A关于x轴的对称点,得到点A1,再将点A1向下平移4个单位长度,得到点A2,则点A2的坐标是________.16. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.17. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.三、解答题(本大题共4道小题)18. 把下列正多边形对称轴的条数填入表格中.图形正多边形的边数345678对称轴的条数________________________根据上表,请你就一个正n边形对称轴的条数做一个猜想,写出猜想的结果.(不用证明)19. 如,在△ABC中,D为BC上的一点,E,F为AD上的两点,若EB=EC,FB=FC.求证:AB=AC.20. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.21. 如图,在四边形ABCD中,AD∥BC,E是CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.人教版八年级数学13.1 轴对称同步训练-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 从左数第二个和第四个,只用平移就可以使对称轴两边的图形重合.2. 【答案】B3. 【答案】B[解析] ∵点(m-1,-1)与点(5,-1)关于y轴对称,∴m-1=-5,解得m=-4.4. 【答案】A5. 【答案】D[解析] 如图,设BB'交直线l于点O.∵△ABC与△AB'C'关于直线l对称,∴△ABC≌△AB'C',BB'⊥l,CC'⊥l,AB=AB',AC=AC',OD=OD',OB=OB'.∴∠BAC=∠B'AC',BB'∥CC',BD=B'D'.故选项A,B,C正确.故选D.6. 【答案】B[解析] 连接BB'交对称轴于点O,过点B作BM⊥对称轴,垂足为M,过点B'作B'N⊥对称轴,垂足为N,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON,∠BMO=∠B'NO=90°,所以△BOM≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.7. 【答案】A8. 【答案】B [解析] 点的横坐标乘-1后变为原来的相反数,又因为纵坐标不变,故变化后的点与原来的点关于y 轴对称.9. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线,∵5AB ==, ∴1522CF AB ==.故选A .10. 【答案】C二、填空题(本大题共7道小题)11. 【答案】5[解析] 如图,五角星的对称轴共有5条.12. 【答案】(3)(4)13. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等14. 【答案】515. 【答案】(-1,-6)[解析] ∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴点A1的坐标是(-1,-2).∵将点A1向下平移4个单位长度,得到点A2,∴点A2的坐标是(-1,-6).16. 【答案】解:如图.故填3,4,5,6,n.17. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.三、解答题(本大题共4道小题)18. 【答案】解:345678猜想:一个正n边形有n条对称轴.19. 【答案】证明:∵EB =EC ,∴点E 在BC 的垂直平分线上.∵FB =FC ,∴点F 在BC 的垂直平分线上.∴直线EF 是BC 的垂直平分线.∵点A 在直线EF 上,∴AB =AC.20. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD.∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC ,∴DE =DF ,∠BED =∠CFD =90°.在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF.(2)在Rt △ADE 和Rt △ADF 中,⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.21. 【答案】证明:(1)∵E是CD的中点,∴DE=CE.∵AD∥BC,∴∠ADE=∠FCE,∠DAE=∠CFE.∴△ADE≌△FCE.∴AD=FC.(2)∵△ADE≌△FCE,∴AE=FE.又∵BE⊥AE,∴BE垂直平分AF.∴AB=FB.∵FB=BC+FC=BC+AD,∴AB=BC+AD.人教版数学八年级上册第十三章13.2 画轴对称图形一、选择题1. 作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2. 点M(-3,2)关于x轴的对称点N的坐标是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)3.在平面直角坐标系中,点P(-2,1)关于y轴的对称点的坐标为()A.(-2,-1) B.(2,-1) C.(-2,1) D.(2,1)4. 下列是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是()A B C D5.若点A(4,3),点B(4,-3),则点A与点B的关系是()A.关于x轴对称B.关于直线x=-1对称C.关于y轴对称D.关于直线y=-1对称6.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),则这样的三角形能画出()A.1个B.2个C.3个D.4个7. 下列说法正确的是()A.任何一个图形都有对称轴;B.两个全等三角形一定关于某直线对称;C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′;D.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B•关于直线l对称.8. 下列图形:其中所有轴对称图形的对称轴条数之和为()A .13 B.11 C.10 D.89. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥10. 如图,△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论,其中正确的个数是()①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD.A.1个B.2个C.3个D.4个二、填空题11.若点A(m,3)与点B(2,n)关于y轴对称,则m=,n=.12.如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为.13.若点A(x,-5)与点B(2,y)关于x轴对称,则y x=.14.将点A(-2,3)向下平移4个单位长度后得到点B,点B关于x轴对称的点C的坐标为.15. 由一个平面图形可以得到它关于某条直线对称的图形,这个图形与原图形的_________、___________完全一样.16. 下列每对文字图形中,能看成关于虚线对称的有:_________(只需要序号).17. 数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21; ②12×462=___________;③18×891=__________; ④24×231=___________.三、解答题17.如图,给出了一个图案的一半,其中虚线l是这个图案的对称轴,请作出这个图形关于l的轴对称图形,并说出这个图案的形状.18. 如图,在10×10的正方形网格中有一个四边形和两个三角形(所有顶点都在方格的格点上).(1)请你画出以上三个图形关于直线MN对称的图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.19. 已知:如图,点P,Q为∠AOB内部两点,点M,N分别为OA,OB上的两个动点,作四边形PMNQ,请作图说明当点M,N在何处时,四边形PMNQ 的周长最小.20.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.21.如图,已知△ABC.(1)画出△CBA111,使△CBA111.和△ABC关于直线MN成轴对称;(2)画出△CBA222,使△CBA222和△ABC关于直线PQ成轴对称:(3)△CBA111与△CBA222成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由,人教版数学八年级上册第十三章13.2 画轴对称图形参考答案一、选择题1. 作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定【答案】B2. 点M(-3,2)关于x轴的对称点N的坐标是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)【答案】C3.在平面直角坐标系中,点P(-2,1)关于y轴的对称点的坐标为() A.(-2,-1) B.(2,-1) C.(-2,1) D.(2,1) 【答案】D4. 下列是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是()A B C D【答案】B5.若点A(4,3),点B(4,-3),则点A与点B的关系是()A.关于x轴对称B.关于直线x=-1对称C.关于y轴对称D.关于直线y=-1对称【答案】A6.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),则这样的三角形能画出()A.1个B.2个C.3个D.4个【答案】C7. 下列说法正确的是()A.任何一个图形都有对称轴;B.两个全等三角形一定关于某直线对称;C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′;D.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B•关于直线l对称.【答案】C8. 下列图形:其中所有轴对称图形的对称轴条数之和为()A .13 B.11 C.10 D.8【答案】B9. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥【答案】A10. 如图,△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论,其中正确的个数是()①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD.A.1个B.2个C.3个D.4个【答案】C二、填空题11.若点A(m,3)与点B(2,n)关于y轴对称,则m=,n=.【答案】-2312.如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为.【答案】(2,3)13.若点A(x,-5)与点B(2,y)关于x轴对称,则y x=.【答案】2514.将点A(-2,3)向下平移4个单位长度后得到点B,点B关于x轴对称的点C的坐标为.【答案】(-2,1)15. 由一个平面图形可以得到它关于某条直线对称的图形,这个图形与原图形的_________、___________完全一样.【答案】形状;大小16. 下列每对文字图形中,能看成关于虚线对称的有:_________(只需要序号).【答案】①⑤17. 数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21; ②12×462=___________;③18×891=__________; ④24×231=___________.【答案】264×21;198×81;132×42三、解答题18.如图,给出了一个图案的一半,其中虚线l是这个图案的对称轴,请作出这个图形关于l的轴对称图形,并说出这个图案的形状.【答案】解:如答图,这个图案是一个六角星.19. 如图,在10×10的正方形网格中有一个四边形和两个三角形(所有顶点都在方格的格点上).(1)请你画出以上三个图形关于直线MN对称的图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.【答案】(1)所画图形如图所示:(2)这个整体图形共有4条对称轴.20. 已知:如图,点P,Q为∠AOB内部两点,点M,N分别为OA,OB上的两个动点,作四边形PMNQ,请作图说明当点M,N在何处时,四边形PMNQ的周长最小.【答案】如图所示:点M,N即为所求.21.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.【答案】(1)图略.(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,如图,A2(6,4),B2(4,2),C2(5,1).(3)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=3.22. 如图,已知△ABC.(1)画出△CBA111,使△CBA111.和△ABC关于直线MN成轴对称;(2)画出△CBA222,使△CBA222和△ABC关于直线PQ成轴对称:(3)△CBA111与△CBA222成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由,【答案】解析(1)△CBA111如图所示.(2)△CBA222如图所示.人教版八年级数学13.3等腰三角形针对训练一、选择题1.如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2B.5.2C.7.8D.82.已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°3.如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC4.下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形5.如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()13.4 课题学习一、选择题1. 如图,A,B是两个居民小区,快递公司准备在公路l上的点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()2. 如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为()A.10 B.11 C.11.5 D.133. 如图,在四边形ABCD中,AB∥CD,AD⊥AB,P是AD边上的一动点,要使PC+PB的值最小,则点P应满足()A.PB=PC B.P A=PDC.∠BPC=90°D.∠APB=∠DPC4. 如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°5. 如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()6. 如图,直线l是一条河,P,Q是两个村庄.欲在直线l上的某处修建一个水泵站M,向P,Q两村供水,现有如下四种铺设方案,图中PM,MQ表示铺设的管道,则所需管道最短的是()7. 如图,点P,Q在直线AB外,在点O沿着直线AB从左往右运动的过程中,形成无数个三角形:△O1PQ,△O2PQ,…,△O n PQ,在这样的运动变化过程中,这些三角形的周长()A.不断变大B.不断变小C.先变小再变大D.先变大再变小8. 如图,等腰三角形ABC的底边BC的长为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.149. 如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ANM的度数为 ()A.80°B.90°C.100°D.130°10. 如图,在△ABC中,AB=BC,点D在AC上,BD=6 cm,E,F分别是AB,BC边上的动点,△DEF周长的最小值为6 cm,则∠ABC的度数为()A.20°B.25°C.30°D.35°二、作图题11. 在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短的点P,直接写出点P的坐标.12. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.13. 河岸l同侧的两个居民小区A,B到河岸的距离分别为a米,b米(即图①中所示,AA′=a米,BB′=b米),A′B′=c米.现欲在河岸边建一个长度为s米的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图②中画出绿化带的位置,并写出画图过程.14. 如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为他设计一条最短的路线,标明放羊与饮水的位置.15. 如图,已知牧马营地在点M处,每天牧马人要赶着马群到河边饮水.(1)求到河边饮水的最短路线;(2)如果饮完水后,需再到草地吃草,然后回到营地,试设计出最短的牧马路线.三、解答题16. 如图,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分线.(1)如图①,若E是AC边上的一个定.点,在CD上找一点P,使P A+PE的值最小;(2)如图②,若E是AC边上的一个动.点,在CD上找一点P,使P A+PE的值最小,并求出这个最小值.17. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级数学上册13.4 课题学习最短路径同步培优-答案一、选择题1. 【答案】A2. 【答案】A[解析] ∵直线m垂直平分AB,∴B,C关于直线m对称.设直线m交AB于点D,∴当点P和点D重合时,AP+CP的值最小,最小值等于AB 的长,∴△APC的周长的最小值是6+4=10.3. 【答案】D4. 【答案】B[解析] 如图,分别作点A关于BC,DC的对称点A1,A2,连接A1A2交BC于点M,交DC于点N,则此时△AMN的周长最小.∵∠A1AA2=120°,∴∠A1+∠A2=60°.∵MA=MA1,NA=NA2,∴∠AMN+∠ANM=2(∠A1+∠A2)=2×60°=120°.5. 【答案】C[解析] 如图,作PP′垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于点N,将P′N沿竖直方向向上平移河宽个单位长度,得到PM,PM-MN-NQ即所求.根据“两点之间,线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.6. 【答案】D7. 【答案】C[解析] 如图,作点P关于直线AB的对称点P',连接P'Q交直线AB于点O.∵两点之间线段最短,且PQ的长为定值,∴当点O运动到此点时三角形的周长最短.∴这些三角形的周长先变小再变大.8. 【答案】D[解析] 如图,连接AD,MA.∵△ABC是等腰三角形,D是底边BC的中点,∴AD⊥BC.∴S=BC·AD=×4AD=24,△ABC解得AD=12.∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC.∴MC+DM=MA+DM≥AD.∴AD的长为MC+MD的最小值.∴△CDM的周长的最小值为(MC+MD)+CD=AD+BC=12+×4=14.故选D.9. 【答案】C[解析] 如图,延长AB到点A',使得BA'=BA,延长AD到点A″,使得DA″=AD,连接A'A″与BC,CD分别交于点M,N.∵∠ABC=∠ADC=90°,∴点A,A'关于BC对称,点A,A″关于CD对称,此时△AMN的周长最小.∵BA=BA',MB⊥AB,∴MA=MA'.同理NA=NA″.∴∠A'=∠MAB,∠A″=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A',∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A'+∠A″).∵∠BAD=130°,∴∠A'+∠A″=180°-∠BAD=50°.∴∠AMN+∠ANM=2×50°=100°.10. 【答案】C[解析] 如图,将△ABD和△DBC分别沿着AB和BC向外翻折,得△ABG和△HBC,连接GH,分别交AB,BC于点E,F,此时△DEF的周长最小,即为GH的长,∴GH=6 cm.∵BD=6 cm,∴BG=BH=BD=6 cm=GH.∴△BGH是等边三角形.∴∠GBH=60°.∴2∠ABD+2∠DBC=60°.∴∠ABD+∠DBC=30°.∴∠ABC=30°.故选C.二、作图题11. 【答案】解:(1)如图所示.(2)△A′B′C′如图所示,点B′的坐标为(2,1).(3)如图所示,点P的坐标为(-1,0).12. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.13. 【答案】解:如图,作线段AP∥l,使AP=s,且点P在点A右侧,取点P关于l的对称点P′,连接BP′交l于点D,在l上点D左侧截取DC=s,则CD即为所求绿化带的位置.14. 【答案】解:如图,作点A关于l1的对称点E,作点B关于l2的对称点F,连接EF,分别交l1,l2于点C,D,则折线ACDB是所求的最短路线.15. 【答案】解:把河流抽象成直线a,把草地抽象成直线b.(1)如图①,过点M作MP⊥直线a于点P,则MP即为最短路线.(2)如图②,分别作点M关于直线a,b的对称点A,B,连接AB与直线a,b分别交于点C,D,则最短的牧马路线为M→C→D→M.三、解答题16. 【答案】解:(1)如图①,过点D作DF⊥BC于点F,连接EF交CD于点P,点P即为所求.(2)如图②,过点D作DF⊥BC于点F,过点F作FE⊥AC交CD于点P,则此时PA+PE的值最小,PA+PE的最小值为线段EF的长.∵CD是角平分线,∠BAC=∠DFC=90°,∴DA=DF.又∵DC=DC,∴Rt△ADC≌Rt△FDC. ∴CF=AC=10.∵∠ACB=30°,∴EF=12CF=5,即PA+PE的最小值为5.17. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.。
一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③2.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个3.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .54.如图,ABC 中,45ABC ︒∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H ,交BE 于G ,下列结论:①BD CD =;②AE BG =;③2CE BF =;④AD CF BD +=.其中正确的有( )A .4个B .3个C .2个D .1个5.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒6.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 7.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A.30°B.60°C.50°D.55°8.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=()A.22017B.22018C.22019D.220209.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有()A.1个B.2个C.3个D.4个10.如图,AC AD=,BC BD=,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.CD平分ACB∠D.AB垂直平分CD11.如图,在Rt ABC中,∠BAC=90°,以点A为圆心,以AB长为半径作弧交BC于点D,再分别以点B,D为圆心,以大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,如果AB=3,AC=4,那么线段AE的长度是()A .125B .95C .85D .7512.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5二、填空题13.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.14.如图,点D 、E 是ABC 的边BC 上的点,且AED n ∠=︒,::1:3:2CAD DAE BAE ∠∠∠=,若点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,则n =________.15.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为___.16.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________17.如图,在ABC 中,AB AC =,36ABC ∠=︒,DE 是线段AC 的垂直平分线,连接AE ,若BE a =,EC b =,则用含有a ,b 的代数式表示ABC 的周长是______.18.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.19.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .20.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.三、解答题21.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .22.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.23.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点,A C 的坐标分别为()()3,5,0,3.A C -(1)请在如图所示的网格内作出平面直角坐标系并作出ABC ∆关于y 轴对称的111A B C ∆ (2)写出点1B 的坐标并求出111A B C ∆的面积.25.已知:(0,1),(2,0),(4,4)A B C -.(1)在图中所示的坐标系中描出各点,画出ABC ,并求ABC 的面积.(2)若ABC 各顶点的横坐标不变,纵坐标都乘以1-,在同一坐标系中描出对应的点A ',B ',C ',并依次连结这三个点得A B C ''',并写出ABC 与A B C '''有怎样的位置关系?26.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt △ABC 的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC 的角平分线CD 交AB 于点D ;(2)画AB 边的垂直平分线l 交直线CD 于点P .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.C解析:C【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【详解】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,②正确;∴BD=2CD,③正确;根据已知不能推出CD=DE,故④错误;故选:C.【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.3.C解析:C【分析】以O为圆心,AO长为半径画圆可得与x轴有2个交点,再以A为圆心,AO长为半径画圆可得与x轴有1个交点,然后再作AO的垂直平分线可得与x轴有1个交点.【详解】解:如图所示:点P在x轴上,且使△AOP为等腰三角形,符合题意的点P的个数共4个,故选:C.【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.4.B解析:B【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用ASA判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故②错误.在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC.在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,∴CE =12AC =12BF , ∴2CE =BF ;故③正确;由③可得△DFB ≌△DAC .∴BF =AC ;DF =AD .∵CD =CF +DF ,∴AD +CF =BD ;故④正确;故选:B .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.5.A解析:A【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC ,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC 的度数,进而求出∠CDE 的度数.【详解】解:∵OC=CD=DE ,∴∠O=∠ODC ,∠DCE=∠DEC ,∴∠DCE=∠O+∠ODC=2∠ODC ,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°,∴∠CDE=108°-∠ODC=84°.故选:A .【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.6.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式.【详解】解:∵AB AC =,ACE x ∠=,∴ ∠ACB=∠ABC=x+∠BCE ,∵CE DE =,BCD y ∠=∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角,∴∠ABC=∠D+∠BCD ,即 x+∠BCE= y+∠BCE+ y ,即x=2y , ∴()101802y x x =<<︒, 故选:B .【点睛】 本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.7.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.8.B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1,得出a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1=16,进而得出答案.【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.9.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B.【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.10.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵AC AD=,BC BD=,∴AB垂直平分CD,故D正确,A、B错误,OC不平分∠ACB,故C错误,故选:D.【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.11.A解析:A【分析】根据作图过程可得AP是BD的垂直平分线,根据勾股定理可得BC的长,再根据等面积法求出AE的长即可.【详解】解:∵∠BAC=90°,AB=3,AC=4,∴BC5=,根据作图过程可知:AP是BD的垂直平分线,∴BE=DE,AE⊥BD,∴△ABC的面积:12AB•AC=12BC•AE,∴5AE=12,∴AE=125.故选:A.【点睛】本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.12.C解析:C【分析】根据线段的垂直平分线的性质得到DC=DB=6,则∠DCB=∠B,由∠ACB=∠ACD+∠DCB=90°,得∠A+∠B=90°,从而∠A=∠ACD,DA=DC=6,则AB=AD+DB便可求出.【详解】∵EF是线段BC的垂直平分线,DC =6,∴DC=DB=6,∴∠DCB=∠B,又∵∠ACB=∠ACD+∠DCB=90°,∴∠A+∠B=90°,∴∠A=∠ACD,∴DA=DC=6,∴AB=AD+DB=6+6=12.故选:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.二、填空题13.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB ,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.14.80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ∠BEA=∠B 再根据比例关系设根据三角形内角和定理可求得x 再根据三角形外角的性质可得∠AED 【详解】解:∵点D 在边AC 的垂直平分线上点 解析:80【分析】先根据垂直平分线的性质和等边对等角可得∠DAC=∠C ,∠BEA=∠B ,再根据比例关系设,3,2CAD x DAE x BAE x ∠=∠=∠=,根据三角形内角和定理可求得x ,再根据三角形外角的性质可得∠AED .【详解】解:∵点D 在边AC 的垂直平分线上,点E 在边AB 的垂直平分线上,∴AD=CD ,AE=BE ,∴∠DAC=∠C ,∠BAE=∠B ,∵::1:3:2CAD DAE BAE ∠∠∠=,∴设,3,2CAD x DAE x BAE x ∠=∠=∠=,∴,2C x B x ∠=∠=,∵∠B+∠C+∠BAC=180°,∴322180x x x x x ++++=︒,解得20x =︒,∴22480AED BAE B x x x ∠=∠+∠=+==︒,即n=80,故答案为:80.【点睛】本题考查垂直平分线的性质,等边对等角,三角形内角和定理和三角形外角的性质.理解线段垂直平分线上的点到线段两端距离相等是解题关键.15.【分析】根据由沿AD 对称得到进而表示出最后求周长即可【详解】由沿AD 对称得到则E 与C 关于直线AD 对称∴如图连接由题意得∴当P 在BC 边上即D 点时取得最小值12∴周长为最小值为故答案为:20【点睛】本题 解析:【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC ,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC ,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.16.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.17.【分析】根据等腰三角形的性质∠BAC=108°由线段垂直平分线的性质可得AE=CE∠EAD=∠ECD=36°进而根据角的和差可得∠BAE=∠BEA进而可得BA=BE =AC然后问题可求解【详解】∵AB+解析:3a b【分析】根据等腰三角形的性质∠BAC=108°,由线段垂直平分线的性质可得AE=CE,∠EAD=∠ECD=36°,进而根据角的和差可得∠BAE=∠BEA,进而可得BA=BE=AC然后问题可求解.【详解】∵AB=AC,∠ABC=36°,∴∠C=∠ABC=36°,∠BAC=108°,∵DE是AC的垂直平分线,∴AE=CE,∴∠EAD=∠ECD=36°,∴∠AEC=108°=∠BAC,∴∠BAE=∠BAC-∠CAE=108°-36°=72°∵∠BEA=180°-∠AEC=180°-108°=72°即∠BAE=∠BEA∴BA=BE∵BE a=,EC b=,∴BA=BE=AC=a∴△ABC的周长=AB+BE+EC+AC=3a+b故答案为:3a+b.【点睛】本题主要考查垂直平分线的性质定理及等腰三角形的性质与判定,熟练掌握垂直平分线的性质定理及等腰三角形的性质与判定是解题的关键.18.【分析】根据等腰三角形两底角相等用α表示出∠A2B2O依此类推即可得到结论【详解】解:∵B1A2=B1B2∠A1B1O=α∴∠A2B2Oα同理∠A3B3O∠A2B2Oα∠A4B4Oα∴∠AnBnOα解析:512α. 【分析】 根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论.【详解】解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 【点睛】 本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.19.6【分析】先求得∠ABD=∠CBD=30°进而得AD=BD 设AD=BD=x(cm)列出关于x 的方程即可求解【详解】∵在中∴∠ABC=60°∵BD 平分∴∠ABD=∠CBD=30°∴∠ABD=∠A ∴AD解析:6【分析】先求得∠ABD=∠CBD=30°,进而得AD=BD ,设AD=BD=x(cm),列出关于x 的方程,即可求解.【详解】∵在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,∴∠ABC=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=30°,∴∠ABD=∠A ,∴AD=BD ,设AD=BD=x(cm),∵AC=9cm ,∴CD=(9-x)cm ,∴912x x -=,即:x=6, ∴AD =6.故答案是:6【点睛】 本题主要考查等腰三角形的判定定理以及含30°角的直角三角形的性质,熟练掌握“直角三角形中,30°角所对的直角边是斜边的一半”是解题的关键.20.15【分析】如图在Rt △ABC 中∠ABC =30°由此即可得到AB =2AC 而根据题意找到CA =5米由此即可求出AB 也就可以求出大树在折断前的高度【详解】如图在Rt △ABC 中∵∠ABC =30°∴AB =2解析:15【分析】如图,在Rt △ABC 中,∠ABC =30°,由此即可得到AB =2AC ,而根据题意找到CA =5米,由此即可求出AB ,也就可以求出大树在折断前的高度.【详解】如图,在Rt △ABC 中,∵∠ABC =30°,∴AB =2AC ,∵CA =5米,∴AB =10米,∴AB +AC =15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.三、解答题21.(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.22.(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 23.(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.24.(1)见解析;(2)()11,1B ;面积4【分析】(1)根据A ,C 两点的坐标确定坐标系,分别作出A ,B ,C 关于y 轴对称的对应点A 1,B 1,C 1′即可;(2)由平面直角坐标系可得B 1的坐标,运用分割法可得111A B C ∆的面积.【详解】解:(1)如图所示,(2)点1B 的坐标为(1,1)111A B C ∆的面积=11134122324222⨯-⨯⨯-⨯⨯-⨯⨯ =12-1-3-4=4【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.25.(1)图见解析,3;(2)ABC与A B C'''关于x轴对称【分析】(1)根据点坐标确定其在坐标系中的位置,顺次连线即可得到ABC,利用割补法求面积;(2)根据点A、B、C纵坐标都乘以1-,得到对应的点A',B',C'的坐标,再确定各点位置,即可得到两个三角形的关系.【详解】(1)如图,ABC即为所求,111451245(15)23222ABCS=⨯-⨯⨯-⨯⨯-⨯+⨯=;(2)∵(0,1),(2,0),(4,4)A B C-,∴A'(0,-1),B'(2,0),C'(4,4),∴ABC与A B C'''关于x轴对称..【点睛】此题考查点坐标的确定,坐标与图形,图形的变换关系,正确根据点的坐标确定其在直角坐标系中的位置是解题的关键.26.(1)见解析;(2)见解析【分析】(1)取格点T,连接CT交AB于点D,线段CD即为所求.(2)取格点G,R,作直线GR交直线CT于点P,点P即为所求.【详解】解:(1)如图,线段CD即为所求.(2)如图,直线l即为所求.【点睛】本题考查作图的应用与设计,线段的垂直平分线,角平分线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
轴对称章末检测卷题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.下面四个图案中,是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)3.下列语句:①角的对称轴是角的平分线;②两个成轴对称的图形的对应点一定在对称轴的两侧;③一个轴对称图形不一定只有一条对称轴;④两个能全等的图形一定能关于某条直线对称,其中正确的个数有()A.1 B.2 C.3 D.44.如图,点A的坐标(﹣1,2),则点A关于y轴的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)5.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l46.如图,∠AOB=120°,OP平分∠AOB,且OP=10.若点M,N分别在射线OA,OB上,且△PMN是边长为整数的等边三角形,则满足上述条件的点M有(参考数据:)()A.4个以上B.4个C.3个D.2个7.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()个.A.3个B.4个C.5个D.6个8.如图,在四边形ABCD中,DA⊥AB.DA=6cm,∠B+∠C=150°.CD与BA的延长线交于E 点,A刚好是EB中点,P、Q分别是线段CE、BE上的动点,则BP+PQ最小值是()A.12 B.15 C.16 D.189.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为()A.6B.12C.32D.6410.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20 B.26 C.32 D.3611.如图.已知△ABC.∠ACB=30°,CP为∠ACB的平分线,且CP=6,点M、N分别是边AC 和BC上的动点,则△PMN周长的最小值为()A.4 B.6 C.6D.1012.△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+第Ⅱ卷(非选择题)二.填空题(共4小题)13.如图所示,在△ABC中,∠B=∠C,D是BC上一点,E是AC上一点,连接AD、DE,若∠ADE=∠AED,∠EDC=15°,则∠BAD=.14.如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为.15.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为.16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D.若AC=4,CD=1,E是AC的中点,P是AD上的一个动点,则PC+PE的最小值为.三.解答题(共7小题)17.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出项点A1、B1、C1的坐标.(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a,b的值.18.如图,在△ABC中,AD平分∠BAC交BC于点D,过点D作DE∥AB交AC于点E.求证:AE=DE.19.小烨在探究数轴上两点间距离时发现:若A,B两点在x轴上或与x轴平行,A,B两点的横坐标分别为x1,x2,则A,B两点间距离为|AB|=|x2﹣x1|;若A,B两点在y轴上或与y轴平行,A,B两点的纵坐标分别为y1,y2,则A,B两点间距离为|AB|=|y2﹣y1|.据此,小烨猜想:对于平面内任意两点P1(x1,y1),P2(x2,y2),P1,P2两点间的距离为|P1P2|=.(1)请你利用右图,试证明:|P1P2|=;(2)若A(﹣1,1),B(2,3),试在x轴上求一点M,使|MA|+|MB|的距离最短,并求出|MA|+|MB|的最小值和M点坐标.20.已知,在△ABC中,AB=AC=5,AD平分∠BAC,点M是AC的中点,在AD上取点E,使得DE=AM,EM与DC的延长线交于点F.(1)当∠BAC=90°时,①求AE的长;②求∠F的大小.(2)当∠BAC≠90°时,探究∠F与∠BAC的数量关系.21.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.22.关于确定线段之和最小值问题,我们已经知道:当直线l的同侧有A、B两点,在直线l上确定一点P,使PA+PB的值最小时,只要作出点A关于直线l的对称点A′,连接A′B,A′B 与直线l的交点即为所求的点P(如图1所示).解决问题:如图2,已知:在平面直角坐标系中,A(2,7)、B(4,1),请你在坐标轴上确定两点C、D,使AC+CD+DB的值最小.(1)叙述作图过程,保留作图痕迹,不说作图依据;(2)求AC+CD+DB的最小值.23.如图①,在等腰△ABC中,底边BC上有任意一点,过点P作PE⊥AC,PD⊥AB,垂足为D、E,再过C作CF⊥AB于点F;(1)求证:PD+PE=CF;(2)若点P在BC的延长线上,如图②,则PE、PD、CF之间存在什么样的等量关系,请写出你的猜想,并证明.参考答案1.A.2.A.3.A.4.A.5.C.6.B.7.C.8.D.9.C.10.A.11.B.12.C.13.30°.14.a+b.15.(,0).16..17.解:(1)如图所示,△A1B1C1即为所求,A1(2,3)、B1(3,2)、C1(1,1);(2)∵A1(2,3)、C1(1,1)、A2(a,2),C2(﹣2,b),∴将线段A1C1向下平移1个单位、向左平移3个单位后得到线段A2C2,∴a=﹣1、b=0.18.解:∵AD平分∠BAC交BC于点D,∴∠BAD=∠EAD,∵DE∥AB,∴∠BAD=∠ADE,∴∠EAD=∠ADE,∴AE=DE.19.解:(1)证明:如图所示,从P1、P2分别向x轴和y轴作垂线P1M1,P1N1和P2M2,P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q,在Rt△P1P2Q中,∵|P1Q|=|M1M2|=|x2﹣x1|,|P2Q|=|N1N2|=|y2﹣y1|,∴==,∴;(2)∵作点A(﹣1,1)关于x轴的对称点A1(﹣1,﹣1),连接A1B,A1(﹣1,﹣1)与B(2,3)两点间的距离即为所求的最小值,直线A1B与x轴的交点为所求的M点,∴|MA|+|MB|=,设直线A1B的解析式为y=kx+b,则依题意得,解得:,∴直线A1B的解析式为,令y=0得:∴|MA|+|MB|的最小值为5,M点坐标为.20.解:(1)当∠BAC=90°时,①AE=AD﹣DE=AB﹣DE=﹣;②连接DM.∵AB=AC,∠BAC=90°,AD平分∠BAC,∴AD⊥BC,AD=DC.∵点M是AC的中点,∴DM=MC=AM=DE,DM⊥AC,∴∠MDC=∠MDE=45°,∴∠DEM=(180°﹣45°)=67.5°,∴∠F=90°﹣67.5°=22.5°;(2)当∠BAC≠90°时,∠BAC=4∠F.理由如下:∵AB=AC,AD平分∠BAC,∴∠ADC=90°.设∠BAC=4x,则∠DAC=2x.∵点M是AC的中点,∴DM=MC=AM=DE,∴∠ADM=∠DAC=2x,∴∠DEM=(180°﹣2x)=90°﹣x,∴∠F=90°﹣DEM=90°﹣(90°﹣x)=x,∴∠BAC=4∠F.21.解:∵AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点G,∴EA=EB,GB=GC,∵∠ABC=110°,∴∠A+∠C=70°,∵EA=EB,GB=GC,∴∠ABE=∠A,∠GBC=∠C,∴∠ABE+∠GBC=70°,∴∠EBG=110°﹣70°=40°,在四边形BDHF中,∵∠ABC=110°、∠HDB=∠HFB=90°,∴∠DHF=360°﹣∠ABC﹣∠HDB﹣∠HFB=70°.22.解:(1)作点A关于y轴的对称点A′,点B关于x轴的对称点B′,连接A′B′,分别交于y轴、x轴于C、D两点,连接AC、DB,则C、D两点即为所求,如图所示.(2)过点A′作A′E⊥x轴,过点B′作B′E⊥y轴,两垂线相交于点E,∵A(2,7),B(4,1),∴A′(﹣2,7),B′(4,﹣1),∴E(﹣2,﹣1),∴EA′=7﹣(﹣1)=8,EB′=4﹣(﹣2)=6,在Rt△A′EB′中,根据勾股定理,得A′B′==10.∵A、A′两点关于y轴对称,B、B′两点关于x轴对称,∴AC=A′C,DB=DB′,∴AC+CD+DB=A′C+CD+DB′=A′B′=10,即AC+CD+DB的最小值为10.23.(1)证明:作PM⊥CF,∵PD⊥AB,CF⊥AB,∴∠FDP=∠DFM=∠FMP=90°,∴四边形PDFM是矩形,∴PD=FM.∵PE⊥AC,且PM⊥CF,∴∠PMC=∠CEP=90°,∵AB=AC,∴∠B=∠ACB,∵AB⊥FC,PM⊥FC,∴AB∥PM,∴∠MPC=∠B,∴∠MPC=∠ECP,在△PCM和△CPE中,∵,∴△PCM≌△CPE(AAS),∴CM=PE,∴PD+PE=FM+MC=CF;(2)PD﹣PE=CF;证明如下:作CM⊥PD于M,同(1)得四边形CMDF是矩形,则CF=DM,∴CM∥AB,∴∠MCP=∠B,又∠ACB=∠ECP(对顶角相等),且AB=AC得到∠B=∠ACB,∴∠MCP=∠ECP,又PE⊥AC,CM⊥PD,∴∠PMC=∠PEC=90°,在△PCM和△PCE中,∵,∴△PCM≌△PCE(AAS),∴PM=PE,∴PD﹣PE=PD﹣PM=DM=CF.。
A. B C. D. 人教版八年级数学上册轴对称单元测试题一、选择题1.下列平面图形中;不是..轴对称图形的是2.下列说法正确的是A. 任何一个图形都有对称轴B. 两个全等三角形一定关于某条直线对称C. 点A ;点B 在直线m 两旁;且AB 与直线m 交于点O ;若AO =BO ;则点A 与点B 关于直线m 对称D. 若△ABC 与△DEF 成轴对称;则△ABC ≌△DEF3.在平面直角坐标系中;点A (-3;-2)关于y 轴的对称点的坐标是 A. (-2;3) B. (3;-2) C. (2;-3) D.(-3;-2)4.如右图;△ABC 中;AB=AC ;D 是BC 的中点;则下列结论中不正确...的是 A.∠B=∠C B. AD 平分∠BAC C. AB=2BD D. AD ⊥BC5.等腰三角形是轴对称图形;它的对称轴是 A.过顶点的直线 B.顶角平分线所在的直线 C.底边上的中线 D. 底边上的高6.等腰三角形的一个角是80°;则它的底角是A. 50°B. 80°C. 20°或80°D. 50°或80° 7.如果一个三角形两边的垂直平分线的交点在第三边上;那么这个三角形是A.等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形 8.如右图;屋架设计图的一部分;点D 是斜梁AB 的中点;立柱BC 、DE 垂直于横梁AC ;AB=8m ;∠A=30°;则BC 和DE 的长分别等于A.2m ;2mB. 4m ;2mC.2m ;4mD. 4m ;4m9.已知∠AOB=30°;点P 在∠AOB 内部;P 1与P 关于OB 对称;P 2与P 关于OA 对称;则P 1;O ;P 2三点构成的三角形是A. 等边三角形B.钝角三角形C.等腰三角形D. 直角三角形10.如右图;五角星的五个角都是顶角为36°的等腰三角形;则∠AMB 的度数为A. 144°B.120°C. 108°D. 100°二、填空题(每题3分;共24分)11.等边三角形有________条对称轴; 正方形有________条对称轴; 圆有________条对称轴; 12.点(-5;3)关于x 轴对称的点坐标为__________;关于y 轴对称的点坐标为__________;关于原点对称的点坐标为_____________。
(A ) (B ) (C ) (D )C B E A D图1 轴对称测试题(满分100分 时间45分钟)一、精心选一选(每题4分,满分32分)1.下列图形是轴对称图形的是( )2.下列说法错误的是 ( )(A )关于某条直线对称的两个三角形一定全等 (B )轴对称图形至少有一条对称轴(C )全等三角形一定能关于某条直线对称 (D )角是关于它的平分线对称的图形3.等腰三角形的对称轴的条数为( )(A )1 (B )2或1 (C )3 (D )1或34.如果一个三角形两边的垂直平分线的交点在第三条边上,那么这个三角形是( )(A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )不能确定5.如果等腰三角形的一个外角为135º,那么它的底角为( )(A )45º (B )72º (C )67.5º (D )45º或67.5º6.等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为( )(A )3或5 (B )3或7 (C )3 (D )57.如果一个三角形有两条边相等,且有一内角为60º,那么这个三角形一定为( )(A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )钝角三角形8.如图1,在△ABC 中,AB=AC ,∠A =360,AB 的垂直平分线DE 交 AC 于点D ,交AB 于点E .下列结论:①BD 平分∠ABC ;②AD=BD=BC ;③△BCD 的周长等于AB+BC ;④D 是AC 的中点.其中正确的是( )(A )①②③ (B )②③④ (C )①②④ (D )①③④二、细心填一填(每题4分,满分32分)9.如图2,OE 是∠AOB 的平分线,AC ⊥OB C , BD ⊥OA 于点D ,则关于直线OE 对称的三角形有 对. 10.请写出两个具有轴对称性的汉字 . 11 线段(或延长线)相交,那么交点一定在 .12.已知△ABC 与△A 1B 1C 1关于直线l 对称,且AB =6,BC =3,CA =4,那么B 1C 1= .13.等腰三角形的一个角是60º,其中一边的长为a ,这个三角形的周长为 .14.若等腰三角形的顶角与底角度数的是4倍,则顶角是 º,底角是 º.15.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 .16.为美化小区环境,某小区有一块面积为160m 2的等腰三角形草地,测得其一边长为20m ,现要给这块三角形草地围上白色的低矮栅栏,则栅栏的长度为 m .三、耐心做一做(满分36分)17.(12分)某居民小区响应政府的号召,积极推进“城乡清洁工程”,拟在一块矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数A C D D E图2EDCBA图3的和要求3个以上,多不限),并且使整个矩形场地成轴对称图形.请画出你的设计方案.18.(12分)如图3所示,已知AB=AC,AD平分∠BAC,试说明:∠DBE=∠ECD.19.(12分)如图4,在梯形ABCD中,AD//BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.(1)求∠ABC的度数.(2)试说明:△CAF为等腰三角形.能力提升(满分30分时间30分钟)一、精心选一选(每题4分,满分8分)1.若A、B是同一平面内的两点,则以AB为一边可以作出()个等腰直角三角形(A)3 (B)4 (C)5 (D)62.如图5,△ABC中,∠B=∠C,D在BC上,∠BAD=50º,AD=AE,则∠EDC的度数为()(A)15º(B)25º(C)30º(D)50º二、细心填一填(每题4分,满分8分)3.如图6,等腰梯形ABCD中,AD∥BC,∠B=60º,AD=4,BC=7,,则梯形ABCD 的周长是.4.如图7,△ABC中,AC=BC=2,∠ACB=90º,D是BC边的中点,E是边上一动点,则EC+ED的最小值是____________.ABD CE图5AE图7DCAB图6图4FDC BA三、耐心做一做(满分14分)5.如图8,ABCD 是等腰梯形纸片,AB ∥CD ,AD =BC .翻折纸片ABCD ,使点A 与点C 重合,折痕为EF .已知CE ⊥AB .试说明:EF ∥BD .新题推荐(满分20分 时间15分钟)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE . (1)如图9-1,当点D 在线段BC 上,如果∠BAC =90º,则∠BCE = 度.(2)设∠BAC =α,∠BCE =β.①如图9-2,当点D 在线段BC 上移动,则α、β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α、β之间有怎样的数量关系?请直接写出你的结论.A E CB 图9-1 E AC D B 图9-2参考答案:基础巩固一、1.A 2.C 3.D 4.C 5.D 6.C 7.A 8.A二、9.4 10.甲、由、中、田、日等 11.对称轴上 12.3 13.3a 14.120, 30 15.29 16.20+40+40+18以∠EBC =∠ECB ,∠DBC =∠DCB ,所以∠EBC -∠DBC =∠ECB -∠DCB ,即∠DBE =∠ECD .19.(1)因为AD //BC ,所以∠DAC =∠ACB .因为AD =DC ,所以∠DCA =∠DAC .所以∠DCA =∠ACB =21∠DCB .因为DC = AB ,所以∠DCB =∠ABC ,所以∠ACB =21∠ABC .在△ACB 中,因为AC ⊥AB ,所以∠CAB =90º.所以∠ACB +∠ABC =90º,所以21∠ABC +∠ABC =90º,所以∠ABC =60º.(2)连接DB .因为在梯形ABCD 中,AB =DC ,所以AC =DB .在四边形DBF A 中,DA //BF ,DA =DC =BF ,所以四边形DBF A 是平行四边形,所以DB =AF ,所以AC =AF ,即△CAF 为等腰三角形.能力提升一、1.D 2.B二、3.17 4三、5.将等腰梯形ABCD 的对角线BD 沿DC 则BD =CH .因为AD =BC ,所以AC =BD =CH ,所以∠CAH = ∠CHA =∠DBA .因为CE ⊥AB ,∠CAE =∠ACE ,所以∠CAH=∠ACE =∠CHA =∠DBA =45º.因为∠AEF =∠CEF ,CE ⊥AB 所以∠AEF =∠CEF =45º,所以∠DBA =∠AEF =45º.所以EF 新题推荐(1)90º.(2)①α+β=180º.理由:因为∠BAC =∠DAE ,所以∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .又AB =AC ,AD =AE ,所以△ABD ≌△ACE .所以∠B =∠ACE .所以∠B +∠ACB =∠ACE +∠ACB ,所以∠B +∠ACB =β.因为α+∠B +∠ACB =180º,所以α+β=180º.②当点D 在射线BC 上时,α+β=180º.当点D 在射线BC 的反向延长线上时,α=β.人教版数学八年级上册《轴对称》单元测试题一、选择题(15题,每题2分,满分30分)1. (2020天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.2. (2020山西)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.3. (2020齐齐哈尔)((3分)下面四个化学仪器示意图中,是轴对称图形的是()A.B.C.D.4. (2020·青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( ) A.55°,55° B.70°,40°或70°,55°C.70°,40° D.55°,55°或70°,40°5. (2020·毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或106. (2020四川绵阳)如图1是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条 B. 4条 C. 6条 D.8条7.(2020哈尔滨)如图2,在Rt ABC ∆中,90BAC ∠=︒,50B ∠=︒,AD BC ⊥,垂足为D ,ADB ∆与ADB '∆关于直线AD 对称,点B 的对称点是点B ',则CAB '∠的度数为( )A .10︒B .20︒C .30︒D .40︒8.(2020成都)如图3,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若6AC =,2AD =,则BD 的长为 ( )A .2B .3C .4D .69.(2020山东枣庄)如图4,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连接AE .若6BC =,5AC =,则ACE ∆的周长为 ( )A .8B .11C .16D .1710.(2020·福建)如图5,AD 是等腰三角形ABC 的顶角平分线,BD=5,则CD 等于( )A.10B.5C.4D.311.(2020·南充)如图6,在等腰三角形ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD= ()A.2ba+B.2ba-C.a-bD.b-a12.(2020·济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里13.(2020·聊城)如图7,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°14.(2020·玉林)如图8,A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020·宜宾)如图9,△ABC 和△ECD 都是等边三角形,且点B 、C 、D 在一条直线上,连结BE 、AD ,点M 、N 分别是线段BE 、AD 上的两点,且BM =13BE ,AN =13AD ,则△CMN 的形状是 ( )A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形二、填空题(每题2分,满分10分)16. (2020·齐齐哈尔)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长 是 .17. (2020南京)如图10,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠= .18. (2020·宜昌)如图11,在一个池塘两旁有一条笔直小路(B ,C 为小路端点)和一棵 小树(A 为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米, 则AC= 米.19. (2020·常州)如图12,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=________°.20.(2020青海)如图13,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=cm.三、解答题(满分60分)21.(2020浙江宁波)(8分)图14是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形.22.(2020·广东)(8分)如图15所示,在△ ABC中,点D、E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.23. (8分)如图16,在直角三角形ABC中,∠ACB=90°, ∠B=30°,CD⊥AB,垂足为D,DE⊥AC,垂足为E.猜想AE与AB有怎样的数量关系?证明你的猜想.24.(2020·绍兴)(12分)问题:如图17,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.25.(12分)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图18,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图19,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.26. (12分)(1)如图20,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.则AB,AD,DC之间的等量关系;(2)问题探究:如图21,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案:人教版数学八年级上册《轴对称》单元测试题一、选择题1. C2. D3. D4. D5. B6. B7.A8.C9.B10.B11.C12.C13. B14. A15.C二、填空题(每题2分,满分10分)16. 解:10或11.17. 解:78 .18.解:4819. 解:30°20.解:10cm.三、解答题21.解:轴对称图形如图所示.22.证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴ AB=AC.∴△ ABC是等腰三角形.23. 解:AE=18AB.理由如下:在直角三角形ABC中,∠B=30°,所以AC=12AB.在直角三角形ACD中,∠ACD=30°,所以AD=12 AC.在直角三角形ADE中,∠ADE=30°,所以AE=12AD. 所以AE=12(12AC)=12×12×(12AB).所以AE=18 AB.24. 解:(1)∠DAC的度数不会改变,理由如下:∵EA=EC,∴∠CAE=∠C,∴∠AED=2∠C,①∵∠BAE=90°,∴∠BAD=12[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②, 由①,②得,∠DAC=∠DAE+∠CAE=45°.(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°﹣12m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+12m°,∵EA=EC,∴∠CAE=12∠AEB=90°﹣12n°﹣12m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°﹣12n°﹣12m°=12n°.25.证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC =60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.26. 解:(1)AD=AB+DC.理由如下:因为AE是∠BAD的平分线,所以∠DAE=∠BAE,因为AB∥CD,所以∠F=∠BAE,所以∠DAF=∠F,所以AD=DF,因为点E是BC的中点,所以CE=BE,且∠F=∠BAE,∠AEB=∠CEF,所以△CEF≌△BEA(AAS),所以AB=CF,所以AD=CD+CF=CD+AB.(2)AB=AF+CF.理由如下:如图,延长AE交DF的延长线于点G,因为E是BC的中点,所以CE=BE,因为AB∥DC,所以∠BAE=∠G.且BE=CE,∠AEB=∠GEC,所以△AEB≌△GEC(AAS),所以AB=GC,因为AE是∠BAF的平分线,所以∠BAG=∠FAG,因为∠BAG=∠G,所以∠FAG=∠G,所以FA=FG,因为CG=CF+FG,所以AB=AF+CF.。
八年级数学上册《轴对称》专项测试卷及答案-人教版(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列交通标志是轴对称图形的是( )A.B.C.D.2.如图,△ABD与△AEC都是等边三角形AB≠AC.下列结论中,正确的个数是( )①BE=CD;②∠BOC=60∘;③∠BDO=∠CEO;④若∠BAC=90∘,且DA∥BC,则BC⊥CE.A.1B.2C.3D.43.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE= CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是( )A.1个B.2个C.3个D.4个4. ∠BAC的平分线与BC的垂直平分线相较于点D,ED⊥AB于点E,AB=11,AC= 5,则BE的长为( )A.3B.4C.5D.65.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点D,且另三个锐角顶点A,B,C在同一直线上,若AD=2则AB的长是()A.√3−√2B.√2−1C.0.5D.√3−1 6.下列命题正确的是()A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形7.如图,在矩形ABCD中AB=6,BC=8,过矩形的对称中心O的直线EF,分别与AD、BC交于点E、F且FC=2.若H为OE的中点,连接BH并延长,与AD交于点G,则BG的长为()A.8B.√61C.3√5D.2√13 8.一副三角形板如图放置,DE∥BC,∠C=∠DBE=90°,∠E=45°,∠A=30°则∠ABD的度数为()A.5∘B.15∘C.20∘D.25∘二、填空题(共5题,共15分)9.若点A(a,4)和B(3,b)关于x轴对称,则ab=.10.等腰三角形一腰上的高与另一腰的夹角为30∘,腰长为6,则其底边上的高是.11.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点Aʹ的坐标为.12.若点A(6,−5)关于y轴的对称点是B(m,−5),则m=.13.若等腰三角形的一个角等于120∘,则它的底角为.三、解答题(共3题,共45分)14.如图,在△ABC中AB=AC,∠A=36∘,DE是AC的垂直平分线.(1) 求证:△BCD是等腰三角形.(2) △BCD的周长是a,BC=b求△ACD的周长(用含a,b的代数式表示)15.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1) 如图,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系.(2) 如图,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.16.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1) 如图1,若点O在边BC上,求证:AB=AC;(2) 如图2,若点O在△ABC的内部,求证:AB=AC;(3) 若点O在△ABC的外部,AB=AC成立吗?请画出图表示.参考答案1. 【答案】C2. 【答案】B3. 【答案】D4. 【答案】A5.【答案】D6.【答案】C7.【答案】D8.【答案】B9. 【答案】−1210. 【答案】3或3√311. 【答案】(2,−2√3)12. 【答案】−613. 【答案】30∘14. 【答案】(1) ∵AB=AC,∠A=36∘∴∠B=∠ACB=180∘−∠A2=72∘∵DE是AC的垂直平分线∴AD=DC∴∠ACD =∠A =36∘∵∠CDB 是 △ADC 的外角∴∠CDB =∠ACD +∠A =72∘∴∠B =∠CDB∴CB =CD∴△BCD 是等腰三角形.(2) ∵AD =CD =CB =b ,△BCD 的周长是 a∴AB =a −b∵AB =AC∴AC =a −b∴△ACD 的周长=AC +AD +CD=a −b +b +b =a +b.15. 【答案】(1) ∠BAD =∠CAE .(2) ∠DCE =60∘,不发生变化;理由如下:∵△ABC 是等边三角形,△ADE 是等边三角形∴∠DAE =∠BAC =∠ABC =∠ACB =60∘AB =AC ,AD =AE∴∠ABD =120∘,∠BAC −∠BAE =∠DAE −∠BAE∴∠DAB =∠CAE .在 △ABD 和 △ACE 中{AB =AE,∠DAB =∠CAE,AB =AC,∴△ABD ≌△ACE (SAS )∴∠ACE =∠ABD =120∘.∴∠DCE =∠ACE −∠ACB =120∘−60∘=60∘.16. 【答案】(1) 过点 O 分别作 OE ⊥AB 于 E ,OF ⊥AC 于 F由题意知在 Rt △OEB 和 Rt △OFC 中{OB =OC,OE =OF,∴Rt △OEB ≌Rt △OFC (HL )∴∠ABC =∠ACB∴AB =AC .(2) 过点 O 分别作 OE ⊥AB 于 E ,OF ⊥AC 于 F .由题意知OE =OF ,∠BEO =∠CFO =90∘∵ 在 Rt △OEB 和 Rt △OFC 中{OB =OC,OE =OF,∴Rt △OEB ≌Rt △OFC (HL )∴∠OBE =∠OCF又 ∵OB =OC∴∠OBC =∠OCB∴∠ABC =∠ACB∴AB =AC .(3) 不一定成立,当 ∠A 的平分线所在直线与边 BC 的垂直平分线重合时 AB =AC ,否则 AB ≠AC .示例图略。
13、1 轴对称
基础巩固
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()
2。
下列说法中错误的是( )
A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B.关于某条直线对称的两个图形全等
C.全等的三角形一定关于某条直线对称
D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称
3.如图,△ABC中,AB=AC=6,BC=4、5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是__________。
4。
如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E、若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________。
能力提升
5.我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.
6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是( )
7.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲)。
结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是()
A.对应点连线与对称轴垂直
B.对应点连线被对称轴平分
C.对应点连线被对称轴垂直平分
D.对应点连线互相平行
8。
如图,P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,且与AO,BO相交于点E,F,若△PEF的周长为15,求MN的长.
9。
如图①,将一张正六边形纸沿虚线对折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图②、
图①
图②
(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
10.如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC 的延长线于点F、
(2)AB=BC+AD、
参考答案
1.A 点拨:只有A 图能沿中间竖直的一条直线折叠,左右两边能够重合,故选A 、
2.C 点拨:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C 、
3。
10、5 点拨:先判定出D 在AB 的垂直平分线上,再根据线段垂直平分线上的点到线段两端点的距离相等可得BD =AD ,再求出△BCD 的周长=AC +BC ,然后代入数据进行计算即可得解。
4.6 点拨:由△ABC 与四边形AEDC 的周长之差为12,可知BE +BD -DE =12,① 由△EDC 的周长为24可知CE +CD +DE =24,
由DE 是BC 边上的垂直平分线可知BE =CE ,BD =CD ,
所以BE +BD +DE =24,②
②-①,得2DE =12,
所以DE =6、
5。
D 点拨:都是轴对称图形,但图案D 有两条对称轴,其余三个图案都只有一条对称轴。
6.D 点拨:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形",从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D 适合,故选D 、
7。
B 点拨:因为对称且平移,所以原有的性质已有变化,A ,C ,D 都已不成立,只有B 选项正确,故选B 、
8.解:∵点M 是点P 关于AO 的对称点,
∴AO 垂直平分MP ,
∴EP =EM 、
同理PF =FN 、
∵MN =ME +EF +FN ,
∴MN =EP +EF +PF 、
∵△PEF 的周长为15,
∴MN =EP +EF +PF =15、
9。
解:(1)轴对称图形.
(2)这个图形至少有3条对称轴。
(3)取一张正十边形的纸,沿它通过中心的五条对角线折叠五次,
得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.
10.证明:(1)∵AD ∥BC (已知),
∴∠ADC =∠ECF (两直线平行,内错角相等)。
∵E 是CD 的中点(已知),
∴DE =EC (中点的定义).
∵在△ADE 与△FCE 中,
,,
,ADC ECF DE EC AED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ADE ≌△FCE (ASA ).
∴FC =AD (全等三角形的性质).
(2)∵△ADE ≌△FCE ,
∴AE=EF,AD=CF(全等三角形的对应边相等)。
∴BE是线段AF的垂直平分线.
∴AB=BF=BC+CF、
∵AD=CF(已证),
∴AB=BC+AD(等量代换)。