数学模型姜启源-第二章(第五版)电子教案
- 格式:ppt
- 大小:2.82 MB
- 文档页数:102
数学模型(姜启源第三版第⼆章)1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在宿舍,432⼈住在,学⽣梦要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩树部分较⼤者。
(2)节中的Q值⽅法。
(3)⽅法:将A,B,C各宿舍的⼈数⽤正整数相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种⽅法的道理吗。
如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法两次分配的结果列表⽐较。
(4)你能提出其它⽅法吗。
⽤你的⽅法分配上⾯的名额。
2.⽤微积分的⽅法导出节的公式(2)。
3.在节中考虑8⼈艇分重量级组(桨⼿体重不超过86kg)和轻量级组(桨⼿体重不超过73kg,建⽴模型说明重量级组的成绩⽐轻量级组⼤约好5%。
4.⽤节实物交换模型中介绍的⽆差别曲线的概率,讨论以下雇员和雇主之间的协议关系:(1)以雇员⼀天的⼯作时间t和⼯资ω分别为横坐标和纵坐标,画出雇员⽆差别曲线族的⽰意图。
解释曲线为什么是你画的那种形状。
(2)如果雇主付计时⼯资,对不同的⼯资率(单位时间的⼯资)画出计时⼯资线族。
根据雇员的⽆差别曲线族和雇主的计时⼯资线族,讨论双⽅将在怎样的⼀条曲线上达成协议。
(3)雇员和雇主已经达成了⼀个协议(⼯作时间1t和⼯资1ω).如果雇主想使雇员的⼯作时间增加到2t,他有两种⽅法:⼀是提⾼计时⼯资率,在协议线的另⼀点(2t,2ω)达成新的协议;⼆是实⾏超t t-付给更⾼的超时时⼯资制,即对⼯时1t仍付原计时⼯资,对⼯时21⼯资。
试⽤作图⽅法分析哪种办法对雇主更有利,指出这个结果的条件.5.在节核武器竞赛模型中,证明由(6)式表⽰的⼄安全线=的性质。
()y f x6.在节核武器竞赛模型中,讨论以下因素引起的平衡点的变化:(1)甲⽅提⾼导弹导航系统的性能。
《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
新疆财经大学教案任课教师:课程名称:任课班级:学院教研室:二○—二○学年第学期课程教案概貌注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
注:1. 一单元为2—3个标准学时2. 教学设计指在2—3个标准学时内教学活动的组织过程(含内容及时间安排)。
3. 单元小结为课后手写;初级职称教师为必选项,中级以上(含)为非必选项。
《数学模型》课程教学大纲课程编码:ZB0240121课程类别:专业核心必修适用专业及层次:信息与计算科学(本科)学分:4理论学时:48实践学时:32先修课程:数学分析,高等代数,数学实验,概率论等。
一、课程的性质、目的和任务本课程是信息与计算科学专业(本科)的一门专业核心必修课.也是学生参加数学建模竞赛的基础课程.数学模型是一门重要的数学技术课,目标在于培养学生利用数学知识及相关专业知识建立数学模型分析、解决实际问题的能力,并从中培养和提高学生的创新意识、创新能力及综合应用能力.设置该课程的目的是要向学生介绍数学模型的数学理论和方法,使学生了解并初步掌握应用所学的数学知识建立数学模型的基本方法和基本过程,从而培养学生应用数学的思维、知识、方法解决实际问题的意识和能力.二、课程教学的基本要求通过本课程的学习(课堂讲授、上机实习和作业),应达到目的和要求如下:1、培养学生运用数学工具解决现实生活中实际问题的能力。
2、用数学方法解决问题的能力以及用自己的研究结果解释、指导实际问题的能力,从无到有的创新能力以及写作能力。
3、通过本课程的学习,使学生了解数学建模是利用数学知识构造刻画客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。
掌握数学建模的基本步骤,即从实际问题出发,遵循“实践一一认识一一实践”的辩证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。
会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。
三、课程教学内容第一章线性规划【授课学时】2【教学内容】第一节线性规划问题第二节投资的收益和风险【教学要求】通过本章学习,掌握求解线性规划问题的方法和一般步骤、投资的收益和风险.【教学重难点】建立数学规划的步骤,常见处理约束条件的方法技巧。
第二章整数规划【授课学时】2【教学内容】第一节概论第二节0-1型整数规划第三节蒙特卡洛法【教学要求】通过本章学习,掌握整形规划和线性规划的区别和联系、整形规划问题的类型和常用的求解方法.【教学重难点】常见处理约束条件的方法技巧,整形规划问题的计算机求解。