纳米氧化锌的开发与应用
- 格式:pdf
- 大小:546.24 KB
- 文档页数:6
纳米氧化锌的制备、表面改性及应用【摘要】纳米氧化锌是一种具有广泛应用前景的材料,其在光电器件、生物医药和环境保护领域均有重要应用。
本文将首先介绍纳米氧化锌的制备方法和表面改性技术,然后探讨其在光电器件中的应用和在生物医药领域中的潜力,最后讨论其在环境保护中的作用。
通过对这些方面的探讨,可以更好地了解纳米氧化锌在不同领域的应用和价值,同时也展望了其未来在科学研究和工程应用中的发展方向和趋势。
纳米氧化锌的研究不仅可以促进材料科学的发展,还有望为解决当下社会面临的环境和健康问题提供新的解决方案。
【关键词】纳米氧化锌、制备、表面改性、应用、光电器件、生物医药、环境保护、应用前景、研究展望1. 引言1.1 纳米氧化锌的研究背景纳米氧化锌是一种重要的纳米材料,在过去几十年里受到了广泛的研究。
纳米氧化锌具有较大的比表面积、优异的光学、电学性能和良好的化学稳定性,因此被广泛应用于各个领域。
纳米氧化锌的研究背景主要包括以下几个方面:纳米氧化锌的独特性能和结构使其成为一种优异的光电材料,能够广泛应用于光电器件、传感器等领域;纳米氧化锌具有良好的生物相容性和生物活性,在生物医药领域具有很高的应用价值;纳米氧化锌还具有良好的光催化性能和抗菌性能,在环境保护领域也具有广阔的应用前景。
对纳米氧化锌的研究具有重要的意义,能够推动材料科学和应用领域的发展。
1.2 纳米氧化锌的研究意义纳米氧化锌具有优异的光电性能,具有较高的光吸收率和导电性,使其在光电器件领域有着广泛的应用前景。
利用纳米氧化锌可以制备高效的太阳能电池、光电探测器等器件,提高器件的性能和稳定性。
纳米氧化锌具有良好的生物相容性和生物活性,被广泛应用于生物医药领域。
纳米氧化锌可以作为药物载体,具有控释和靶向释放的功能,可以用于治疗肿瘤、炎症等疾病,也可以用于生物成像和诊断。
纳米氧化锌还具有良好的催化活性和光催化性能,被广泛应用于环境保护领域。
纳米氧化锌可以用于水处理、空气净化等领域,去除有害物质和污染物,净化环境,保护生态。
纳米氧化锌的制备及应用研究为应对全球气候变暖的紧迫性,研发对环境友好的新型绿色能源材料变得极其迫切,无害环保的纳米氧化锌(ZnO)近年来抢占了可持续能源研发的风头。
纳米氧化锌既可用作锰酸电池的正极材料,又可作为光催化剂和太阳能电池等新型能源材料。
因此,开发和制备高性能的纳米氧化锌成为当前研究重点。
众所周知,纳米氧化锌是由混合氧化物或其它物质在高温活化的情况下制备出来的,熔盐法、水热法和化学沉淀法是纳米氧化锌的常见的制备方法。
熔盐法是一种利用电子捕获作用制备纳米氧化锌的新兴方法,其原理是使用烧碱和氰化钠作为溶剂,将碱性氧化物(ZnCO3和Na2CO3),以高温(500-800°C)熔炼以合成纳米氧化锌颗粒。
采用此方法制备的纳米氧化锌具有比表面积大、高稳定性和有利于二次电极捕获等优点。
水热法是经典的制备纳米氧化锌的方法。
该方法利用原料(过氧化物和ZnCO3)经过易反应分解成氧化氮、氢气和氧化锌的能力,以水为溶剂,通过高温水热作用,制备质量较好的纳米氧化锌。
水热方法制成的纳米氧化锌具有尺寸更小,颗粒形貌更类似球形的特点,比表面积更大。
化学沉淀法是一种以碱性氧化物为原料,利用化学沉淀来制备纳米氧化锌的方法。
该方法包括:(1)将碱性氧化物稀释和溶解;(2)加入助沉剂和有机抗凝剂;(3)加入外加物;(4)高温孵育以达到纳米氧化锌粒子的构建;(5)纳米氧化锌粒子经过后续步骤收集纯化。
此方法是比较常用的方法,纳米氧化锌粒子制成的均匀度较好,能够达到较高的精度。
综上所述,纳米氧化锌制备的途径有三种:熔盐法、水热法和化学沉淀法。
把此三种方法完善,结合不同应用,解决相关技术难题,可以达到质量更高、制备效率更高的绿色能源纳米氧化锌用来替代火力发电,及时解决全球环境恶劣的问题。
氧化锌纳米材料制备及应用研究第一篇:氧化锌纳米材料制备及应用研究纳米ZnO的合成及光催化的研究进展摘要:综合叙述了以纳米ZnO半导体光催化材料的研究现状。
主要包括纳米光催化材料的制备、结构性质以及应用,同时结合纳米ZnO的应用和光催化的优势阐述了后续研究工作的主要的研究方向。
关键词:纳米;光催化;应用1.1 ZnO光催化材料的研究进展纳米氧化锌的制备技术国内外有不少研究报道,国内的研究源于20世纪90年代初,起步比较晚。
目前,世界各国对纳米氧化锌的研究主要包括制备、微观结构、宏观物性和应用等四个方面,其中制备技术是关键,因为制备工艺过程的研究与控制对其微观结构和宏观性能具有重要的影响[1]。
综合起来,纳米氧化锌的化学制备技术大体分为三大类:固相法、液相法和气相法。
1.1.1固相法固相法又分为机械粉碎法和固相反应法两大类,前者较少采用,而后者固相反应法,是将金属盐或金属氧化锌按一定比例充分混合,研磨后进行燃烧,通过发生固相反应直接制得超细粉或再次粉碎的超细粉。
固相配位化学反应法是近几年刚发展起来的一个新的研究领域,它是在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定温度下热分解,得到氧化物超细粉。
运用固相法制备纳米氧化锌具有操作和设备简单安全,工艺流程短等优点,所以工业化生产前景比较乐观,其不足之处是制备过程中容易引入杂质,纯度低,颗粒不均匀以及形状难以控制。
王疆瑛等人[2]以酒石酸和乙二胺四乙酸为原料,采用固相化学反应法在450℃热分解4h得到具有纤锌矿结构的ZnO粉体,通过X射线衍射及透射电镜结果分析,合成的产物粒径均小于100nm,属于纳米颗粒范围,而且颗粒大小均匀,粒径分布较窄,并采用静态配气法对气敏特性的研究发现,对乙醇气体表现了良好的灵敏性和选择性。
1.1.2气相法气相法是直接利用气体或通过各种手段将物质变为气体并使之在气体状态下发生物理或化学变化,最后在冷却过程中凝聚长大形成超微粉的方法。
纳米ZnO抑菌性应用的研究进展抗生素的广泛使用解决了诸多感染问题,但也导致越来越多耐药菌的产生。
传统抗生素对耐药菌的杀伤作用不断减弱,使其威胁持续增加。
因此,为了对抗细菌日益增长的耐药性,迫切需要开发新的抗菌物质,寻找新的抗菌机制。
纳米金属材料以其独特的性质,慢慢展现出作为广谱抗菌剂的潜力,其中又以纳米氧化锌颗粒效果较好,可以通过产生活性氧、溶出锌离子以及直接接触等机制杀伤细菌。
基于此抗菌特性,纳米氧化锌在医疗、食品包装、纺织等领域具有巨大潜力。
本文将围绕纳米氧化锌的抑菌应用展开论述。
1医用创面敷料基于ZnO的抗菌活性,并且锌元素是伤口愈合的必需元素,可以促进角质细胞迁移[1],因此许多研究者将ZnO掺入创面敷料。
例如,在常见敷料细菌纤维素、聚酯尼龙中加入ZnO,其抑菌作用与纳米颗粒含量呈正相关,对细菌的生物膜具有显著抑制作用,可降低细菌嵌入生物膜导致的抗生素耐药性[2];Khorasani等[3]则在敷料材料水凝胶中同时加入壳聚糖与 ZnO,促进伤口愈合的同时,发挥后两者的协同抗菌作用。
2.口腔医学领域ZnO在预防牙龈感染、龋齿等口腔医学方面亦有应用。
符国富等[4]将ZnO改性后加入牙膏,以预防牙龈下细菌感染;相比于普通ZnO,该材料对金葡菌、绿脓杆菌、牙龈卟啉单胞菌的杀菌作用明显提升,且对正常细胞毒性低。
Barma等[5]利用印度三果提取物合成ZnO,产物对链球菌抑菌效果明显,可应用于牙科产品预防龋齿。
Garcia等[6]制备含ZnO的牙科黏合剂,既确保了材料强度,又对唾液中的链球菌有较好的抑制效果,有望成为下一代牙科黏合材料。
3.养殖业及农业养殖业领域,在饲料中加入ZnO已被用于预防仔猪断奶应激,但剂量过高易加重胰腺氧化应激。
使用ZnO可将剂量减少至十分之一,并有效调节肠道菌群[1]。
Radi等[2]在肉鸡饲料中用90mg/kg-1的ZnO可用于改善生长、肠道菌群等,且对肝肾功能无明显影响。
纳米氧化锌的制备、表面改性及应用【摘要】纳米氧化锌具有广泛的应用前景,本文主要介绍了其制备、表面改性以及在不同领域的应用。
在制备方法方面,介绍了常见的物理和化学方法;在表面改性技术方面,探讨了各种改性手段的优缺点;在应用方面,分别详细介绍了在光电器件、生物医药领域、环境保护等方面的应用情况。
通过对纳米氧化锌的研究,展望了其在未来的应用前景,并总结了目前的研究工作。
未来的研究方向包括优化制备方法、提高表面改性效果以及拓展更多的应用领域,以进一步发挥纳米氧化锌的潜力。
【关键词】纳米氧化锌、制备、表面改性、应用、光电器件、生物医药、环境保护、前景展望、总结、未来研究方向。
1. 引言1.1 背景介绍纳米氧化锌是一种具有广泛应用前景的纳米材料,具有独特的物理和化学性质。
随着纳米技术的不断发展,纳米氧化锌的制备、表面改性及应用也逐渐成为研究的热点。
背景介绍部分将主要介绍纳米氧化锌的概念、特性以及在不同领域中的应用。
纳米氧化锌是一种直径在1-100纳米范围内的氧化锌纳米粒子,具有高比表面积和优异的光学、电学性能,被广泛应用于光电器件、生物医药、环境保护等领域。
纳米氧化锌的独特性质使其成为研究的热点之一,并在多个领域展现出巨大的应用潜力。
纳米氧化锌的制备方法、表面改性技术及应用领域的研究将有助于深入了解其在不同领域中的应用机理和潜在价值,为进一步拓展纳米氧化锌的应用领域提供重要参考。
对纳米氧化锌的制备、表面改性及应用进行系统性的研究具有重要意义,有望推动纳米氧化锌在各领域中的应用进一步发展和创新。
1.2 研究意义纳米氧化锌具有较小的粒径和特殊的表面性质,因此在光电器件、生物医药领域和环境保护等方面具有广泛的应用前景。
研究纳米氧化锌的制备、表面改性及应用,有助于深入了解其特殊性能和潜在应用领域,为相关领域的技术创新提供支持。
通过探索纳米氧化锌在光电器件中的应用,可以提高光电转换效率和性能稳定性,推动新型光电器件的发展。
纳米氧化锌作为光催化剂的研究引言:光催化技术是一种高效、环保的废水处理方法,它利用光照下催化剂对有机污染物进行氧化降解。
纳米氧化锌是一种常用的光催化剂,其光催化性能强、稳定性好,因此在染料降解、水分解、CO2还原等领域得到广泛应用。
本文将从氧化锌的制备、光催化机理、性能提升等方面总结纳米氧化锌作为光催化剂的研究进展。
一、氧化锌的制备方法目前常用的氧化锌制备方法主要有溶液法、沉淀法、水热法、气相法等。
其中溶液法是最常用的方法之一,通过控制反应条件如温度、pH值、反应时间等来控制氧化锌的形貌和粒径。
水热法制备氧化锌具有简便、低成本的特点,在低温下可以得到纯相的纳米氧化锌。
沉淀法通过添加沉淀剂将产生的氧化锌沉淀下来,制备出纳米氧化锌颗粒。
二、纳米氧化锌的光催化机理纳米氧化锌的光催化机理主要通过光激发产生的电子空穴对实现。
当纳米氧化锌吸收光能激发产生电子和空穴时,它们会迁移到表面活性中心,参与氧化还原反应。
其中电子参与还原反应,而空穴参与氧化反应。
纳米氧化锌的禁带宽度较窄,能够吸收可见光和紫外光,因此在光催化中具有较高的活性。
三、纳米氧化锌的性能提升为了提高纳米氧化锌的光催化性能,研究者采取了多种方法进行功能化修饰。
常见的方法包括:掺杂、复合材料制备、表面修饰等。
掺杂是指将其他金属或非金属元素引入氧化锌晶格中,用于提高纳米氧化锌的光催化活性。
常见的掺杂元素有氮、铜、银等。
复合材料制备是将纳米氧化锌与其他材料结合制备复合催化剂,以提高催化性能。
常见的复合材料有纳米二氧化钛、纳米银等。
表面修饰是指通过改变纳米氧化锌的表面状态来提高光催化性能,如修饰导电材料、有机物等。
四、纳米氧化锌的应用领域纳米氧化锌作为光催化剂在许多领域得到了广泛的应用。
在染料降解领域,纳米氧化锌可以有效降解有机染料,如亚甲基蓝、罗丹明B等。
在水分解领域,纳米氧化锌可以吸光产生的电子用于水分解反应,从而产生氢气。
在CO2还原领域,纳米氧化锌可以将CO2还原为有机物,实现CO2的循环利用。
纳米zno的制备与应用
一、制备方法
1、水溶法:水溶法是制备纳米ZnO的简便方法,可采用连续(水-硝
酸甲酯)、隔离(亚硝酸乙酯或酒精-硝酸甲酯)分步法,在反应液中
向锌溶液添加过量浓硝酸,使溶液pH降低到≤2。
在搅拌条件下使锌溶
液和硝酸发生反应,形成纳米锌硝酸。
在增加浓乙醇或水的添加下硝
酸制备出不同的形貌的纳米ZnO粒子。
2、氧化还原反应:可以将氧化锌与还原剂进行氧化还原反应,从而在
一定pH范围内制备出纳米ZnO粒子,氧化还原反应过程可以由X射
线衍射、扫描电镜等表征分析仪表进行表征。
3、溶液浸渍法:它是把染料溶液,碱金属氢氧化物和无机酸比较平衡
地溶液等介质前加入Zn(II)离子,制备出具有不同形貌的纳米ZnO粒子,此法做法简便。
4、共沉淀法:将酸性和碱性的底物混合,随后向其中加入Zn(II)离子,在碱性底物的碳酸钙、硅酸钙的存在下,再缓缓加入氢氧化钾溶液,ZnO的纳米颗粒会在pH范围内沉淀到底物表面,即可得到纳米ZnO
粒子。
二、应用:
1、电子器件:ZnO纳米粒子具有较高的非线性折射率,此特性使其成
为数码电子器件中的主要组件。
纳米ZnO多晶硅材料具有优异的机械
强度和电磁介质性,因此其在可靠性和耐热性方面特别有利。
2、光学元件:纳米ZnO具有上至真空处的高反射率和强的抗紫外线能
力,因此应用于需要高反射和抗UV的光学元件。
3、量子点:纳米ZnO也被用于制造量子点,量子点具有非常独特的物理特性和电子特性,使其成为生物技术与材料学研究中重要的技术工具。
纳米氧化锌催化剂
纳米氧化锌(ZnO)催化剂是一种具有广泛应用前景的半导体催化剂。
由于其独特的物理
和化学性质,纳米氧化锌在许多领域表现出优异的催化性能。
以下是一些关于纳米氧化锌催化剂的主要特点和应用:
1. 光催化性能:纳米氧化锌具有较高的光催化活性,可在光照条件下降解有机污染物、抗菌和防腐蚀。
在环境治理领域,纳米氧化锌光催化剂可用于处理水体中的有害物质,如降解水中的重金属离子、去除染料和有机污染物等。
2. 电催化性能:纳米氧化锌具有优异的电催化性能,可用于氧还原反应(ORR)和氧
析出反应(OER)。
在能源领域,纳米氧化锌可作为催化剂应用于燃料电池、电解水制氢
和锂离子电池等。
3. 催化剂载体:纳米氧化锌具有较大的比表面积和良好的分散性,可作为催化剂载体,提高催化剂的活性和稳定性。
例如,在固相催化剂中,纳米氧化锌可作为载体提高金属催化剂的催化性能。
4. 抗菌性能:纳米氧化锌具有优异的抗菌性能,可广泛应用于抗菌材料、抗菌涂料、纺织品等领域。
5. 防腐蚀性能:纳米氧化锌可作为防腐蚀涂料的添加剂,提高涂料的防腐蚀性能。
纳米氧化锌催化剂的研究重点包括提高催化性能、改善稳定性和活性、优化制备方法以及探索新的应用领域。
随着纳米技术的发展,纳米氧化锌催化剂在未来有望在更多领域发挥重要作用。
纳米材料氧化锌的制备与应用摘要:目的介绍纳米氧化锌的制备方法及其性能应用新进展。
方法对近年来关于纳米氧化锌的制备方法及其性能应用的相关文献进行系统性查阅,对其制备方法的优缺点进行分析,并对纳米氧化锌的几种应用、生产提出了展望。
结果氧化锌是一种高效、无毒性、价格低廉的重要光催化剂。
结论随着环境污染的日益它具有小尺寸效应、表面与界面效应、宏观量子隧道效应、量子尺寸效应等宏观材料所不具备的特殊的性能,使其在力学、磁学、热力学光学、催化、生物活性等方面表现出许多奇异的物理和化学性能,在生物、化工、医药、催化、信息技术、环境科学等领域发挥着重要作用。
纳米ZnO 由于粒子尺寸小,比表面大,具有表面效应、量子尺寸效应等,表现出许多优于普通氧化锌的特殊性能,如无毒和非迁移性、荧光性、压电性、吸收和散射紫外线能力等,在橡胶、陶瓷、日用化工、涂料、磁性材料等方面具有广泛的用途,可以制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压敏材料、压电材料、高效催化剂等,备受人们重视1纳米氧化锌的主要制备技术及特点纳米ZnO 的制备方法有多种,可分为物理法和化学法。
物理方法有熔融骤冷、溅射沉积、重离子轰击和机械粉碎等,但因所需设备相对昂贵,并且得到粉体的粒径大等局限,应用范围相对狭小。
在工业生产和研究领域常用的方法为化学法,包括固相法、液相法和气相法。
液相法由于制备形式的多样性、操作简便、粒度可控等特点而备受关注液相法直接沉淀法在锌的可溶性盐溶液中加入一种沉淀剂(如Na2CO3 、NH3·H2O、(NH4) 2C2O4 等) ,首先制成另一种不溶于水的锌盐或锌的碱式盐、氢氧化锌等,然后再通过加热分解的方式制得氧化锌粉体。
此法的操作较为简单易行,对设备要求不高,成本较低,但粒径分布较宽,分散性差,洗除阴离子较为困难。
固相法固相化学反应法固相法制备纳米氧化锌的原理是将两种物质分别研磨、混合后,再充分研磨得到前驱物,加热分解得纳米氧化锌粉体。
纳米氧化锌的制备制备超微粉的途径主要有两类: 物理法和化学法, 其中, 化学法是纳米级粉体制备工艺中常用的合成手段, 具有成本低, 设备简单, 易放大进行工业化生产等特点。
化学沉淀法化学沉淀法是制备纳米粉体的主要方法, 依其沉淀方式可分为: 直接沉淀法和均匀沉淀法两种。
1.直接沉淀法直接沉淀法是使溶液中的某一种金属阳离子与沉淀剂直接发生化学反应而形成沉淀物。
其沉淀剂不同, 则其反应机理不同, 得到的沉淀物不同。
制备纳米ZnO 常用的沉淀剂有: 氨水(NH3 ·H2O) 、碳酸铵[ (NH4 ) 2CO3 ) 、草酸铵[ (NH4 ) 2C2O4 ] 、碳酸氢铵(NH4HCO3) 、碳酸钠(Na2CO3) 等,其工艺流程简图为:直接沉淀法得到的产物纯度较高, 其工艺简单, 操作方便, 对设备、技术要求不太高, 有较好的化学计量性, 生产成本较低, 易于放大进行工业化生产。
不足之处是: 粒子粒径分布较宽, 分散性较差, 有团聚, 且洗除原溶液中的阴离子较繁杂。
2.均匀沉淀法均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢、均匀地释放出来, 所加入的沉淀剂并不直接与被沉淀组分发生反应, 而是通过化学反应让沉淀剂在整个溶液中均匀、缓慢地析出, 让沉淀物均匀生成。
目前, 制备纳米ZnO 常用的均匀沉淀剂有尿素[ CO (NH2 ) 2 ] 和六亚甲基四胺[ (CH2) 6N4 ] , 其反应机理(以尿素为例)为:CO (NH2) 2 + 3H2O= CO2 ↑+ 2NH3·H2OZn2 + + 2NH3·H2O= Zn (OH) 2 ↓+ 2NH4 +Zn (OH) 2= ZnO (s) + H2O ↑其工艺流程简图为:该法得到的沉淀物颗粒均匀而致密, 便于洗涤、过滤, 得到的终产物组成均匀, 粒子粒径分布窄, 分散性好, 其工业放大看好。
其缺点是: 阴离子的洗涤较复杂, 有团聚现象出现。