b a , a b.
注 例3中的不等号可以成为严格的. 事实上, 当
0 a b 和 a b 0时, 显然不为零, 严格不等
式成立.
罗尔定理与拉格朗日定理
当 a 0 b 时,
存在 1 (0, b), 2 (a , 0), 使得
arctan b arctan a arctan b arctan 0 arctan 0 arctan a
x x0
x x0
罗尔定理与拉格朗日定理
证 分别按左右极限来证明.
(1) 任取 x U ( x0 ), f ( x ) 在 [ x0 , x] 上满足拉格朗日
定理条件, 则存在 ( x0 , x ), 使得
f ( x ) f ( x0 ) f ( ). x x0
多项式, 所以 p( x )在[x1 , x2 ]上满足罗尔定理的条件,
从而存在 (a, b), 使得 p( ) 0, 这与条件矛盾. 又若 p( x ) 有一个 k 次重根 x0 , 则
p( x ) ( x x0 )k p1 ( x ), k 2.
( x ), 因为 p( x ) k ( x x0 )k 1 p1 ( x ) ( x x0 )k p1
3.若 f (x) 在(a, b) 上可微, [a, b] 上连续, 则对于任意
x (a , b], 存在 (a , x ), 使
f ( x ) f (a ) f ( )( x a ),
当 x a 时, 必有 a . 从等式
由于x0 x , 因此当x x0 时,随之有 x0 ,
对上式两边求极限,便得
f ( x ) f ( x0 ) lim lim f ( ) f ( x0 0). x x0 x x0 x x0