液位测量方法
- 格式:doc
- 大小:35.00 KB
- 文档页数:3
液位测量方法嗨,朋友!你有没有想过,在那些大大的油罐里、高高的水塔里,人们是怎么知道里面的液体到底有多高的呢?这就涉及到液位测量方法啦,这可是个超级有趣又相当实用的事儿呢。
我有个朋友叫小李,他在一家炼油厂工作。
有一次我去他那儿玩,看到那些巨大的油罐,我就好奇地问他:“小李啊,你咋知道这油罐里的油有多少呢?”他就笑着跟我说:“这就得靠液位测量呀。
”液位测量的方法有好多呢。
先来说说直接测量法吧。
这就像是拿把尺子直接去量东西一样直白。
在一些小型的、比较敞口的容器里,你就可以用这种简单粗暴的方法。
比如说,你家有个小水缸,你想知道水有多少,直接拿根带刻度的棍子插进去,看看水淹到哪儿了,这不就知道液位了嘛。
可是,这种方法在那些大型的、封闭的容器里就不好使了。
你能想象拿根大长棍子去捅油罐吗?那可太危险啦!这时候呢,就有了另一种方法——静压式液位测量。
这就好比你站在水里,水越深,你感受到的压力就越大。
在容器里的液体也是这样的。
在容器底部装一个压力传感器,液体的压力就会作用在这个传感器上。
根据物理学里的公式,就可以算出液位的高度啦。
我记得小李跟我说,他们厂里有些地方就用这种方法。
不过呢,这种方法也有小缺点。
要是液体的密度有变化,或者容器不是那种规规矩矩的形状,那测量结果可能就有点偏差了。
就像你本来以为按一个标准身材做的衣服能适合所有人,结果来了个身材特别奇特的,那衣服肯定不合身啦。
还有一种液位测量方法叫超声波液位测量。
这个可就有点高科技的感觉了。
它就像蝙蝠探路一样,发射超声波出去,超声波碰到液面就反射回来。
通过测量超声波往返的时间,就能算出液位的高度。
我当时就跟小李打趣说:“这是不是就像跟液面打电话,看看信号往返的时间啊?”小李被我逗得哈哈大笑。
这种方法的好处是不用接触液体,比较安全,而且精度也还不错。
但是呢,要是容器里有很多干扰的东西,比如说雾气、灰尘啥的,就可能影响超声波的传播,就像你打电话的时候有很多杂音,听不清对方说啥一样。
检测技术与仪器实验设计报告目录1.液位测量方法简洁 (1)1.1 类型 (1)1.2 液位计 (2)2.液位测量系统设计 (5)2.1 液位测量原理 (5)2.2 测量系统结构 (7)2.3 误差分析 (7)3.结论. (8)4.参考文献 (9)【摘要】综合运用单片机与自动检测技术,设计一套自动精确的液位测量系统,要求测量范围为0~2000mm,系统测量精度为0.1%,同时能利用单片机加以控制,减小误差。
【关键字】液位测量,单片机,超声波1.液位测量方法简介1.1按其工作原理可分为下列几种类型:①静压式:根据流体静力学原理,静止介质内某一点的静压力与介质上方自由空间压力之差与该点上方的介质高度成正比,因此可根据差压来检测液位。
②浮力式:利用漂浮于液面上浮子随液面变化位置,或者部分浸没于液体中物体的浮力随液位变化来检测液位。
③声学式:利用超声波在介质中的传播速度或在不同相界面之间的反射特性来检测液位。
④电气式:把敏感元件做成一定形状的电极置于被测介质中,则电极之间的电气参数,如电阻,电容等,随液位的变化而变化。
⑤射线式:放射性同位素所放出的射线(如β射线,γ射线等)穿过被测介质事,其辐射能量因吸收作用而减弱,能量将衰减,其衰减程度与液位有关。
⑥微波式:由于微波属于电磁波,在一定条件下,传播速度是一定的,因此可以利用测量微波从传感器传播至物料表面并返回到传感器所用的时间来实现液位的测量。
⑦磁致伸缩式:利用磁致伸缩的效应实现液位的测量。
除此之外还有光学法,重锤法等。
在液位检测中,尽管各种检测方法所用的技术各不相同,但可把它们归纳为以下几个检测原理。
①基于力学原理敏感元件所受到的力(压力)的大小与液位成正比,它包括静压式,浮力式和重锤式液位检测等。
②基于相对变化原理当液位变化时,液位与容器底部或顶部的距离发生改变,通过测量距离的相对变化可获得液位的信息。
这种检测原理包括声学法,微波法,和光学法等。
③基于某强度性物理量随液位的升高而增加原理例如对射线的吸收强度,电容器的电容量等。
液位的测量原理
液位的测量原理通常可以分为以下几种常用的方法:
1. 浮子法:利用浮子在液面上漂浮或下沉的原理来测量液位。
浮子通常与液位计相连,当液位升高时,浮子随之上升;当液位降低时,浮子相应下沉。
通过观察浮子所处的位置,可以确定液位的高低。
2. 压力法:利用液体的静压力与液面高度之间的关系来测量液位。
通过将一个管道的一端浸没于液体中,并将另一端接入压力传感器,液体的压力可以通过传感器转化为电信号,从而测量液位的高度。
3. 振动法:利用液面导致振动频率改变的原理来测量液位。
传感器通常会产生特定频率的振动,当振动波传播到液体时,液体的密度改变会导致振动频率的改变。
通过测量传感器接收到的反射信号的频率,可以确定液位的高低。
4. 电容法:利用液体与电极之间的电容变化来测量液位。
电极可安装在液体表面或容器壁上,当液位改变时,液体与电极之间的电容会发生变化。
通过测量电极之间的电容值,可以确定液位的高低。
以上是几种常见的液位测量原理,不同的应用场景会选择不同的测量方法来实现液位的准确测量。
液氮液位测量方法1. 液氮液位测量方法的一种常用方式是超声波液位测量。
超声波传感器通过发射超声波脉冲并接收反射回来的信号来测量液氮液面的位置。
2. 另一种液氮液位测量方法是雷达液位测量,通过雷达波束的发射和接收来确定液氮液面的位置,适用于长距离和艰苦环境。
3. 漂浮球液位计是一种简单而有效的液氮液位测量方法,通过测量漂浮球的位置来确定液位高度。
4. 压力变送器液位计利用液氮液位对压力的变化进行测量,通过压力传感器转换为电信号,从而获得液位信息。
5. 震荡棒液位计是一种适用于液氮液位测量的方法,通过观察震荡棒的震动频率和振动来确定液位高度。
6. 毛细管液位计利用毛细管在液体表面上的液层高度与管内压力之间的关系进行液位测量,适用于低温液氮。
7. 液位开关是一种简单的液氮液位测量方法,适用于对液位高度进行开关控制的场合。
8. 导电液位探头通过测量液体的电导率来确定液位的高度,适用于液氮液位的测量。
9. 液位计总线系统通过数字信号传输液位信息,适用于多点、多种类型的液位测量。
10. 振弦式液位计通过观察振弦的频率变化来确定液体的液位高度。
11. 毫米波液位计通过毫米波技术测量液体的液位高度,适用于大部分液氮液位测量。
12. 看板液位计是一种直观读取液位情况的液位测量方法,适用于现场操作的观测需求。
13. 激光液位测量系统通过激光束的反射来测量液体液位高度,适用于液氮液位的非接触式测量。
14. 液位雷达适用于高温、高压和腐蚀性环境下的液氮液位测量,通过雷达波束的测量来确定液面位置。
15. 液位阀液位计是一种适用于液氮液位测量的方式,通过液位阀控制液位高度并进行测量。
16. 脉冲波液位计通过发送脉冲波并接收反射信号来测量液位高度,适用于液氮液位测量。
17. 液位图形显示系统通过电子屏幕实时显示液位信息,适用于需要远程监控的液氮液位测量。
18. V型液位计是一种通过测量流经液体时的压力来测量液位高度的方法。
19. 液位比例系统是一种通过液位高度比例来进行液位测量的系统,适用于多种液位体积的测量。
液氮液位测量方法液氮液位是工业生产中常见的液位测量对象,而液氮的液位测量方法也是相对独特的。
以下是关于液氮液位测量的50条方法,并展开详细描述:1. 测量原理:利用液氮的温度变化或介电常数变化来实现液位测量。
2. 传感器选择:液位传感器应具备耐低温、耐腐蚀和高精度等特点。
3. 超声波液位计:通过发送和接收超声波来测量液氮液位。
4. 振荡浮子液位计:通过液位的变化引起振荡浮子的位置变化来实现液位测量。
5. 电容式液位计:利用液位改变引起电容变化来实现液位测量。
6. 漂移式液位计:通过漂浮物上升或下降的高度来测量液位。
7. 激光液位计:利用激光的反射来测量液位。
8. 球阀液位计:通过球阀开合状态反映液位高低。
9. 磁性液位计:利用液位上浮的磁性物质作用在磁性传感器上产生信号。
10. 压力式液位计:通过液体静压力变化来测量液位高度。
11. 测量范围:需要根据液氮的使用场景和需求来确定液位测量的范围。
12. 免接触液位计:通过不接触液位表面来实现液位测量。
13. 微波液位计:利用微波的传输速度和反射特性来测量液位高度。
14. 红外液位计:通过红外线的反射来实现液位测量。
15. 液位开关:利用液位高低来控制液氮的供给或排放。
16. 雷达液位计:通过雷达波的发射和接收来测量液位高度。
17. 导波雷达液位计:利用导波雷达技术实现液氮液位测量。
18. 声纳液位计:通过声波的传递和接收来测量液位。
19. 测量精度:要求液位测量精度高,满足生产过程的需求。
20. 自动化控制:结合液位测量数据实现自动化液氮供给和控制。
21. 温度补偿:考虑液氮液位测量中温度对测量的影响,进行温度补偿。
22. 安全防护:对液位测量传感器进行适当的封装和防护,确保安全运行。
23. 现场校准:定期对液位测量仪表进行现场校准,确保测量精度。
24. 远程监测:将液位测量数据传输至远程监测系统,实现远程监控和管理。
25. 动态补偿:根据液氮液位的变化,动态调整补偿参数,提高测量准确性。
第5章 液位测量液位的高低对核电厂来说是个重要的参数,例如反应堆冷却剂液位,蒸汽发生器水位、稳压器内液位等直接反映了核电厂的运行工况,关系到核电厂能否安全而经济地运行。
核电厂常用的液位检测仪表有下列几种:差压式的,浮子式的,指针式的,液位信号式等。
5.1 液体静力液位计我们通常见到的水位标尺玻璃管就是一种最简单的液体静力液位测量仪表, 如图5.1-1所示就是一种水位标尺管测量液位的示意图。
ρH жg h g T ρ=(5.1-1) 即ρ(=h жH T )/ρ(5.1-2)式中ρж——容器中液体的密度;T ρ——管子中流体的密度。
若*ρ和T ρ有差别。
则容器和管子中的液位就会不一致。
这是由于容器和管子中的温差引起的。
图5.1-1 用水位标尺管测量液位的示意图5.2 差压式液位计差压式液位计的工作原理是把液位高度的变化转换成差压的变化,因此其测量仪表就是差压计(差压变送器)。
差压式液位计准确测量液位的关键是液位与差压之间的准确转换,这种转换是通过平衡容器实现的,常用的平衡容器是双室平衡容器。
要求不高的场合是直接用差压变送器液位变化引起的差压。
因此,采用平衡容器的差压式液位仪表的工作原理是:用被测液柱高度与保持液位不变的平衡容器中液柱高度所造成的压差来进行液位测量,平衡容器和与差压计的连接管线充满了被测液体。
差压式液位计(变送器)具有统一的输出信号,即0~5mA 的电流信号。
5.1.1 加热器的液位测量图5.2-1所示为高压加热器中加热蒸汽冷凝水液位测量的示意图,这里使用了单室平衡容器,由于它与脉冲管相比具有较大的截面,因而可使液位保持不变。
图5.2-1 高压加热器中加热蒸汽冷凝水液位测量的示意图由图可见,g H P B ρ=1g h H g h P K ∏-+=ρρ)(2∴g h H h H P P P K B ])([21∏---=-=∆ρρρ(5.2-1)或g h H P K B )]()([∏∏---=∆ρρρρ(5.2-2)式中 h ——被测冷凝水位;H ——平衡容器水柱的高度; K ρ——冷凝水的密度;B ρ——平衡容器水柱的密度; ∏ρ——蒸汽的密度;P ∆——差压计的压差。
液位测量方法比较液位测量是工业生产中常用的一种物理参数测量。
液体的液位测量是工业过程管道中的重要一部分,对于保证工业生产的稳定运行和安全运输具有重要意义。
本文将介绍几种常见的液位测量方法,并对其进行比较。
1.物理测量法物理测量法是一种直接测量液位高度的方法。
常见的物理测量方法包括浮子测量、压力测量和毛细管法测量等。
这些方法能够直接获得液体的实际高度,测量结果准确可靠。
-浮子测量:浮子测量是利用浮子在液体中浮沉的原理测量液位高度。
通过与液体相连的浮子移动的位置来确定液位高度。
这种方法测量简单,适用范围广,但测量精度相对较低。
-压力测量:压力测量是通过在液位上部和下部分别安装压力传感器,测量液压信号来计算液位高度。
这种方法测量精度较高,但对于特殊的液体介质和工艺管道,需要考虑温度、压力和介质的物理性质等因素。
-毛细管法测量:毛细管法测量是利用毛细管的液位高度和液体的粘度之间的关系来计算液位高度。
这种方法测量精度较高,但需要考虑液体的粘度对测量结果的影响。
2.电容测量法电容测量法是利用电容的原理测量液位高度。
在液体与容器壁之间形成一个电容,并通过测量电容的变化来计算液位高度。
电容测量法具有测量精度高、反应速度快、对介质适应性强等特点。
3.雷达测量法雷达测量法是利用漫射的雷达波在液体和空气界面上的反射来测量液位高度。
这种方法适用于各种工业场所,具有测量精度高、适应性强等优点。
4.超声波测量法超声波测量法是利用超声波在液体和空气之间传播的特性来测量液位高度。
该方法适用于各种介质的液位测量,具有测量范围广、测量精度高、无污染等优点。
综上所述,不同的液位测量方法具有各自的特点和适用范围。
物理测量法直接测量液位高度,测量结果准确可靠,但测量精度有限;电容测量法、雷达测量法和超声波测量法具有更高的测量精度和适应性,但在特殊介质或工艺管道中可能需要考虑其他因素。
因此,根据具体的应用场景和要求选择合适的液位测量方法是十分重要的。
[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。
[关键词]液位;测量方法;分析物位包括液位和料位两类。
液位又包括液位信号器和连续液位测量两种。
液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。
连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。
文中对20余种连续液位测量方法进行比较分析。
1 玻璃管法、玻璃板法、双色水位法、人工检尺法玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。
图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。
液位直接从指示标度尺读出。
玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。
液位数值直接从玻璃板刻度尺读出。
双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。
人工检尺法:该方法用于测量油罐液位。
测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。
根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。
以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。
2 吹气法、差压法、HTG法吹气法:该方法的工作原理如图2—1所示[4]。
图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。
因吹气管内压力近似等于液柱的静压力,故P=ρgH式中,ρ-液体密度;H-液位。
故由静压力P即可测量液位H。
吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。
差压法:该方法的工作原理如图2-2所示[4]。
图中,1、2-阀门;3-差压变送器。
对于开口容器或常压容器,阀门1及气相引压管道可以省掉。
压力差与液位的关系为ΔP=P2-P1=ρgH式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。
差压变送器将压力差变换为4~20 mA的直流信号。
如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。
HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。
图中:P1、P2、P3-高精度电子变送器以便远距离传输测量信号。
浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。
不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。
液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪器|仪表根据磁铁的移动量计算出液位。
浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。
图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。
浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。
浮球法有内浮球式和外浮球式两种,如图3—2所示。
浮球法主要用于测量温度高、粘度大的液位,但量程较小。
伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。
现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。
沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。
在图3-3a中[4],液位与浮筒位置的关系如下:上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。
通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。
图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。
沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。
以上5种方法都是利用浮力原理来工作的。
4 电容法、电容传感器浸入液体的深度(m);l-电容传感器垂直高度(m);R-内极板圆柱底面半径(m);r-外极板圆柱底面半径(m)。
由于R、r、l等都是固定值,只要利用ε1、ε2、CH就能计算出液位H。
图4—2是用于测量导电液体的电容法原理[4],其公式推导略。
电容式液位仪价格较低,安装容易,且可以应用于高温、高压的场合。
但电容液位仪测量重复精度较低,需定期维修和重新标定,工作寿命也不是很长。
电阻法:该方法[5]特别适用于导电液体的测量,敏感器件具有电阻特性,其电阻值随液位的变化而变化,故将电阻变化值传送给二次电路即得到液位。
液位传感器的电参数产生变化的方法来测量液位的。
5 磁致伸缩法、超声波法、调制型光学法、微波法磁致伸缩法:该方法用于测量油罐液位的原理如图5—1所示[6]。
图5—1中有两个浮子,分别用来检测油气界面和油水界面。
各浮子内都藏有一组永久磁铁,用来产生固定磁场。
测量时,液位计头部发出低电流“询问”脉冲,该电流产生的磁场沿波导管向下传导。
当电流磁场与浮子磁场相遇时,产生“返回”脉冲(也称“波导扭曲”脉冲)。
询问脉冲与返回脉冲之间的时间差即对应油水界面和油气界面的高度。
磁致伸缩液位计安装容易,测量精度很高,但液体密度变化和温度变化会带来测量误差[7],浮子沿着波导管外的护导管上下移动,容易被卡死。
超声波法:天线(大多为口径天线,也有平面天线)辐射出去,经液面反射后被天线接收,然后由二次电路计算发射信号与接收信号的时间差得液位。
连续波雷达液位仪原理如图5—2所示,该液位仪采用三角波频率调制形式,并通过对发射信号与接收信号混频后得到的差额信号的分析,得到微波传输时间,从而计算出液位。
微波速度受传播介质、温度、压力、液体介电常数的影响很小,但液体界面的波动、液体表面的泡沫、液体介质的介电常数对微波反射信号强弱有很大影响。
当压力超过规定数值时,压力对液位测量精度将产生显著影响。
对于介电常数小于规定数值的液体,大部分雷达液位仪都需要采用波导管,但波导管的锈蚀、弯曲和倾斜都会影响测量精度。
例如:当空高h为20 m,导波管与垂直方向倾斜角度α只要超过0.573°,则引起的液位误差Δh将超过1 mm,由此证明,在倾斜角度α(单位为度)较小时,Δh满足:雷达液位仪特别适合于高污染度或高粘度的产品,如沥青等。
雷达液位仪测量的重复精度较高,无须定期维修和重新标定,测量精度也较高,但价格较高,测量油水界面困难。
调制型光学法与微波法类似,只是采用相位或频率调制的光信号代替微波信号。
图5—3是一种激光雷达液位仪原理图[8]。
但光信号受水蒸汽、油蒸汽影响较大,并对液面波动很敏感,且必须采用易受污染的光学镜头。
以上3种方法都是通过检测信号传播的时间来确定液位的。
设发射信号与接收信号的时间差为t,则空高h=vt/2,v为波的传播速度。
6 磁翻板法、振动法、核辐射法、光纤传感器法磁翻板法原理如图6—1a所示[1],1-翻板指示组件;2-浮子;3-连通管组件;4-调整螺钉;5-放泄塞。
浮子装有一组永久磁铁,随液位变化而上下移动,通过磁耦合作用带动磁翻板组件翻转。
当液位上升时,磁翻板的红色面朝外;液位下降时,白色面朝外。
故根据磁翻板的颜色即可确定液位。
浮子内磁铁与磁翻板磁性结构如图6—1b所示[5],每片翻板间的距离为10 mm。
采用几台磁翻板装置串联可增大量程。
振动法的原理如图6—2所示[9]。
振动液位仪由导轨、测试架、激锤、振动传感器、伺服机构等组成。
伺服机构控制振锤上下爬动并激振,激振后的自由振动被振动传感器检测,该检测信号经FET变换后得到最大功率处的频率,最后由空罐时固有频率/液位关系得到液位。
这种液位测量方法需要激锤、伺服机构等机械运动部件,其工作寿命不是很长,须定期维修和重新标定,安装也较复杂。
辐射法:放射性同位素在衰变过程中会辐射射线,常见的射线有α、β、γ射线。
其中,γ射线的穿透力强,射程远,故在核辐射液位测量中广泛采用。
实验证明,穿过物质前后γ射线强度会发生变化,并满足以下关系[5]:上式中:J0-穿过物质前的强度;J-穿透物质后的强度;μ-物质对γ射线的衰减特性;d-物质的厚度。
核辐射式液位仪由放射源、探测器及处理电路组成。
放射源大都采用钴-60或铯-137。
探测器有电离室、记数管、闪烁计数器等几种,其作用是探测射线穿透物质后的强度。
核辐射液位仪采用非接触式安装,如图6—3所示。
图6—3a采用点式放射源、探测器,测量范围较小;图6—3b采用点式放射源、线状探测器,测量范围较大;图6—3c采用线状放射源、探测器,测量范围最大。
除γ射线外,中子射线也可用来测量液位。
中子射线的穿透能力极强,比γ射线强10倍以上,可穿透壁厚达9英寸的钢质容器[10]。
射线液位仪安装方便,测量精度能满足大罐测量的需要,有一定的应用场合。
光纤传感法:文献[11]提出了一种光纤液位传感器,当液位变化时,压力传感器的敏感弹性膜片产生位移,带动反光膜移动,使探头感受的光强发生变化,从而计算出液位。
文献[12]提出了又一种光纤液位传感器,根据探头在气相和液相介质中感受到光强的差异,判断探头的位置,并控制探头跟踪液位的变化,从而得到液位数值。
7 结束语该文对20余种液位测量方法进行了分析比较。
在实际应用中,应根据价格、测量精度、被测介质的特点等因素,合理选择液位仪的种类。
[参考文献][1]《工业仪器仪表学报,1999(3):250-253.[10]Wayne Labs.level measurement:pressure methods dominate [J].I&CS,1990.2:37-38.[11]陈实英,等.光纤液位传感器的研究[J].传感器技术,2000(5):47-48.[12]郑龙江,等.新型光纤液位测量系统的研究[J].传感器技术,2001(9):18-20.。