第三章 遥感图像辐射校正与几何校正
- 格式:ppt
- 大小:4.95 MB
- 文档页数:70
北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正、几何校正、正射校正的方法a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。
辐射强度越大,亮度值(灰度值)越大。
该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。
当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。
但实际测量时,辐射强度值还受到其他因素的影响而发生改变。
这一改变就是需要校正的部分,故称为辐射畸变。
引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。
仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。
一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。
b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。
遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。
产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。
而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。
几何校正一般包括精校正和正射校正。
精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。
简单理解:和地形图的校正,校正后有准确的经纬度信息。
精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。
有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。
何精校正。
几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。
几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几何畸变过程,并利用标准图像和畸变的遥感图像之间的一些对应点(地面控制点数据)确定几个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何让利用畸变模型来校正遥感图像由于几何校正后的影像可以用于提取精却的距离、多边形面积以及方向等信息,同时可以建立遥感提取的信息与地理信息系统(GIS)或空间决策支持系统(SDSS)中其他专题信息之间的联系,所以对遥感数据进行预处理,消除几何畸变是十分重要的。
二、研究方法遥感影像一般存在内部误差和外部误差,识别内外部误差源以及他们是系统误差还是随机误差非常重要。
一般来说,内部误差引起的畸变通常是系统性的、可预测的,外部误差引起的畸变通常是随机的。
系统误差通常比较容易改正,方法简单,而随机误差相对复杂,所以本文主要是讨论随机误差的几何校正。
1,内部误差的产生原因及消除方法内部误差引起的几何畸变主要包括:地球自转引起的偏差、扫描系统引起的标称地面分辨率变化、扫描系统一维高程投影差、扫描系统切向比例畸变。
对于地球自转引起的偏差,通常进行偏差校正,偏差校正就是将影像像幅中的像元向西做系统的位移调整,改正卫星传感器系统的角速度和地表线速度的相互作用。
扫描系统引起的标称地面分辨率变化主要是指亚轨道多光谱扫描系统,由于距星下点越远,地面分辨率就越低,所以大多数科学家主要使用横向扫描数据·幅中央70%的区域(星下点左右各35%)。
在星下点曝光瞬间,垂直航摄相片仅有一个位于飞行器正下方的像主点,这种透视几何关系使得所有高于周围地面的目标地物会出现从像主点向外放射状分布的不同程度的平面维系。
这就产生了扫描系统一维高程投影差。
由于扫描镜匀速旋转,传感器扫描星下点的地理距离要比影像边缘区域的短,这就使垂直于轨道方向的一个轴发生了压缩。
遥感图像的几何校正与辐射校正技术遥感技术在现代科学和应用中扮演着重要的角色。
而在遥感技术中,图像的几何校正与辐射校正是必不可少的两个步骤。
几何校正负责消除由传感器成像系统引起的几何失真,而辐射校正则用来消除由大气和场景反射率变化引起的辐射度量误差。
几何校正是将遥感图像的像素坐标与地面实际坐标对应起来的过程。
在地球的表面上,由于地形的变化,相邻像元之间的距离和角度可能发生变化。
而传感器成像系统也会存在一定的误差,例如镜头畸变等。
这些因素都会导致图像中的几何失真,使得像素坐标与地面实际坐标无法一一对应。
因此,几何校正是将图像上的像素坐标进行修正,使其与真实地面坐标匹配。
实现几何校正的方法有很多,其中最常用的是基于控制点的法线变换方法。
该方法通过选取地面上已知坐标的控制点,将其在图像中的像素坐标与地面实际坐标进行匹配,并通过变换公式对整个图像进行校正。
这样可以有效地消除图像中的几何失真,提高遥感图像的精度和可用性。
辐射校正是消除由大气和场景反射率变化引起的辐射度量误差的过程。
在图像获取过程中,光线会经过大气层,与地面物体发生反射和散射,然后再经过传感器被记录下来。
然而,大气层对不同波长的光线有不同的吸收和散射特性,这会导致图像中的辐射度量与实际物体的辐射度量不一致。
因此,辐射校正就是通过一系列修正方法来消除大气的影响,得到反映地物辐射特性的真实图像。
常用的辐射校正方法有基于大气模型的模型反演法、基于辐射度量的绝对辐射度归一化法等。
这些方法通过对辐射度量进行修正,消除大气因素的影响,提高遥感图像的定量分析能力和应用效果。
遥感图像的几何校正与辐射校正技术在农业、城市规划、环境监测、资源调查等领域具有广泛的应用前景。
例如,在农业领域,通过对农田遥感图像进行几何校正,可以提高遥感数据在农作物监测和精细管理中的应用效果。
再如,在城市规划中,通过对高分辨率遥感图像进行辐射校正,可以准确获取不同区域的地表反射率,从而帮助城市规划师进行土地利用评估和城市建设规划。
几何校正,正射校正,影像配准,辐射定标,辐射校正,大气校正,地形校正概念详解以下是这些校正和定标的概念详解:1. 几何校正:是指遥感成像过程中,受多种因素的综合影响,原始图像上地物的几何位置、形状、大小、尺寸、方位等特征与其对应的地面地物的特征往往是不一致的,这种不一致就是几何变形,也称几何畸变。
几何校正是通过一系列的数学模型来改正和消除遥感影像成像时因摄影材料变形、物镜畸变、大气折光、地球曲率、地球自转、地形起伏等因素导致的原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的变形。
2. 正射校正:是对影像进行几何畸变纠正的一个过程,它将对由地形、相机几何特性以及与传感器相关的误差所造成的明显的几何畸变进行处理。
正射校正一般是通过在像片上选取一些地面控制点,并利用原来已经获取的该像片范围内的数字高程模型(DEM)数据,对影像同时进行倾斜改正和投影差改正,将影像重采样成正射影像。
3. 影像配准:是指对同一区域内以不同成像手段所获得的不同影像图形在同一地理坐标的匹配。
包括几何纠正、投影变换与统一比例尺三方面的处理。
在多时相、多信息的复合综合分析时常需进行各种配准处理,例如在多光谱影像进行彩色合成时,必须进行不同波段影像的配准,以保证相同景物的有关像元能一一对应,使结果准备可靠。
4. 辐射定标:是遥感数据处理中的一个关键步骤,旨在将原始遥感数据的数字值转换为具有物理意义的辐射度或反射率值。
这个过程是为了确保不同时间和传感器采集的遥感数据具有一致的标度,使其可以用于定量分析和比较。
5. 辐射校正:是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。
辐射误差产生的原因可以分为传感器响应特性、太阳辐射情况以及大气传输情况等。
6. 大气校正:是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。
如何进行遥感影像的改正几何与辐射校正遥感影像是一种通过卫星、飞机或无人机等遥感技术获取的地球表面图像。
然而,由于地球表面的变形和大气吸收散射等因素的影响,遥感影像在获取过程中往往存在一定的几何和辐射失真。
为了更准确地利用遥感影像进行地学研究和应用,需要进行改正几何与辐射校正。
本文将介绍如何进行遥感影像的改正几何与辐射校正的方法与步骤。
一、改正几何的方法与步骤在遥感影像中,由于卫星、飞机或无人机的摄像机与地面之间的相对运动以及地球的曲面特性,会导致图像产生几何失真。
改正几何主要包括坐标转换、几何纠正和合并等步骤。
1. 坐标转换坐标转换是将遥感影像中的像素坐标转换为地理坐标的过程。
常用的方法有像点测量和控制点配准等。
在进行像点测量时,可以通过对图像中的明显地物或地理特征进行测量,获得像素坐标与地理坐标之间的对应关系。
而控制点配准则是通过与已知地理坐标的参考影像进行配准,获取像素坐标和地理坐标之间的转换关系。
2. 几何纠正几何纠正是将遥感影像中的几何失真进行校正的过程。
常用的方法有多项式模型和空间变换等。
多项式模型基于像素坐标和地理坐标之间的多项式拟合关系,通过调整变换参数进行几何纠正。
而空间变换则是通过对地面进行网格化或三角剖分,并在图像中插值来实现几何纠正。
3. 合并在进行几何纠正后,可能会存在分幅问题,即一个遥感影像由多个不连续或有重叠区域的分块组成。
此时,需要进行分幅合并,使得遥感影像成为一个连续的整体。
常用的方法有重叠区域的像素平均和补全等。
二、辐射校正的方法与步骤在遥感影像中,由于大气吸收散射和地面特性的影响,图像中的亮度值会受到辐射失真的影响。
辐射校正旨在去除这些辐射失真,使得遥感影像的亮度值能够准确反映地面的真实特征。
1. 大气校正大气校正是去除大气吸收散射对遥感影像亮度值的影响。
常用的方法有大气模型和大气校正模型等。
大气模型基于大气物理学原理,通过计算大气组分和可见光谱的相互作用,来预测遥感影像中的大气亮度值。
如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。
这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。
本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。
一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。
这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。
二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。
在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。
外方位元素法准确性较高,适用于相对高精度的项目。
2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。
该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。
3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。
通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。
这种方法适用于大范围的地形起伏、高程变化较大的区域。
三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。
预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。
2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。
参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。
3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。