第7章--MATLAB数值积分与数值微分PPT课件
- 格式:ppt
- 大小:430.50 KB
- 文档页数:20
Matlab数值积分与数值微分M a t l a b数值积分与数值微分Matlab数值积分1.⼀重数值积分的实现⽅法变步长⾟普森法、⾼斯-克朗罗德法、梯形积分法1.1变步长⾟普森法Matlab提供了quad函数和quadl函数⽤于实现变步长⾟普森法求数值积分.调⽤格式为:[I,n]=Quad(@fname,a,b,tol,trace)[I,n]=Quadl(@fname,a,b,tol,trace)Fname是函数⽂件名,a,b分别为积分下限、积分上限;tol为精度控制,默认为1.0×10-6,trace控制是否展开积分过程,若为0则不展开,⾮0则展开,默认不展开.返回值I为积分数值;n为调⽤函数的次数.--------------------------------------------------------------------- 例如:求∫e0.5x sin(x+π)dx3π的值.先建⽴函数⽂件fesin.mfunction f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));再调⽤quad函数[I,n]=quad(@fesin,0,3*pi,1e-10)I=0.9008n=365--------------------------------------------------------------------- 例如:分别⽤quad函数和quadl函数求积分∫e0.5x sin(x+π6)dx3π的近似值,⽐较函数调⽤的次数.先建⽴函数⽂件function f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));formatlong[I,n]=quadl(@fesin,0,3*pi,1e-10)I=n=198[I,n]=quad(@fesin,0,3*pi,1e-10)I=n=365--------------------------------------------------------------------- 可以发现quadl函数调⽤原函数的次数⽐quad少,并且⽐quad函数求得的数值解更精确.1.2⾼斯-克朗罗德法Matlab提供了⾃适应⾼斯-克朗罗德法的quadgk函数来求震荡函数的定积分,函数的调⽤格式为:[I,err]=quadgk(@fname,a,b)Err返回近似误差范围,其他参数的意义与quad函数相同,积分上下限可以是-Inf或Inf,也可以是复数,若为复数则在复平⾯上求积分.--------------------------------------------------------------------- 例如:求积分∫xsinx1+cos2xdx π的数值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2);再调⽤quadgk函数I=quadgk(@fsx,0,pi)I=2.4674--------------------------------------------------------------------- 例如:求积分∫xsinxdx +∞∞的值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2); 再调⽤quadgk函数I=quadgk(@fsx,-Inf,Inf)I=-9.0671e+017---------------------------------------------------------------------1.3梯形积分法对于⼀些不知道函数关系的函数问题,只有实验测得的⼀组组样本点和样本值,由表格定义的函数关系求定积分问题⽤梯形积分法,其函数是trapz函数,调⽤格式为:I=Traps(X,Y)X,Y为等长的两组向量,对应着函数关系Y=f(X) X=(x1,x2,…,x n)(x1分区间是[x1,x n]--------------------------------------------------------------------- 例如:已知某次物理实验测得如下表所⽰的两组样本点.现已知变量x和变量y满⾜⼀定的函数关系,但此关系未知,设y=f(x),求积分13.39∫f(x)dx1.38的数值.X=[1.38,1.56,2.21,3.97,5.51,7.79,9.19,11.12,13.39];Y=[3.35,3.96,5.12,8.98,11.46,17.63,24.41,29.83,32.21]; I=trapz(X,Y) I=217.1033---------------------------------------------------------------------例如:⽤梯形积分法求积分:∫e ?x dx 2.51的数值.x=1:0.01:2.5; y=exp(-x); I=trapz(x,y) I= 0.2858---------------------------------------------------------------------2. 多重数值积分的实现重积分的积分函数⼀般是⼆元函数f(x,y)或三元函数f(x,y,z);形如:∫∫f (x,y )dxdy ba dc∫∫∫f(x,y,z)dxdydz b a d cf eMatlab 中有dblquad 函数和triplequad 函数来对上述两个积分实现.调⽤格式为: I=dblquad(@fun,a,b,c,d,tol)I=triplequad(@fun,a,b,c,d,e,f,tol)Fun 为被积函数,[a,b]为x 的积分区间;[c,d]为y 的积分区间;[e,f]为z 的积分区间.Dblquad 函数和triplequad 函数不允许返回调⽤的次数,如果需要知道函数调⽤的次数,则在定义被积函数的m ⽂件中增加⼀个计数变量,统计出被积函数被调⽤的次数.---------------------------------------------------------------------例如:计算⼆重积分I =∫∫√dxdy π2π2π2π2的值.先编写函数⽂件fxy.mfunction f=fxy(x,y) global k; k=k+1;f=sqrt(x.^2+y.^2);再调⽤函数dblquadglobalk; k=0;I=dblquad(@fxy,-pi/2,pi/2,-pi/2,pi/2,1.0e-10) I= 11.8629 k k= 37656---------------------------------------------------------------------例如:求三重积分∫∫∫4xze ?z2y?x 2dxdydz ππ1的值.编写函数⽂件fxyz1.mfunction f=fxyz1(x,y,z)global j;j=j+1;f=4*x.*z.*exp(-z.*z.*y-x.*x);调⽤triplequad函数editglobalj;j=0;I=triplequad(@fxyz1,0,pi,0,pi,0,1,1.0e-10)I=1.7328jj=1340978---------------------------------------------------------------------Matlab数值微分1.数值微分与差商导数的三种极限定义f′(x)=limn→0f(x+h)?f(x)hf′(x)=limn→0f(x)?f(x?h)f′(x)=limn→0f(x+h2)?f(x?h2)h上述公式中假设h>0,引进记号:f(x)=f(x+h)f(x)f(x)= f(x)f(xh)δf(x)= f(x+h)?f(x?h)称上述?f(x)、?f(x)、δf(x)为函数在x点处以h(h>0)为步长的向前差分、向后差分、中⼼差分,当步长h⾜够⼩时,有:f′(x)≈?f(x) hf′(x)≈f(x) f′(x)≈δf(x)f(x) h 、?f(x)h、δf(x)h也分别被称为函数在x点处以h(h>0)为步长的向前差商、向后差商、中⼼差商.当h⾜够⼩时,函数f(x)在x点处的导数接近于在该点的任意⼀种差商,微分接近于在该点的任意⼀种差分.2.函数导数的求法2.1⽤多项式或样条函数g(x)对函数f(x)进⾏逼近(插值或拟合),然后⽤逼近函数g(x)在点x处的导数作为f(x)在该点处的导数.2.2⽤f(x)在点x处的差商作为其导数.3.数值微分的实现⽅法Matlab中,只有计算向前差分的函数diff,其调⽤格式为:·DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1·DX=diff(X,n):计算向量X的n阶向前差分,例如diff(X,2)=diff(diff(X))·DX=diff(A,n,dim):计算矩阵A的n阶向前差分,dim=1(默认值)按列计算差分,dim=2按⾏计算差分.--------------------------------------------------------------------- 例如:⽣成6阶范德蒙德矩阵,然后分别按⾏、按列计算⼆阶向前差分A=vander(1:6)A=111111321684212438127931102425664164131256251252551777612962163661D2A1=diff(A,2,1)D2A1=180501220057011018200132019424200255030230200D2A2=diff(A,2,2)D2A2=000084211083612457614436920004008016540090015025--------------------------------------------------------------------- 例如:设f(x)=√x3+2x2?x+12+√(x+5)6+5x+2求函数f(x)的数值导数,并在同⼀坐标系中作出f’(x)的图像.已知函数f(x)的导函数如下:f′(x)=3x2+4x?12√x3+2x2?x+12+16√()56+5编辑函数⽂件fun7.m和fun8.m functionf=fun7(x)f=sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2;functionf=fun8(x)f=(3*x.^2+4*x-1)/2./sqrt(x.^3+2*x.^2-x+12)+1/6./(x+5).^(5/6)+5 ;x=-3:0.01:3;p=polyfit(x,fun7(x),5);⽤5次多项式拟合曲线dp=polyder(p);对拟合多项式进⾏求导dpx=polyval(dp,x);对dp在假设点的求函数值dx=diff(fun7([x,3.01]))/0.01;直接对dx求数值导数gx=fun8(x);求函数f的函数在假设点的导数plot(x,dpx,x,dx,'.',x,gx,'-')可以发现,最后得到的三条曲线基本重合.--------------------------------------------------------------------- 练习:A.⽤⾼斯-克朗罗德法求积分∫dx1+x2 +∞∞的值并讨论计算⽅法的精确度.(该积分值为π)function f=fun9(x)f=1./(1+x.^2);formatlong[I,err]=quadgk(@fun9,-Inf,Inf)I=err=B.设函数f(x)=sin x⽤不同的办法求该函数的数值导数,并在同⼀坐标系中作出f′(x)的图像.已知f′(x)=x cos x+cos x cos2x?sin x+2sin x sin2x()2function f=fun10(x)f=sin(x)./(x+cos(2*x));function f=fun11(x)f=(x.*cos(x)+cos(x).*cos(2*x)-sin(x)-2*sin(x).*sin(2*x))/(x+cos(2 *x)).^2; x=-3:0.01:3;p=polyfit(x,fun10(x),5);dp=polyder(p);dpx=polyval(dp,x);dx=diff(fun10([x,3.01]))/0.01;gx=fun11(x);plot(x,dpx,'r:',x,dx,'.g',x,gx,'-k')。