第三章四互补对称功率放大电路
- 格式:ppt
- 大小:2.54 MB
- 文档页数:31
实验十四互补对称功率放大电路学院:信息科学与技术学院专业:电子信息工程姓名:刘晓旭学号:2011117147一.实验目的1.了解功率放大电路的交越失真现象。
2.熟悉功率放大电路的工作原理及特点。
二.实验仪器及材料信号发生器示波器三.实验原理功率放大电路如图。
功率放大电路中的三极管具有甲类、乙类、甲乙类三种工作状态。
实际互补对称功率放大器中的三极管工作在甲乙类状态,适当的调节功率放大器中的RP电阻,就可以改变功率放大器的静态工作点,以减小功率放大器的交越失真。
本电路由两部分组成,一部分是由V1组成的共射放大电路,为甲类功率放大;一部分是互补对称功率放大电路,用D1、D2、R4,R5的R5来使V2、V3处于临界导通状态,以消除交越失真现象,为准乙类功率放大电路。
四.实验内容及步骤1.调整直流工作点,使M点电压为0.5Vcc。
2.测量最大不失真输出功率与效率。
3.改变电源电压(例如由+12V变为+6V),测量并比较输出功率和效率。
4.比较放大器在带5.1K和8Ω负载(扬声器)时的功耗和效率。
5.根据实验内容自拟实验步骤及记录表格。
五.实验结果1.连接电路图如下,调整电路使M点电压为0.5Vcc:2.当Vcc=12V时,测得各部分静态工作点的电压值如下:Vb VC VEV1 1.028V 5.363V0.248VV2 6.77V12V 6.037VV3 5.363V0V 6.013V输入频率为1kHz,振幅为10mv的正弦波测得数据如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真129.92mV129.23mV30.11mV AV18.3718.27 4.26理论计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 1.95mW Pv=0.0454W η=4.3%3.改变电源电压为6V,可测得各静态工作点的电压为:Vb VC VEV1825.36mV 3.265V74.49mV V2 4.43V6V 3.77V V3 3.265V0V 3.77V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真104.51mV94.87mV11.57mV AV14.7812.3 1.64计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 0.2mW Pv=7.86mW η=2.54%4.当电源电压为9V时可得,各静态工作点电压为:Vb VC VEV1952.99mV 3.883V178.99mVV2 5.228V9V 4.515VV3 3.883V0V 4.506V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真125.662mV124.41mV21.66mV AV17.7717.59 3.065、比较放大器在带5.1KΩ和8Ω负载(扬声器)时的功耗和效率。
互补对称功率放大电路
互补对称功率放大功率放大电路的特点及类型
1.功率放大电路的特点
功率放大电路的任务是向负载提供足够大的功率,这就要求①功率放大电路不仅要有较高的输出电压,还要有较大的输出电流.因此功率放大电路中的晶体管通常工作在高电压大电流状态,晶体管的功耗也比较大.对晶体管的各项指标必须认真选择,且尽可能使其得到充分利用.因为功率放大电路中的晶体管处在大信号极限运用状态,②非线性失真也要比小信号的电压放大电路严重得多.此外,功率放大电路从互补对称功率放大电路
1.OCL功率放大电路
静态(ui=0)时,UB=0,UE=0,偏置电压为零,V1,V2均处于截止状态,负载中没有电流,电路工作在乙类状态.
动态(ui≠0)时,在ui的正半周V1导通而V2截止,V1以射极输出器的形式将正半周信号输出给负载;在ui的负半周V2导通而V1截止,V2以射极输出器的形式将负半周信号输出给负载.可见在输入信号ui的整个周期内,V1,V2两管轮流交替地工作,互相补充,使负载获得完整的信号波形,故称互补对称电路.
由于V1,V2都工作在共集电极接法,输出。
互补对称功率放大电路实验报告《互补对称功率放大电路实验报告》嗨,小伙伴们!今天我要给大家讲讲我做的那个超级有趣又有点小挑战的互补对称功率放大电路实验。
一、实验前的准备我一听到要做这个实验,心里就像揣了只小兔子,既兴奋又有点紧张。
老师在课上讲这个实验的时候,我就感觉像是在听一个神秘的故事。
那些电路元件就像是故事里的小角色,每一个都有自己独特的作用。
我来到实验室,看到桌子上摆满了各种各样的元件,有晶体管、电阻、电容啥的。
我就像一个即将出征的小战士,在心里默默给自己打气。
旁边的同学也都一脸严肃又带着期待的表情。
我同桌还小声跟我说:“哎呀,这实验看起来好复杂,咱们能做好吗?”我拍拍胸脯说:“怕啥,就像搭积木一样,一块一块来呗。
”二、实验电路的搭建我拿起那些小小的晶体管,感觉它们就像一个个小士兵,等待着我把它们安排到合适的位置。
我先仔细地对照着电路图,找到对应的位置,把电阻一个一个地安上去。
这时候可不能马虎呀,要是放错了位置,就像把士兵派错了战场,那整个电路可就乱套了。
电容也很重要呢。
我拿着电容,就感觉像是拿着一个小小的能量储存罐。
我小心翼翼地把它插好,心里想着:“你可一定要好好工作呀。
”在搭建的过程中,我还和同组的小伙伴互相检查。
他看着我接的线,突然皱起眉头说:“你看这儿,这根线好像有点歪,会不会接触不良呀?”我一听,赶紧调整了一下,还笑着说:“多亏你眼尖,不然这电路要是出了问题,就像汽车少了个轮子,根本跑不起来。
”三、测试阶段当电路搭建好之后,就到了紧张刺激的测试阶段啦。
我就像一个探险家,即将探索一个未知的领域。
我轻轻地打开电源开关,眼睛紧紧地盯着示波器。
那屏幕上的波形就像是神秘的密码,等待着我去解读。
刚开始的时候,波形有点奇怪,歪歪扭扭的,不像老师给我们演示的那样漂亮。
我心里“咯噔”一下,这可咋办呢?我和小伙伴们开始仔细地检查电路。
我想,这电路就像一个小生命,肯定是哪里不舒服了。
我们就像医生一样,一个元件一个元件地排查。
实验六:互补对称功率放大器04123126 黄澜鹏一、实验目的和要求1、理解OTL 功率放大器的工作原理、性能和特点。
2、掌握OTL 电路的调试及主要性能指标的测试方法。
3、要求课前预习,每人独立完成实验,做好实验记录,写好实验报告。
4、在整个测试过程中,电路不应有自激现象。
二、实验仪器、设备1、三相电综合实验台2、模电一号板3、TFG2030V 数字合成信号发生器一台4、ATTEN 公司的7020 型25MC 数字示波器一台三、实验内容1、OTL 的静态工作点的测量2、OTL 的输入灵敏度测量3、OTL 功率放大器的频率响应测量4、OTL 的最大输出功率测量三、实验原理和要求4.1 电路原理OTL 功率放大电路的原理如图6-1 所示。
图6-1 OTL 功放电路的原理图电路特点:三极管T1 组成推动级(也称前置放大级),T2,T3 是一对参数对称的NPN 型和PNP 型晶体三极管,组成互补推挽OTL 功放电路。
T2,T3 每个管子都接成射极输出器,因此具有低输出电阻,高负载能力等优点,适合于做功率输出级。
工作原理:T1 管工作于甲类状态,调节RP,一方面调节T1 管的集电极电流Icl,另一方面,使T2 和T3 管得到合适的静态电流而工作于乙类状态,以克服交越失真。
当输入正弦交流信号u1 时,经T1 放大、倒相后同时作用于T2 和T3 晶体管的基极,ui 的负半周使T2 导通(T3 截止),有电流通过负载RL 同时向电容C。
充电;在ui 的正半周,导通(T2 截止),已充好电的电容器C。
起着电源的作用,通过负载RL 放电,这样在RL 上就得到完整的正弦波。
Rp 在电路中引入交、直流电压并联负反馈。
一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。
4.2 OTL 电路的主要性能指标1)最大不失真输出功率Pom理想情况下,Pom=Ucc2\(8*Rl);实际的最大不失真输出功率Pom=U02\Rl:Uo 为负载RL 两端的电压有效值。