2020年高中物理选修3-1(人教旧版)闭合电路的欧姆定律(教师版)
- 格式:doc
- 大小:302.00 KB
- 文档页数:14
2019-2020年人教版高中物理选修3-1 第2章第7节闭合电路的欧姆定律(教案)【知识与技能】1、能够推导出闭合电路的欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。
2、理解路端电压与负载的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。
3.掌握电源断路和短路两种特殊情况下的特点。
知道电源的电动势等于电源没有接入电路时两极间的电压。
4、熟练应用闭合电路欧姆定律解决有关的电路问题。
5、理解闭合电路的功率表达式,知道闭合电路中能量的转化。
【过程与方法】1、通过演示路端电压与负载的关系实验,培养学生利用“实验研究,得出结论”的探究物理规律的科学思路和方法。
2、通过利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。
【情感态度与价值观】1、通过本节课教学,加强对学生科学素质的培养,通过探究物理规律培养学生的创新精神和实践能力。
【教学过程】★重难点一、闭合电路的欧姆定律★闭合电路的欧姆定律1.闭合电路组成(1)外电路:电源外部由用电器和导线组成的电路,在外电路中,沿电流方向电势降低.(2)内电路:电源内部的电路,在内电路中,沿电流方向电势升高.2.闭合电路的欧姆定律(1)推导:如图所示,设电源的电动势为E,外电路电阻为R,内电路电阻为r,闭合电路的电流为I.在时间t内:①外电路中电能转化成的内能为E 外=I 2Rt . ②内电路中电能转化成的内能为E 内=I 2rt . ③非静电力做的功为W =Eq =EIt . 根据能量守恒定律有W =E 外+E 内, 所以EIt =I 2Rt +I 2rt .整理后得到E =IR +Ir ,即I =ER +r.(2)内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比. (3)表达式:I =ER +r.(4)常用的变形式:E =IR +Ir ,E =U 外+U 内,U 外=E -Ir . 3.对闭合电路欧姆定律的理解(1)I =ER +r 或E =IR +Ir ,只适用于外电路为纯电阻电路的情况,对外电路中含有非纯电阻元件(如电动机、电解槽等)的不适用.(2)E =U 外+U 内=U 外+Ir ,即电源电动势等于内外电路的电压之和.普遍适用于外电路为任意用电器的情况.(3)将电压表接在电源两极间测得的电压U 外是指路端电压,不是内电路两端的电压,也不是电源电动势,所以U 外<E .(4)电动势和路端电压虽然是有相同的单位且有时数值也相同,但二者是本质不同的物理量.电动势反映了电源将其他形式的能转化为电能的本领大小,路端电压反映了外电路中电能转化为其他形式的能的本领大小. 【特别提醒】(1)对给定的电源,认为E 、r 不变.(2)对于有电压变化的闭合电路问题,由E =U 外+U 内,可知:内、外电路电压变化的绝对值相等,即|ΔU 外|=|ΔU 内|.(3)外电路含有非纯电阻元件(如电动机、电解槽等)时,不能直接用欧姆定律解决电流问题,可以根据串、并联电路特点或能量守恒定律进行列式计算.4、闭合电路的欧姆定律的表达形式【典型例题】如图所示的电路中,R 1=9Ω,R 2=30Ω,S 闭合时,电压表V 的示数为11.4V ,电流表A 的示数为0.2A ,S 断开时,电流表A 的示数为0.3A ,(各表均为理想表)求: (1)电阻R 3的值; (2)电源电动势E 和内阻r 的值。
2019-2020年高中物理闭合电路的欧姆定律教案1 新人教版选修3一、教学目标1.在物理知识方面的要求(1)熟练掌握闭合电路欧姆定律的两种表达式E=U+Ir和(2)掌握电源的总功率P总=IE,电源的输出功率P输=IU,电源内阻上损耗的功率P损=I2r及它们之间的关系P总=P输+P损。
2.在物理方法上的要求进一步培养学生用能量和能量转化的观点分析物理问题的能力,并使学生掌握闭合电路欧姆定律的推导过程。
二、重点、难点分析1.重点是闭合电路欧姆定律。
2.难点是应用闭合电路欧姆定律讨论电路中的路端电压、电流随外电阻变化的关系。
三、教学过程设计(一)复习提问(上节课后的思考题)当电源不接外电路时(开路时),非静电力与电场力有什么关系?当电源接上外电路时,电源内部的非静电力与电场力是什么关系?在电源内部非静电力做的功与在外电路中电场力做的功是什么关系?归纳总结学生的回答:当电源不接外电路时,在电源内部非静电力与电场力平衡,电荷不移动,正、负极间保持一定的电势差。
静电场中的电势差等于电场力将电量为q的正电荷从高电势处(正极)移到低电势处(负极)电场力做等于非静电力将电量为q 的正电荷从电源负极移向电源正极的过程中非既然此时非静电力与电场力平衡,则电源的电动势等于电源不接外电路时(开路时)正、负极间的电势差,即E=U断。
当电源接上外电路时,在外电路正电荷从电源正极向负极移动,电场力做正功;在电源内部正电荷从电源负极移向正极,正电荷所受的非静电力大于电场力,合力的方向是从负极指向正极。
此时在电源内部非静电力反抗电场力所做的功,大于在外电路中电场力所做的功。
从能量转化的角度看,在电源内部非静电力反抗电场力所做的功是其他形式的能转化为电能的量度;在外电路中电场力所做的功是电能转化或其他形式的能的量度。
也就是说在电源内部“产生”的电能,大于在外电路中“消耗”的电能。
多余的能量哪去了呢?(二)主要教学过程1.应用能的转化和守恒定律推导闭合电路欧姆定律电动势为E,内阻为r的电源与一个负载(不一定是纯电阻)接成一闭合电路,设负载两端电压为U,电路中的电流为I,通电时间为t。
(精心整理,诚意制作)【知识概要】1.闭合电路的组成:__________________组成外电路,_____________________组成内电路。
闭合电路欧姆定律的内容:闭合电路的电流,跟________________成_______,跟__________________成__________。
公式:____________________或__________________,适用条件:外电路为纯电阻电路。
2.路端电压外U :___________________,内电路上电压内U :_____________________,闭合电路的欧姆定律也可以表示为:_____________________,适用于一切电路。
3.路端电压U 与外电阻R 之间的关系:当外电阻R 增大时,根据__________可知,电流I _____,(E 和r 为定值),内电压 ,根据____________可知路端电压 。
当外电阻R 减小时,电流I ,内电压 ,路端电压 。
当外电路断路时,路端电压U=___,等于电源电动势,当电源两端短路时,电流I=________,是短路电流。
4.路端电压与电流的关系式是:________________,图象(U —I 图象) 是一条_________线.该线与U 轴交点表示I=__________,是________情况,交点的纵坐标表示_________,与I 轴交点表示U=_______,是______情况,交点的横坐标表示__________,该线的斜率表示__________。
图象:【课堂例题】【例1】( )在闭合电路里,关于电源的电动势、内电压、外电压的关系应是:A .如外电压增大,则内电压增大,电源电动势也会随之增大B .如外电压减小,内电阻不变,内电压也就不变,电源电动势必然减小C .如外电压不变,则内电压减小时,电源电动势也随内电压减小D.如外电压增大,则内电压减小,电源的电动势始终为二者之和,保持恒量【例2】()图1为两个不同闭合电路的U-I图像,下列判断正确的是:A.电动势E1=E2,发生短路时的电流I1> I2B.电动势E1=E2,内阻r1>r2 C.电动势E1>E2,内阻 r1< r2D.当两电路中电流相同时,电路2的路端电压大【例3】()在图3的电路中,当滑动变阻器的滑动头向下滑动时,A、B两灯亮度的变化情况为:A.A灯和B灯都变亮 B.A灯、B灯都变暗C.A灯变亮, B灯变暗 D.A灯变暗,B灯变亮【例4】如图所示已知:R = 3.5Ω,E = 1.5V, r = 0.25Ω求:电压表示数。
闭合电路欧姆定律优质课教学设计一、教材分析课标分析:知道电源的电动势和内阻,理解闭合电路的欧姆定律教材地位:闭合电路欧姆定律是恒定电流一章的核心内容,具有承前启后的作用。
既是本章知识的高度总结,又是本章拓展的重要基础;通过学习,既能使学生从部分电路的认知上升到全电路规律的掌握,又能从静态电路的计算提高到对含电源电路的动态分析及推演。
同时,闭合电路欧姆定律能够充分体现功和能的概念在物理学中的重要性,是功能关系学习的好素材。
二、学情分析学生通过前面的学习,理解了静电力做功与电荷量、电势差的关系、了解了静电力做功与电能转化的知识,认识了如何从非静电力做功的角度描述电动势,并处理了部分电路欧姆定律的相关电路问题,已经具备了通过功能关系分析建立闭合电路欧姆定律,并应用闭合电路欧姆定律分析问题的知识与技能。
三、教学目标(一)知识与技能1、通过探究推导出闭合电路欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。
2、理解路端电压与负载的关系,知道这种关系的公式表达,并能用来分析有关问题。
3、掌握电源断路和短路两种特殊情况下的特点。
知道电源的电动势等于电源没有接入电路时两极间的电压。
4、了解路端电压与电流的U-I图像,认识E和r对U-I图像的影响。
5、熟练应用闭合电路欧姆定律进行相关的电路分析和计算(二)过程与方法1、经历闭合电路欧姆定律及其公式的推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力。
2、通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法。
3、了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力。
4、利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。
(三)情感态度价值观1、通过探究物理规律培养学生的创新精神和实践能力。
2、通过实验探究,加强对学生科学素质的培养。
3、通过实际问题分析,拉近物理与生活的距离,增强学生学习物理的兴趣。
第7节闭合电路的欧姆定律1.闭合电路欧姆定律的表达式为I=ER+r,此式仅适用于纯电阻电路,其中R和r分别指外电阻和内电阻。
2.闭合电路内、外电压的关系为E=U内+U外=Ir+U外,由此式可知,当电流发生变化时,路端电压随着变化。
3.当外电路断开时,路端电压等于电动势,当外电路短路时,路端电压为零。
一、闭合电路欧姆定律1.闭合电路的组成及电流流向2.闭合电路中的能量转化如图所示,电路中电流为I,在时间t内,非静电力做功等于内外电路中电能转化为其他形式的能的总和,即EIt=I2Rt+I2rt。
3.闭合电路欧姆定律二、路端电压与负载(外电阻)的关系 1.路端电压与电流的关系 (1)公式:U =E -Ir 。
(2)U -I 图像:如图所示,该直线与纵轴交点的纵坐标表示电动势,斜率的绝对值表示电源的内阻。
2.路端电压随外电阻的变化规律(1)外电阻R 增大时,电流I 减小,外电压U 增大,当R 增大到无限大(断路)时,I =0,U =E ,即断路时的路端电压等于电源电动势。
(2)外电阻R 减小时,电流I 增大,路端电压U 减小,当R 减小到零时,I =E r,U =0。
1.自主思考——判一判(1)如图甲所示,电压表测量的是外电压,电压表的示数小于电动势。
(√)(2)如图乙所示,电压表测量的是内电压,电压表的示数小于电动势。
(×) (3)外电阻变化可以引起内电压的变化,从而引起内电阻的变化。
(×) (4)外电路的电阻越大,路端电压就越大。
(√) (5)路端电压增大时,电源的输出功率一定变大。
(×) (6)电源断路时,电流为零,所以路端电压也为零。
(×) 2.合作探究——议一议(1)假如用发电机直接给教室内的电灯供电,电灯两端的电压等于发电机的电动势吗? 提示:不等于。
因为发电机内部有电阻,有电势降落。
发电机内部电压与电灯两端电压之和才等于电动势。
(2)在实验课上,小红同学用电压表去测量1节新干电池的电动势约为1.5 V,1节旧电池的电动势约为1.45 V ,现在她把这样的两节旧电池串联后接在一个标有“3 V 2 W ”的小灯泡两端,结果发现小灯泡不发光,检查电路的连接,各处均无故障。
闭合电路的欧姆定律知识集结知识元闭合电路的欧姆定律知识讲解闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
2.公式3.路端电压U与电流I的关系在电动势E和内阻r固定的电源两端接一阻值为R的纯电阻用电器,组成一闭合电路,如图所示:若用U表示闭合电路的路端电压,I表示通过电源的电流强度,则有:U=IRU=E-Ir在U-I坐标系上画出以上函数的图像,如下图所示:该图像包含的物理意义如下:截距:图像再纵轴上的截距表示电源电动势E,在横轴上的截距表示短路电流:斜率:直线的斜率的绝对值表示电源的内阻r4.电源U-I图象与电阻U-I图象的比较图象上的特征物理意义电源U-I图象电阻U-I图象图形图象表述的物理量变化关系电源的路端电压随电路电流的变化关系电阻两端电压随电阻中的电流的变化关系图线与坐标轴交点与纵轴交点表示电源电动势E,与横轴交点表示短路电流过坐标轴原点,表示没有电压时电流为零图线上每一点坐标的乘积UI表示电源的输出功率表示电阻消耗的功率图线上每一点对应的U、I比值表示外电阻的大小,不同点对应的外电阻大小不同每一点对应的比值均等大,表示此电阻的大小图线斜率的绝对值大小内电阻r电阻大小(1)闭合电路中的能量转化:qE=qU外+qU内在某段时间内,电能提供的电能等于内、外电路消耗的电能的总和。
电源的电动势又可理解为在电源内部移送1C电量时,电源提供的电能。
(2)闭合电路中的功率关系:EI=U外I+U内I或者EI=I2R+I2r说明了电源提供的电能只有一部分消耗在外电路上,转化为其他形式的能,另一部分消耗在内阻上,转化为内能。
(3)电源提供的电功率(又称为电源的总功率):R↑→P↓,R→∞时,P=0R↓→P↑,R→0时,(4)外电路消耗的电功率(又称之为电源的输出功率):P=U外I定性分析从这两个式子可知,R很大或R很小时,电源的输出功率均不是最大。
定量分析所以,当R=r时,电源的输出功率为最大,图象表述:从P-R图象中可知,当电源的输出功率小于最大输出功率时,对应有两个外电阻R1、R2时电源的输出功率相等。
可以证明,R1、R2和r必须满足:(5)内电路消耗的电功率(电源内电阻发热的功率)R↑→P内↓,R↓→P内↑(6)电源的效率:电源的输出功率与总功率的比值,当外电阻R越大时,电源的效率越高。
当电源的输出功率最大时,η=50%电路动态变化的分析1.电路动态分析类问题是指由于断开或闭合开关、滑动变阻器滑片的滑动等造成电路结构发生了变化,一处变化又引起了一系列的变化。
2.闭合电路的动态分析问题常见的方法有:(1)程序法认识电路,明确各部分电路的串、并联关系及电流表或电压表的测量对象由局部电阻变化判断总电阻的变化由判断总电流的变化据U=E-Ir判断路端电压的变化由欧姆定律及串、并联电路的规律判断各部分电路电压及电流的变化。
(2)直观法任一电阻阻值增大,必引起该电阻中电流的减小和该电阻两端电压的增大。
(3)“并同串反”规律法所谓“并同”,即某一电阻增大时,与它并联或间接并联的电阻中的电流、两端电压、电功率都将增大,反之则减小。
所谓“串反”,即某一电阻增大时,与它串联或间接串联的电阻中的电流、两端的电压、电功率都将减小,反之则增大。
即(4)极限法即因变阻器滑片滑动引起电路变化的问题,可将变阻器的滑片分别滑至两个极端去讨论。
特别提醒:在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小),该电阻两端的电压一定会增大(或减小),通过该电阻的电流一定会减小(或增大)。
若开关的通、断使串联的用电器增多时,电路的总电阻增大;若开关的通、断使并联的支路增多时,电路的总电阻减小。
讨论定值电阻上电压(电流)的变化时,可用部分电路欧姆定律分析,当讨论可变电阻r上的电压(电流)变化时,不能再用分析,因它的电阻变化,电压也变化,I不好确定,只能从串、并联的特点进行分析。
含电容器电路的分析与计算电容器是一个储存电能的元件。
在直流电路中,当电容器充放电时,电路里有充放电电流,一旦电路达到稳定状态,电容器在电路中就相当于一个阻值无限大的元件,在电容器处电路看作是断路,画等效电路时,可以先把它去掉。
若要求电容器所带电荷量时,可在相应的位置补上。
1.分析和计算含有电容器的直流电路时,注意把握以下三个方面(1)电路稳定后,电容器所在支路相当于断路。
因此,该支路上的电阻两端无电压,该电阻相当于导线。
(2)当电容器与电阻并联后接入电路时,电容器两端的电压与并联电阻两端的电压相等。
(3)电路中的电流、电压变化时,将会引起电容器的充放电,如果电容器两端的电压升高,电容器将充电,反之电容器放电。
通过与电容器串联的电阻的电量等于电容器带电量的变化。
2.解答含电容器电路问题的步骤(1)应用电路的有关规律分析出电容器两极板间的电压及其变化情况。
(2)根据平行板电容器的相关知识进行分析求解。
例题精讲闭合电路的欧姆定律例1.(2020春∙洛阳期末)直流电路如图所示,在滑动变阻器的滑片P向右移动时,电源的()A.总功率一定增大B.效率一定增大C.内部损耗功率一定增大D.输出功率可能先增大后减小【答案】BD【解析】题干解析:由电路图可知,当滑动变阻滑片向右移动时,滑动变阻器接入电路的阻值增大,电路总电阻变大,电源电动势不变,由闭合电路的欧姆定律可知,电路总电流I变小;A、电源电动势E不变,电流I变小,电源总功率P=EI减小,故A错误;B、电源的效率η==,电源内阻r不变,滑动变阻器阻值R变大,则电源效率增大,故B正确;C、电源内阻r不变,电流I减小,源的热功率P Q=I2r减小,故C错误;D、当滑动变阻器阻值与电源内阻相等时,电源输出功率最大,由于不知道最初滑动变阻器接入电路的阻值与电源内阻间的关系,因此无法判断电源输出功率如何变化,故D正确;例2.(2020秋∙汕头校级期中)如图所示的电路中,电源的电动势恒定,要想使灯变暗,可以()A.增大R1B.减小R1C.增大R2D.减小R2【解析】题干解析:电源的电动势E、内阻r恒定,要想使灯泡变暗,应使其两端的电压或通过它的电流减小,根据串联电路分压特点可知,可增大R1,R1分担的电压增大,并联部分电压减小,灯泡变暗。
或者减小R2,并联部分电阻减小,电压也减小,灯泡变暗。
故AD正确,BC错误。
例3.(2020秋∙惠来县校级期中)如图电路中,电源内阻不计,三个小灯泡完全相同且外电路变化时每个灯泡两端的电压都不会超其额定电压,开始时只有S1闭合.当S2也闭合后,下列说法正确的是()A.灯泡L1变暗B.灯泡L2变暗C.电容器C的带电荷量将增大D.电源的电功率增大【答案】BD【解析】题干解析:A、S2闭合前,灯泡L3与电容器相串联,则不亮,当S2也闭合后,L2与L3并联,然后与L1串联,由于并联电阻小于L2的电阻,所以总电阻减小,由闭合电路欧姆定律可知,电路电流变I 大,P L1=I2R L1变大,灯L1变亮,故A错误;B、电路电流变I大,L1两端的电压增大,所以L2两端的电压减小,则L2变暗。
故B正确;C、S2闭合前电容器两端电压等于电源电动势,S2闭合后,电容器两端电压等于L1两端电压,电压变小,由Q=CU可知电容器所带电荷量减小,故C错误;D、电路电流变I大,电源的电功率P=EI增大。
故D正确。
例4.(2020秋∙阿城区校级期中)如图所示的是两个闭合电路中两个电源的U-I图象,下列说法中正确的是()A.电动势E1=E2,内阻r1<r2B.电动势E1=E2,内阻r1>r2C.电动势E1=E2,发生短路时的电流I1>I2D.当两电源的工作电流相同时,电源2的路端电压较大【解析】题干解析:A、B、U-I图象中与U轴的交点表示电源的电动势,斜率表示内阻,电动势E1=E2,内阻r1<r2,故A正确,B错误;C、U-I图象与I轴的交点表示短路电流,故发生短路时的电流I1>I2,故C正确;D、根据U=E-Ir可知,△U=-r∙△I,内阻r1<r2,故当电源的工作电流变化相同时,电源2的路端电压变化较大;故D正确;例5.(2020春∙建水县校级月考)如图所示,电源内阻不可忽略,R1为半导体热敏电阻,R2为锰铜合金制成的可变电阻.当发现灯泡L的亮度逐渐变暗时,可能的原因是()A.R1的温度逐渐降低B.R1的温度逐渐升高C.R2的阻值逐渐增大D.R2的阻值逐渐减小【答案】AD【解析】题干解析:AB、当R1的温度逐渐降低时,电阻增大,所以外电路总电阻增大,总电流就减小,电源的内电压减小,路端电压增大,所以通过R2的电流变大,而总电流就减小,所以通过灯泡的电流减小,灯泡L的亮度逐渐变暗。
相反,R1的温度逐渐升高,灯泡L的亮度逐渐变亮,故A正确,B错误;CD、当R2的阻值逐渐增大时,总电阻增大,总电流就减小,电源的内电压减小,路端电压增大,所以通过灯泡L的电流就增大,反之,若R2的阻值逐渐减小,则通过灯泡L的电流减小,故C错误,D正确。
例6.(2020秋∙延津县校级期中)如图电路中,电源电动势为E,内阻为r,固定电阻R1=r,可变电阻R2的最大值也等于r.则当滑动头上移时()A.电源的输出功率增大B.电源内部的电势降落增大C.R2消耗的电功率减小D.电源的效率增加【答案】ABC【解析】题干解析:A、根据电源的内电阻和外电阻相等的时候,电源的输出功率最大可知,固定电阻R1=r,则当滑动头上移时,滑动变阻器电阻减小,但总电阻仍然大于电源内阻,所以电源的输出功率增大,故A正确;B、当滑动头上移时,滑动变阻器电阻减小,总电阻减小,总电流增大,内阻所占电压增大,所以电源内部的电势降落增大,故B正确;C、当把R1和电源看做一个整体时,即把电源的内阻看做R1+r,当R2=R1+r时,电源的输出功率最大,即R2上获得最大功率,但实际上R2<R1+r时,所以R2变小时,R2消耗的电功率减小,所以C正确;D、电源的效率,总电阻减小,内阻所占电压增大,所以路端电压减小,则电源效率减小,所以D错误;路端电压与负载的关系知识讲解一、路端电压跟负载的关系:讨论对给定的电源,E、r均为定值,外电阻变化时,电路中的电流、路端电压的变化.1.当外电路的电阻R增大时,根据I=可知电路中的电流I减小,由于内压U内=Ir所以内压减小,而E=U内+U外即外压(路端电压)增加.当外阻增加至无穷大时,外电路断路,此时I=0 U内=0 U=E即当电源没有接入电路时两极间的电压等于电源的电动势.电压表测电动势就是利用了这一原理.电路的电阻R减小时,根据I=可知电路中的电流I增大,由于内压U内=Ir所以内压增大,而E=U内+U外即外压(路端电压)减小.当外阻减小至最小零时,外电路短路,此时U=0,I=(I称短路电流)即当外电路短路时,外压为零,短路电流很大,容易将电路烧毁.②图象表示:电源的外特性曲线(路端电压U随电流I变化的图象)图象的函数表达:U=E-Ir当外电路断路时:(即R→∞,I=0),纵轴上的截距表示电源的电动势E(E=U端)当外电路短路时:(R=0,U=0),横坐标的截距表示电源的短路电流I短=E/r;图线的斜率:的绝对值为电源的内电阻.某点纵坐标和横坐标值的乘积:为电源的输出功率,在图中的那块矩形的“面积”表示电源的输出功率该直线上任意一点与原点连线的斜率:表示该状态时外电阻的大小;当U=E/2(即R=r)时,P出最大.η=50%注意:坐标原点是否都从零开始:若纵坐标上的取值不从零开始取,则该截距不表示短路电流.③电源的外特性曲线和导体的伏安特性曲线(Ⅰ)电源的外特性曲线:在电源的电动势E和内阻r一定的条件下,通过改变外电路的电阻R使路端电压U随电流I变化的图线,遵循闭合电路欧姆定律.U=E-Ir,图线与纵轴的截距表示电动势E,斜率的绝对值表示内阻r.(Ⅱ)导体的伏安特性曲线:在给定导体(电阻R)的条件下,通过改变加在导体两端的电压而得到的电流I随电压U变化的图线;遵循部分电路欧姆定律I=,图线斜率的倒数值表示导体的电阻R.右图中a为电源的U-I图象;b为外电阻的U-I图象;两者的图象;两者的交点坐标表示该电阻接入电路时电路的总电流和路端电压;该点和原点之间的矩形的面积表示输出功率;a的斜率的绝对值表示内阻大小;b的斜率的绝对值表示外电阻的大小;当两个斜率相等时(即内、外电阻相等时图中矩形面积最大,即输出功率最大(可以看出当时路端电压是电动势的一半,电流是最大电流的一半).例题精讲路端电压与负载的关系例1.(2020春∙靖远县校级月考)如图所示,a、b分别表示一个电池组和一只电阻的伏安特性曲线。