胶体化学核心知识点
- 格式:doc
- 大小:92.00 KB
- 文档页数:14
高中化学:胶体的性质知识点1.胶体的性质与作用:(1)丁达尔效应:由于胶体粒子直径在1~100nm之间,会使光发生散射,可以使一束直射的光在胶体中显示出光路.(2)布朗运动:①定义:胶体粒子在做无规则的运动.②水分子从个方向撞击胶体粒子,而每一瞬间胶体粒子在不同方向受的力是不同的.(3)电泳现象:①定义:在外加电场的作用下,胶体粒子在分散剂里向电极作定向移动的现象.②解释:胶体粒子具有相对较大的表面积,能吸附离子而带电荷.扬斯规则表明:与胶体粒子有相同化学元素的离子优先被吸附.以AgI胶体为例,AgNO3与KI反应,生成AgI溶胶,若KI过量,则胶核AgI吸附过量的I-而带负电,若AgNO3过量,则AgI吸附过量的Ag+而带正电.而蛋白质胶体吸附水而不带电.③带电规律:1°一般来说,金属氧化物、金属氢氧化物等胶体微粒吸附阳离子而带正电;2°非金属氧化物、金属硫化物、硅酸、土壤等胶体带负电;3°蛋白质分子一端有-COOH,一端有-NH2,因电离常数不同而带电;4°淀粉胶体不吸附阴阳离子不带电,无电泳现象,加少量电解质难凝聚.④应用:1°生物化学中常利用来分离各种氨基酸和蛋白质.2°医学上利用血清的纸上电泳来诊断某些疾病.3°电镀业采用电泳将油漆、乳胶、橡胶等均匀的沉积在金属、布匹和木材上.4°陶瓷工业精练高岭土.除去杂质氧化铁.5°石油工业中,将天然石油乳状液中油水分离.6°工业和工程中泥土和泥炭的脱水,水泥和冶金工业中的除尘等.(4)胶体的聚沉:①定义:胶体粒子在一定条件下聚集起来的现象.在此过程中分散质改变成凝胶状物质或颗粒较大的沉淀从分散剂中分离出来..②胶粒凝聚的原因:外界条件的改变1°加热:加速胶粒运动,减弱胶粒对离子的吸附作用.2°加强电解质:中和胶粒所带电荷,减弱电性斥力.3°加带相反电荷胶粒的胶体:相互中和,减小同种电性的排斥作用.通常离子所带荷越高,聚沉能力越大.③应用:制作豆腐;不同型号的墨水不能混用;三角洲的形成.2.胶体的制备:1)物理法:如研磨(制豆浆、研墨),直接分散(制蛋白胶体)2)水解法:Fe(OH)3胶体:向20mL沸蒸馏水中滴加1mL~2mL FeCl3饱和溶液,继续煮沸一会儿,得红褐色的Fe(OH)3胶体.离子方程式为:Fe3++3H2O=Fe(OH)3(胶体)+3H+3)复分解法:AgI胶体:向盛10mL 0.01mol•L-1KI的试管中,滴加8~10滴0.01mol•L-1AgNO3,边滴边振荡,得浅黄色AgI胶体.硅酸胶体:在一大试管里装入5mL~10mL 1mol•L-1HCl,加入1mL水玻璃,然后用力振荡即得.离子方程式分别为:Ag++I-=AgI(胶体)↓SiO32-+2H++2H2O=H4SiO4(胶体)↓复分解法配制胶体时溶液的浓度不宜过大,以免生成沉淀.3.常见胶体的带电情况:(1)胶粒带正电荷的胶体有:金属氧化物、金属氢氧化物.例如Fe(OH)3、Al(OH)3等;(2)胶粒带负电荷的胶体有:非金属氧化物、金属硫化物、硅酸胶体、土壤胶体;(3)胶粒不带电的胶体有:淀粉胶体.特殊的,AgI胶粒随着AgNO3和KI相对量不同,而带正电或负电.若KI过量,则AgI胶粒吸附较多I-而带负电;若AgNO3过量,则因吸附较多Ag+而带正电。
高一化学必修一知识点胶体胶体是一种特殊的物质,它由两种或更多种不同相互间无规则排列的微细颗粒组成。
这些颗粒通常处于介于分子和普通的宏观颗粒之间的规模范围内。
胶体是混合物的一种形式,它可以存在于液体、固体和气体中。
在此篇文章中,我们将探讨几个关于胶体的重要知识点。
首先,胶体的形成是由于颗粒的分散行为。
当粒子的尺寸在1纳米到1000纳米之间时,它们会以悬浊液的形式存在。
这些颗粒被称为胶体颗粒,它们分散在连续相中。
连续相可以是气体、液体或固体。
在胶体中,颗粒不会自行从连续相沉淀出来,这是与悬浊液和溶液的主要区别之一。
第二,胶体具有特殊的物理性质。
它们表现出碳层状结构、散射光、Tyndall效应和布朗运动等特征。
其中,碳层状结构指的是胶体颗粒表面附着有一层分子层,在这层分子层上,分子的形态有各种可能,可以吸附其他分子、离子或电荷。
这种特殊的结构使得胶体具有吸附、吸附性能强、能助一些化学反应进行等特点。
第三,胶体的颗粒大小对其性质具有重要影响。
当胶体颗粒的直径小于10纳米时,它们被称为胶小颗粒。
这些胶小颗粒在溶剂中遵循布朗运动,即呈现出一种随机不规则的运动方式。
这种运动是由于胶体颗粒与溶剂分子碰撞的结果,胶体颗粒受到分子撞击的推动而运动。
布朗运动是胶体动力学中的一个重要概念,为研究胶体性质提供了重要的理论基础。
最后,胶体在现实生活中的应用广泛。
胶体被广泛应用于许多领域,如生物学、医学、工程学和环境科学等。
在生物学中,许多生物体内的重要组分和介质都是胶体。
在医学中,胶体被用作药品的载体,以便更好地递送药物到特定部位。
在工程学中,胶体的稳定性和流动性使其成为涂料、液体制剂和油漆等工业产品中的重要成分。
在环境科学领域,胶体在污染物的吸附和分离中起着重要作用。
综上所述,胶体是一种特殊的物质,具有独特的物理性质和广泛的应用。
了解胶体的形成机制、特性以及其在现实生活中的应用,有助于我们深入理解化学和相关科学领域的原理和发展。
胶体界面化学知识点总结胶体界面化学是研究在胶体系统中发生的化学现象和过程的科学,它涉及到界面的性质、结构和变化等方面。
胶体界面化学的研究对理解胶体系统的基本特性和应用具有重要的意义。
下面将对胶体界面化学的相关知识点进行总结。
一、胶体概念胶体是由两种或两种以上的相组成的复合系统,其中一个相是固体,另一个或另一些是液相或气相。
这些相都是微观分散的,且不易被重力沉淀的稳定性。
胶体是一种介于溶液和悬浮液之间的分散系统,在胶体中,含有微粒的相称为分散相,微粒与溶剂形成的相称为连续相。
胶体颗粒的尺寸一般在1-1000nm之间。
根据分散相的性质不同,胶体又可以分为溶胶、凝胶和乳胶等。
二、胶体稳定性胶体的稳定性是指其分散相维持分散状态的能力。
胶体稳定性与表面活性剂的类型和浓度、电解质的存在和浓度、电荷作用、范德华力等因素有关。
当表面活性剂存在时,会在分散相的表面形成一层物理吸附膜来减少表面能,改变表面性质,从而稳定胶体。
电解质的存在可以中和分散相表面的电荷,减少静电斥力,使胶体不稳定。
电荷作用和范德华力也会影响胶体的稳定性。
了解这些因素对胶体稳定性的影响对于胶体的应用和制备具有重要的意义。
三、界面活性剂界面活性剂是一类具有分子结构中同时含有亲水性和疏水性基团的化合物,它们在液体界面上降低表面张力,促进液体的分散和乳化,并有较强的渗透性和复合物形成性。
界面活性剂的主要作用包括降低表面张力、增加分散性、稳定胶体、乳化和分散。
根据亲水性基团的不同,界面活性剂可以分为阴离子、阳离子、非离子和两性离子界面活性剂。
界面活性剂的选择和使用对于控制胶体的稳定性和调控乳液、泡沫等具有重要的作用。
四、胶体的表面性质胶体的表面性质是指胶体颗粒的表面具有的润湿性、黏附性、表面能等物理化学性质。
胶体颗粒的表面性质与界面活性剂的类型和浓度、电解质的存在和浓度、溶剂的性质等有关。
表面性质的研究对于控制胶体的稳定性、界面活性剂的选择和应用有着重要的意义。
高考常考胶体知识点胶体是化学中一个重要的概念,也是高考化学考试的重点内容之一。
胶体是指由两种或两种以上的物质组成的均匀分散体系,其中一个物质呈胶状或胶体状态。
胶体在日常生活中随处可见,比如牛奶、胶水、乳液等。
在本文中,我们将深入探讨高考常考的胶体知识点。
一、胶体的基本特征胶体由两部分组成:分散相和分散介质。
其中,分散相是指在胶体中存在的固体颗粒或液滴,而分散介质则是指分散相所处的物质。
胶体的基本特征包括:1. 均匀性:胶体是一种均匀分散的体系,其中分散相均匀分布在分散介质中,形成一个连续的整体。
2. 不可见性:由于分散相颗粒或液滴的微小尺寸,胶体在光学上呈现为透明或半透明的状态,无法通过肉眼观察到其中的分散相。
3. 稳定性:胶体具有较高的稳定性,分散相能够长期保持在分散介质中的悬浮状态。
4. 灵敏性:胶体对外界环境变化(如温度、浓度等)较为敏感,其性质和特点会随着环境的改变而发生相应的变化。
二、胶体的分类按照分散相的不同性质和状态,胶体可以分为几个不同的类别。
1. 溶胶:溶胶是指由固体颗粒分散在液体中形成的胶体。
这种胶体中,分散相的颗粒尺寸通常在1纳米到100纳米之间。
2. 凝胶:凝胶是指由固体网状结构的分散相分散在液体介质中形成的胶体。
凝胶的分散相具有一定的弹性和稳定性,如煤矸石凝胶、硅胶等。
3. 乳胶:乳胶是指由液滴分散在液体介质中形成的胶体。
乳胶具有乳白色或淡黄色的外观,如牛奶就是一种常见的乳胶。
4. 气溶胶:气溶胶是指由固体或液滴分散在气体介质中形成的胶体。
这种胶体呈现为气状或雾状,如烟雾和大气中的尘埃等。
三、胶体的制备和应用胶体的制备方法多种多样,常见的制备方法包括:溶胶凝胶法、共沉淀法、乳化法等。
胶体在日常生活和工业生产中有着广泛的应用。
以下是一些典型的胶体应用:1. 医药领域:胶体作为药物的载体,常用于制备纳米药物和控释药物等。
胶体药物可以有效改善药物的生物利用度和疗效。
2. 日化产品:乳液、皂液等日化产品就是胶体的应用。
高一化学胶体的知识点归纳在高一化学学习中,胶体是一个重要的知识点。
胶体是指由两种或多种物质组成的混合体系,其中一种物质以微小颗粒的形式悬浮在另一种物质中。
下面将对胶体的定义、性质以及应用进行归纳总结。
一、胶体的定义胶体是介于溶液与悬浮液之间的一种混合体系。
它的特点是悬浮的微粒大于分子,但又小于机械混合物的粒径。
胶体的形成是由于相互作用力的存在导致溶质不能完全溶解于溶剂中,而形成微小颗粒悬浮在溶剂中,形成胶体。
二、胶体的性质1. 可见性:胶体的微粒大小在10-9到10-6m之间,透过显微镜可以观察到。
2. 不稳定性:胶体由于微粒之间存在相互作用力,导致胶体不稳定,容易发生凝聚和沉淀现象。
3. 混浊性:胶体在光线的照射下呈现混浊状态,散射光使得胶体呈现浑浊的外观。
4. 过滤性:胶体可以通过一次普通滤纸进行过滤,不通过超微滤膜。
三、胶体的分类根据胶体的组成和性质,胶体可以分为溶胶、凝胶和胶体溶液三类。
1. 溶胶:溶胶是指胶体中溶质颗粒多分散且呈无定形结构的胶体,如烟雾、煤粉等。
2. 凝胶:凝胶是指胶体中溶质颗粒呈现有规律的立体结构的胶体,如明胶等。
3. 胶体溶液:胶体溶液是指胶体中溶质颗粒保持在溶液中的胶体,如乳液、胶束等。
四、胶体的应用1. 工业上的应用:胶体在工业生产中有广泛的应用,例如纺织、造纸、涂料、医药等行业中常用的乳液和胶束都是胶体的应用。
2. 日常生活中的应用:胶体在日常生活中也有一些重要的应用,如牙膏、洗洁精等产品中的凝胶胶体,以及乳化液体、奶粉等产品都是胶体的应用。
3. 环境保护中的应用:胶体的特性使其在环境保护方面具有重要作用,如胶束能够帮助清洁污染物,减少环境污染。
总结:高一化学中胶体的知识点主要包括胶体的定义、性质、分类以及应用。
胶体是由两种或多种物质组成的混合体系,具有可见性、不稳定性、混浊性以及过滤性等特点。
根据组成和性质的不同,胶体可以分为溶胶、凝胶和胶体溶液三类。
胶体在工业生产、日常生活以及环境保护中都有广泛的应用。
高一化学第一章知识点胶体胶体是化学中的一个重要概念和研究对象,涉及到许多我们日常生活中都会遇到的现象和应用。
在高一化学的第一章中,我们主要学习与胶体相关的知识点,包括定义、分类、形成条件、性质、应用等方面。
本文将对这些知识点进行详细的介绍和论述,以帮助大家更好地理解和掌握。
一、胶体的定义胶体是指由两种或两种以上的物质组成的混合系统,其中一种物质以微细颗粒分散在另一种物质中。
在胶体中,分散相的颗粒尺寸通常在1纳米到1000纳米之间。
胶体的粒子较小,使得其呈现出特殊的性质和行为,例如散射光线、凝聚与分散、滤过等。
胶体在生活中有着广泛的应用,例如乳液、胶水、泡沫等。
二、胶体的分类根据胶体中溶质和溶剂的性质,胶体可以分为溶胶、凝胶和乳胶三类。
1. 溶胶:溶胶指的是固体微粒均匀分散在液体中的胶体。
在溶胶中,微粒不会沉淀,并可以通过过滤器隔离出来。
溶胶的例子包括不溶性染料颗粒悬浮在水中的溶液。
2. 凝胶:凝胶是指由液体分子组成的三维网状结构,形成的胶体。
凝胶的溶胶性质使其具有半固体状态,可以流动但又具有一定的刚性。
凝胶的例子包括明胶、琼脂等。
3. 乳胶:乳胶是指由液体分散相和另一种液体连续相组成的胶体。
乳胶通常为白色乳状液体,如牛奶、橡胶乳等。
三、胶体的形成条件胶体的形成需要满足一定的条件,主要包括溶解度、浓度、剪切作用和共沉淀等。
1. 溶解度:胶体形成时,存在一定量的物质在溶液中不溶解,从而形成微粒。
这种微粒的溶解度很小,所以会以胶体的形式存在。
2. 浓度:胶体形成还需要一定的溶质浓度。
当溶质的浓度达到一定程度时,会发生聚集现象,从而形成胶体。
3. 剪切作用:外界的剪切力作用也可以促使溶质聚集成胶体。
例如,我们普通生活中搅拌牛奶时,会使乳胶变得更加稳定。
4. 共沉淀:共沉淀是指在溶液中存在两种不相容的物质,在一定条件下一起析出形成胶体。
例如,当铁(Ⅲ)离子和氢氧化钠共沉淀时,会形成铁(Ⅲ)氢氧化物胶体。
四、胶体的性质胶体具有许多独特的性质,与溶液、悬浮液和晶体等有所不同。
大一无机化学知识点胶体胶体是无机化学中一个重要的概念,它在生活中有着广泛的应用。
本文将介绍大一无机化学中关于胶体的基本概念和知识点。
一、胶体的定义和特点胶体是指由两种或两种以上的物质组成的系统,其中一种是固态的颗粒(称为胶体颗粒),另一种是液体(称为分散介质)。
胶体的颗粒大小一般在1纳米(nm)到1000纳米之间,介于溶液和悬浮液之间。
胶体具有以下特点:1.胶体粒子的尺寸小,具有较大的表面积,易与周围的物质发生相互作用。
2.胶体具有与乳液类似的物理性质,比如会光散射、呈现乳白色、具有重力沉降或渗滤的特点。
3.胶体的颗粒可以通过使用适当的方法(如超声波、离心等)分散或凝聚。
二、胶体的分类胶体可以按照胶体颗粒和分散介质的性质进行分类。
1.按照胶体颗粒的性质分类,可分为以下几类:(1)溶胶:由小分子形式的颗粒组成,无法通过滤纸过滤。
(2)凝胶:具有三维网状结构的胶体,像凝胶一样具有一定的弹性和固体性质。
(3)胶束:由表面活性剂分子组成的微小胶体颗粒。
2.按照分散介质的性质分类,可分为以下几类:(1)气溶胶:胶体颗粒分散在气体中,如空气中的烟尘。
(2)液溶胶:胶体颗粒分散在液体中,如悬浮液。
(3)固溶胶:胶体颗粒分散在固体中,如凝胶。
三、胶体的制备与应用1.胶体的制备方法:(1)凝聚法:通过凝聚小颗粒或固体颗粒增大其尺寸,使其达到胶体的体积浓度。
(2)分散法:通过搅拌、超声波等方法将颗粒低浓度悬浮于液体中。
2.胶体在生活中的应用:(1)药物输送系统:胶体可以作为药物的载体,保护药物并控制其释放速度。
(2)涂料和油墨:胶体的粒子大小和形状可以影响涂层和油墨的性质和表现。
(3)生物医学:胶体在生物医学领域有着广泛的应用,如用于细胞标记和分离、生物传感器等。
(4)环境工程:胶体可以用于废水处理、污泥固化等环境工程领域。
四、胶体相关实验1.胶体溶液的制备:准备一定体积的悬浮液或溶液,使用超声波或搅拌等方法进行分散,制备成胶体溶液。
高三化学胶体知识点胶体是化学中的一种特殊物态,在生活和工业中都有广泛的应用。
下面将重点介绍一些高三化学中的胶体知识点。
一、胶体的概念与分类胶体是由两种或两种以上的相互作用的物质组成的体系,其中一种物质称为分散相,另一种物质称为分散介质。
根据胶体中分散相和分散介质的物态,胶体可分为溶胶、凝胶和乳胶三种类型。
1. 溶胶:分散相为固体,分散介质为液体或气体。
溶胶通常呈现为浑浊的状态,如淀粉溶胶。
2. 凝胶:分散相为固体,分散介质为液体。
凝胶具有固态的特性,有一定形状和弹性,如明胶。
3. 乳胶:分散相为液体,分散介质为液体。
乳胶呈现为浑浊的状态,如牛乳。
二、胶体的稳定性胶体中的分散相与分散介质之间存在着相互吸引和排斥的力,影响胶体的稳定性。
以下是常见的胶体稳定性现象:1. 电解质的作用:当胶体中添加电解质时,电解质中带电粒子与胶体中的带电粒子发生相互作用,导致胶体破坏。
2. 吸附现象:在胶体的表面,会发生物质的吸附现象,使胶体颗粒带有电荷,从而增强了胶体的稳定性。
3. 换位现象:当两个胶体共存时,分散介质中的物质可以与分散相中的物质交换,导致胶体的稳定性发生变化。
三、胶体的性质胶体具有一些特殊的性质,包括光散射性、布朗运动、渗透性和吸附性等。
1. 光散射性:由于胶体中分散相的粒子尺寸与可见光波长相当,光在胶体中发生散射现象,使胶体呈现浑浊的状态。
2. 布朗运动:胶体中的分散相由于热运动而不断做无规则的碰撞和运动,这种现象称为布朗运动。
3. 渗透性:胶体中的分散相不易通过滤纸等具有较小孔隙的过滤介质,表现出较好的渗透性。
4. 吸附性:胶体表面具有较大的比表面积,能够吸附其他物质,如活性炭能吸附有机颜料。
四、胶体的应用胶体在生活和工业中有广泛的应用,包括润滑剂、胶黏剂、涂料、药物、食品等。
1. 润滑剂:胶体中分散相的颗粒能够填充润滑表面的微小凹陷,减小摩擦,使得机械设备的运转更加顺畅。
2. 胶黏剂:胶体粘度较大,能够起到黏着的作用,用于粘合纸张、木材等。
胶体高考化学知识点胶体是高考化学中一个非常重要的概念。
在高考化学中,胶体是一个关键的知识点,涉及到物质的性质、结构和应用等方面。
本文将从胶体的定义、性质、分类和应用等方面,全面介绍高考化学中与胶体相关的知识点。
一、胶体的定义胶体是指由两种或两种以上物质组成的混合系统,其中一种物质呈胶态,即粒径在1纳米(nm)到1000纳米之间,分散在另一种物质中形成的稳定混合物。
胶体由胶体溶质和分散介质组成,其中溶质是胶粒,分散介质是胶体液体或固体。
二、胶体的性质胶体具有一些独特的性质,主要包括稳定性、散射性、过滤性、浑浊性和凝胶性。
1. 稳定性:胶体的稳定性是指胶体系统中胶粒之间的相互作用力使胶粒和分散介质保持分散状态的能力。
胶体的稳定性分为物理稳定性和化学稳定性。
物理稳定性是指胶体中胶粒之间的静电相互作用、凡德华力以及吸附层等相互作用力所保持的稳定性;化学稳定性是指胶体中存在表面活性物质或化学稳定剂等,可以通过化学反应来保持稳定性。
2. 散射性:胶体溶液对光的散射现象称为散射性。
由于胶粒的尺寸与光的波长接近,所以会导致光的散射现象。
胶体溶液的散射性可以用来研究胶粒的尺寸和浓度等信息。
3. 过滤性:胶体溶液可以使用过滤纸、滤膜等进行过滤分离。
胶体溶液中的胶粒尺寸较小,可以通过过滤纸或滤膜的微孔被截留下来,从而实现对胶粒的分离。
4. 浑浊性:胶体溶液在光的照射下,会导致光的透明度降低,呈现出一种浑浊的样子。
浑浊性是胶体中胶粒悬浮在分散介质中的体现。
5. 凝胶性:一些胶体溶液在一定条件下可以形成凝胶,凝胶是一种类似固体但又具有一定流动性的物质。
凝胶形成是由于胶粒之间的相互作用力增强,使得整个系统形成了一个网状结构。
三、胶体的分类胶体可以根据胶粒的性质和分散介质的性质进行分类。
根据胶粒的性质,胶体可分为溶胶、凝胶和胶体溶液。
溶胶是指胶粒尺寸较小,无明显的流变性质;凝胶是指由胶粒形成的三维网络结构,可以保持一定形状;胶体溶液是指胶粒悬浮在液体中,没有形成明显的凝胶结构。
胶体高考知识点总结胶体是我们高中化学课程中的重要一环。
胶体是指由两种或两种以上的物质组成的均匀体系,其中一个物质被分散相(胶体颗粒)分散在另一种物质中的连续相(溶剂)中。
在本文中,我们将重点总结胶体的基本概念、性质、分类、制备和应用等知识点。
一、基本概念1. 分散相和连续相胶体是由两种或两种以上的物质组成的,其中一个物质以颗粒形式分散在另一种物质中。
分散相指的是被分散的颗粒,连续相指的是颗粒所处的介质或溶剂。
2. 胶体颗粒胶体的分散相是由胶体颗粒组成的。
胶体颗粒呈现小、均匀、不可见于肉眼的特点,其粒径一般在1纳米到1微米之间。
3. 胶体稳定性胶体的稳定性是指胶体颗粒保持在溶液中不聚集或沉降的能力。
稳定性主要受到胶体颗粒的表面电荷、吸附层和环境因素的影响。
二、性质1. 光学性质胶体溶液呈现乳白色或半透明状态。
当胶体颗粒尺寸与可见光波长相近时,可散射光线,使溶液呈现乳白色。
2. 过滤性胶体溶液可以通过纸膜过滤,但无法通过常规滤膜。
这是因为胶体颗粒尺寸较小,无法被常规滤膜所阻截。
3. 扩散性胶体溶液具有扩散性,即胶体颗粒可以在溶液中自由扩散,但扩散速度较慢。
三、分类1. 溶胶溶胶是指分散相为固体的胶体体系。
常见的溶胶有胶体金、二氧化硅溶胶等。
2. 凝胶凝胶是指分散相为液体的胶体体系,呈现凝胶状。
凝胶在形成时,分散相之间形成了网状结构,使其呈现固体的性质。
3. 乳胶乳胶是指分散相为液滴的胶体体系。
最典型的乳胶就是牛奶,其中脂肪球是分散相。
4. 泡沫泡沫是指分散相为气体的胶体体系。
泡沫由一个或多个液滴所组成,如肥皂泡。
四、制备1. 机械制备法机械制备法是通过机械作用将固体或液体分散到溶剂中,形成胶体溶液。
常见的机械制备方法有研磨法、乳化法等。
2. 化学制备法化学制备法是通过化学反应将溶质转化为胶体颗粒分散在溶剂中,形成胶体溶液。
常见的化学制备方法有沉淀法、共沉淀法等。
五、应用1. 医药领域胶体在医药领域有广泛的应用,如胶体药物输液、纳米载药系统等。
1.胶体的定义及分类胶体〔Colloid〕又称胶状分散体〔colloidal dispersion〕是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。
分散质的一局部是由微小的粒子或液滴所组成,分散质粒子直径在1~100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。
按照分散剂状态不同分为:气溶胶——以气体作为分散剂的分散体系。
其分散质可以是液态或固态。
〔如烟、雾等〕液溶胶——以液体作为分散剂的分散体系。
其分散质可以是气态、液态或固态。
〔如Fe(OH)3胶体〕固溶胶——以固体作为分散剂的分散体系。
其分散质可以是气态、液态或固态。
〔如有色玻璃、烟水晶〕按分散质的不同可分为:粒子胶体、分子胶体。
如:烟,云,雾是气溶胶,烟水晶,有色玻璃、水晶是固溶胶,蛋白溶液,淀粉溶液是液溶胶;淀粉胶体,蛋白质胶体是分子胶体,土壤是粒子胶体。
2.胶体的不同表征方式胶体分散体系分为单分散体系和多分散体系。
单分散系表征可以用分散度、比外表积法〔不规那么形状包括单参数法,双参数法和多参数法〕多分散体系可以用列表法、作图法,如粒子分布图,粒子累计分布图。
用激光粒度分析仪测定。
胶体的稳定性一般用zeta电位来表征。
zeta电位为正,那么胶粒带正电荷,zeta电位为负,那么胶粒带负电荷。
zeta电位绝对值越高,稳定性越好,分散度越好,一般绝对值>30mV说明分散程度很好。
胶体的流变性表征—黏度。
可用毛细管黏度计,转筒黏度计测定。
3.有两种利用光学性质测定胶体溶液浓度的仪器;比色计和浊度仪,分别说明它们的检测原理比色计它是一种测量材料彩色特征的仪器。
比色计主要用途是对所测材料的颜色、色调、色值进展测定及分析。
工作原理:仪器自身带有一套从淡色到深色,分为红黄蓝三个颜色系列的标准滤色片。
仪器的工作原理是基于颜色相减混合匹配原理。
罗维朋比色计目镜筒的光学系统将光线折射成90°并将观察视场分成可同时观察的左右两个局部,其中一局部是观察样品色的视场;另一局部是观察参比色〔即罗维朋色度单位标准滤色片〕的视场。
适中选择滤色片组合以到达与被测样品颜色的最正确匹配,此时仪器显示的罗维朋滤色片量值即为被测样品的测量结果。
浊度仪浊度仪,又称浊度计。
可供水厂、电厂、工矿企业、实验室及野外实地对水样浑浊度的测试。
该仪器常用于饮用水厂办理QS认证时所需的必备检验设备。
工作原理:浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。
水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。
浊度仪〔浊度计〕采用90°散射光原理。
由光源发出的平行光束通过溶液时,一局部被吸收和散射,另一局部透过溶液。
与入射光成90°方向的散射光强度符合雷莱公式:Is=((KNV2)/λ)×I0其中:I0——入射光强度Is——散射光强度N——单位溶液微粒数V——微粒体积λ——入射光波长K——系数在入射光恒定条件下,在一定浊度范围内,散射光强度与溶液的混浊度成正比。
上式可表示为:Is/I0= K′N 〔K′为常数〕根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。
4.影响胶体粒子布朗运动位移的因素有哪些?布朗运动看起来复杂而无规那么,在一定条件下,在一定时间内粒子所移动的平均位移却具有一定的数值。
爱因斯坦利用分子运动论,假定胶体粒子为球形的前提下,提出如下布朗公式:x粒子沿X方向平均位移;t为观察时间;η为介质粘度;r为粒子半径;NA阿伏加德罗常数扩散——存在浓度梯度时,物质粒子因热运动〔Brown运动〕而发生宏观上的定向迁移现象,称为扩散。
扩散的推动力:浓度梯度描述扩散的根本定律:Fick第一定律和第二定律Fick第一定律〔Fick’s first law〕:沿X方向发生扩散时,在dt 时间通过截面积A的物质的量可表示为:D称为扩散系数,其物理意义是在单位浓度梯度下,在单位时间内通过单位截面的物质的量。
D的单位m2·s-1对于球形粒子,扩散系数D可用爱因斯坦—斯托克斯方程计算:R和L分别为气体常数和阿伏加德罗常数;η为介质粘度;r为球形粒子的半径;T为温度Fick第二定律〔Fick`s second law〕:在扩散方向上某一位置的浓度随时间的变化率存在以下关系:1905年,爱因斯坦假设粒子为球形,推导出粒子在t时间的平均位移x与扩散系数D之间的关系:上式著名的爱因斯坦—布朗〔Einstein-Brown〕运动公式,它提醒了布朗运动与扩散的内在联系,扩散是布朗运动的宏观表现,布朗运动是扩散的根底。
5.溶胶体系采用投加电解质的方法使胶粒脱稳,试说明电解质投加电解质投加的选用依据。
电解质的聚沉能力有两种表示法:(1)聚沉值〔或临界聚沉浓度〕:指定条件下,使胶体沉淀所需的最低浓度,以mmol·L-1表示;(2)聚沉率:即聚沉值的倒数。
电解质起聚沉作用的是胶体粒子所带相反电荷的异号离子,异号离子价数越高,聚沉率也越高。
M+:M2+:M3+=100:1.6:0.3=(1/1)6:(1/2)6:(1/3)6上式括号中的分母就相当于异号离子的价数,这个规那么称为Schulze-Hardy规那么。
一价离子的聚沉值约在50~150之间,二价离子在0.5~2之间,三价离子在0.05~0.1之间。
电解质的聚沉能力不但与异号离子的价数有关,而且与其它因素也有关,这些因素是:(1)异号离子的大小同价离子的聚沉效率虽然接近,但仍有差异,特别是一价离子的差异比较明显,假设将各离子按其聚沉能力的顺序排列,那么一价正离子可排列为:H+>Cs+>Rb+>NH4+>K+>Na+>Li+一价负离子可排列为F->IO3->H2PO4->BrO3->Cl->ClO3->Br->I->SCN- (2)同号离子的影响与胶粒所带电荷一样的离子称同号离子,一般说来,它们对胶体有一定的稳定作用,可以降低异号离子的聚沉能力。
但也不完全如此,有些同号离子,特别是有机大离子,即使与胶体粒子电荷一样,也能呗胶粒所吸附,增加了异号离子的聚沉值。
所以同号离子的影响尚无规律可循。
(3)不规那么聚沉在溶胶中参加少量电解质可以是溶胶聚沉,电解质浓度稍高,沉淀又重新分散形成溶胶,并使胶粒所带电荷改变符号。
如果电解质的浓度再升高,可以是新形成的溶胶再次沉淀,这种现象称为不规那么聚沉。
不规那么聚沉是胶体粒子对高价异号离子的强烈吸附的结果,少量电解质可以是胶体聚沉,但吸附过多的异号高价离子,是溶胶粒子又重新带异号离子的电荷,于是溶胶又重新稳定,所带电荷与原胶粒相反。
再参加电解质后,由于电解质离子的作用,又使溶胶聚沉。
此时电解质浓度已经很高,在增加电解质也不能使沉淀在分散。
(4)相互聚沉现象一般来说,带一样电荷的两种溶胶混合后没有变化,当然也有个别例外。
假设将两种相反电荷的溶胶相互混合,那么发生聚沉,这叫做相互聚沉现象。
聚沉的程度与两者的相对量有关,在胶粒所带电荷为零的附近沉淀得最完全。
如果第二种溶胶的相对含量很小或很大时沉淀都不完全。
产生相互聚沉现象的原因是可以把溶胶粒子看成一个巨大离子,所以溶胶的混合相似于加电解质的一种特殊情况。
6.在水处理领域,面对多分散体系的胶体水溶液,可采用哪些单元操作进展别离,试说它们分别利用了胶体的哪些性质?絮凝利用胶体双电层构造,通过添加絮凝剂,是胶体脱稳,凝聚成团,在通过重力作用下到达固液别离。
电泳用于别离带不同电性的胶体,其在外电场作用下,分散相胶粒相对于静止介质作定向移动的电动现象,利用的是其电化学性质电渗析用于别离不同胶粒大小的胶体,其在外电场作用下分散介质可在相对于与它接触精致的固体外表定向运动的性质。
固体为多孔膜或极细的毛细管,利用不同胶体粒径大小不同和电化学的性质。
7.电凝聚和化学混凝的根本原理是什么?各自有何优势特点?电凝聚法是指可溶性阳极在废水处理过程中通电溶解,产生的离子进一步反响生成羟基化合物与废水中的悬浮物、油类等物质凝聚沉淀从而到达净化废水的目的。
以铝电极和铁电极为例阐述电凝聚法处理废水过程中所发生的有关反响:铝阳极反响:Al-3e-→Al3+;Al3+〔aq〕+ 3H2O→Al(OH)3 +3H+〔aq〕;铁阳极反响:Fe-2e-→Fe2+;Fe2+〔aq〕+2OH-→Fe(OH)2;4Fe(OH)2+O2〔g〕+2H2O →4Fe(OH)3;阴极反响:3H2O +3e -→〔3/2〕H2〔g〕+3OH-〔aq〕;电凝聚法处理废水的作用机理主要有电解凝聚、电气浮以及电解氧化复原三种:(1)电解凝聚以铝为电解阳极时,在电凝聚法处理废水的过程中所形成的单核羟基化合物主要有Al(OH)2+,Al(OH)22+,Al2(OH)24+,Al(OH)4−;多核羟基化合物主要有Al6(OH)153+,Al7(OH)174+,Al8(OH)204+,Al13O4(OH)247+,Al13(OH)345+;以铁为阳极的电凝聚过程中所形成的羟基化合物主要有Fe(OH)2+,Fe(OH)2+,Fe2(OH)24+,Fe(OH)4−,Fe(H2O)2+,Fe(H2O)5OH2+,Fe(H2O)4(OH)2+,Fe(H2O)8(OH)24+,Fe2(H2O)6(OH)42+。
这些羟基化合物可以充当絮凝剂与废水中的油类、悬浮物以及溶解有机物等凝聚聚合成大的絮体,然后沉淀到溶液底部,从而出去这一局部污染物。
而且这些羟基络合离子具有的特殊的链式链式构造可以起到网捕和架桥的作用,是一种很强的吸附性能,也可以吸附废水中的局部污染物。
(2)电解气浮在电凝聚法处理废水的过程中,阴极产生H2、阳极也会有少量O2生成,这些气泡细小、均匀而且密度大,在上浮至水面的过程中可以将密度小的絮体携带至废水外表,从而到达净化废水的目的。
(3)电解氧化复原废水中常含有氯离子,在电解处理废水的过程中可以生成具有强氧化性的ClO-,它可以将废水中的局部氧化物催化氧化成水、二氧化碳以及无毒的小分子有机物,从而提高废水中COD的去除率。
而且HClO、Cl2等具有杀菌作用,可以降低废水中微生物、细菌的活性,从而提高废水的生化活性。
电凝聚的优缺点:电凝聚法作为处理废水的一种方法已经被人类使用了一百多年了,它具有以下几点优点:①处理废水的设备简单,仅需一个电解装置,而且设备占地面积小;②操作容易,适用范围广;③反响过程无需添加化学药剂,所以减小了设备投资和处理本钱;④该方法处理废水时具有电凝聚、电气浮以及氧化复原等作用,所以其处理效果高。