二次函数基础题(含答案)
- 格式:docx
- 大小:144.04 KB
- 文档页数:19
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题22.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列各式中,y 是x 的二次函数的是( )A .21y x =B .211y x x=++C .221y x =-D .y =2.线段5AB =.动点以每秒1个单位长度的速度从点出发,沿线段AB 运动至点B ,以线段AP 为边作正方形APCD ,线段PB 长为半径作圆.设点的运动时间为t ,正方形APCD 周长为y ,B e 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .正比例函数关系,二次函数关系D .反比例函数关系,二次函数关系3.某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系4.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m知识点二、二次函数的参数5.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或36.已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .07.设A(−2,y 1),B(1,y 2),C(2,y 3)是抛物线y=−x 2-2x+2上的三点,则y 1,y 2,y 3的大小关系为( )A .1y >2y >3yB . 1y >3y >2yC . 3y >2y >1yD . 3y >1y >2y 8.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .8知识点三、二次函数的解析式9.某城市居民2018年人均收入30000元,2020年人均收入达到y 元.设2018年到2020年该城市居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是( )A .y =30000(1+2x )B .y =30000+2xC .y =30000(1+x 2)D .y =30000(1+x )210.在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x=+B .24y x =-C .24y x =-D .42y x=-11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x p p=-+B .24y x p =-C .2(2)y x p =-D .2(4)y x =-+12.如图,在ABC V 中,90C Ð=°,5AC =,10BC =.动点M ,N 分别从A ,C 两点同时出发,点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动,点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t ,点M ,C 之间的距离为y ,MCN △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,正比例函数关系D .一次函数关系,二次函数关系二、填空题知识点一、二次函数的判断13.给出下列函数:①y =②()21y x x x =-+;③21y x x=+;④()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.14.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式_____________,它______(填“是”或“不是”)二次函数.15.下列函数①;②;③;④;⑤.其中是二次函数的是____________.16.把函数()()236y x x =--化成2y ax bx c =++的形式为________.知识点二、二次函数的参数17.已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.18.已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.19.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.20.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.知识点三、二次函数的解析式21.如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.22.若正方体的棱长为x ,表面积为y ,则y 与x 的关系式为________.23.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x =3时,y =18,那么当成本为72元时,边长为_______厘米.24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.26.一个二次函数234(1)21k k y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?27.已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.28.已知,如图①,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,点P 从点A 沿AB 以每秒2cm 的速度向点B 运动,点Q 从点C 以每秒1cm 的速度向点A 运动,设点P 、Q 分别从点A 、C 同时出发,运动时间为t (秒)(0<t <6),回答下列问题:(1)直接写出线段AP 、AQ 的长(含t 的代数式表示):AP =______,AQ =______;(2)设△APQ 的面积为S ,写出S 与t 的函数关系式;(3)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP C ¢,那么是否存在某一时间t ,使四边形PQP C ¢为菱形?若存在,求出此时t 的值;若不存在,说明理由.参考答案1.C【分析】根据二次函数的定义依次判断.解:A 、21y x =不是二次函数,不符合题意;B 、211y x x=++,不是二次函数,不符合题意;C 、221y x =-,是二次函数,符合题意;D 、y =故选:C .【点拨】此题考查二次函数的定义:形如2(0)y ax bx c a =++¹的函数是二次函数,解题的关键是正确掌握二次函数的构成特点.2.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可.解:依题意:AP=t ,BP =5-t ,故y =4t ,S =(5-t )2故选择:C【点拨】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键.3.D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.解:设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点拨】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.4.D【分析】根据题意,列出关系式,即可判断是否是二次函数.解:A.由题得:3y x =,不是二次函数,故此选项不符合题意;B.由题得:108y x =,不是二次函数,故此选项不符合题意;C.由题得:86y x=,不是二次函数,故此选项不符合题意;D.由题得:214y x p =,是二次函数,故此选项符合题意.故选:D .【点拨】本题考查二次函数的定义,形如2(0)y ax bx c a =++¹的形式为二次函数,掌握二次函数的定义是解题的关键.5.C【分析】根据二次函数的定义列方程计算即可;解:∵258(3)23m m y m x x -+=-+-是关于x 的二次函数,∴2582m m -+=且30m -¹,∴12m =,23m =且3m ¹,∴2m =;故选C .【点拨】本题主要考查了二次函数的定义、一元二次方程的求解,准确计算是解题的关键.6.B【分析】根据二次函数的未知数最高次数是2,最高次项系数不为零列式计算即可;解:∵|1|(1)2m y m x m -=++是y 关于x 的二次函数,∴1210m m ì-=í+¹î,解得:3m =;故选B .【点拨】本题主要考查了二次函数的定义,准确分析计算是解题的关键.7.A【分析】把点的坐标分别代入可求得123y y y ,,的值,之后比较大小便可解:因为()12,A y -,()()2312,B y C y ,,是抛物线222y x x =--+上的三点;所以:()()212222y =---×-+=2;2212121y =--×+=-;2322226y =--×+=-所以123y y y >>故答案为A 选项【点拨】本题主要考查抛物线上点坐标之间的x 或y 对应的值的大小比较,把具体的x 或y 代入求值比大小即可8.B【分析】将A 点坐标代入抛物线解析式y =x 2-x -2即可求得a 的值解:将A 点坐标x =3代入抛物线解析式y =x 2-x -2,得:a =32-3-2=4.故选B .【点拨】本题考查了给出函数解析式求点的坐标的方法,代入已知量即可求得未知量,理解二次函数的定义是解题关键.9.D【分析】2020年人均收入y = 2018年人均收入×(1+年人均收入平均增长率为x ) 2,把相关数值代入即可.解:设2018年到2020年该城市居民年人均收入平均增长率为x ,可列方程为:y =30000(1+x )2故选: D .【点拨】本题主要考查由实际问题抽象出二次函数的知识点,解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)2 =增长后的量.10.C【分析】根据剩下部分的面积=大正方形的面积-小正方形的面积得出y 与x 的函数关系式即可.解:设剩下部分的面积为y ,则:y =-x 2+4(0<x <2),故选:C .【点拨】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积得出是解题关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.解:圆的面积公式是2S r p =,原来的圆的面积=2416p p ×=,挖去的圆的面积=2x p ,∴圆环面积216y x p p =-.故选:A .【点拨】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.D【分析】先根据题意求出AM t =,2CN t =,则5CM AC AM t =-=-,即5y t =-,再由直角三角形的面积公式即可得到25S t t =-+,再根据一次函数与二次函数的定义即可判断.解:由题意得:AM t =,2CN t =,∴5CM AC AM t =-=-,即5y t=-∵∠C =90°,∴()211=25522MCN S CM CN t t t t ×=×-=-+△,即25S t t =-+,∴y 与t ,S 与t 满足的函数关系分别是一次函数和二次函数关系,故选D .【点拨】本题主要考查了一次函数和二次函数的定义,解题的关键在于能够准确根据题意求出y 与t ,S 与t 满足的函数关系式.13. ④ 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++¹逐一进行判断即可.①②③都不满足二次函数的形式,④是二次函数解:①不满足二次函数的形式,所以不是二次函数;②()21y x x x x =-+=-,是一次函数,也不满足要求;③不满足二次函数的形式,所以不是二次函数;④()21y x x x x =-=-+是二次函数所以二次函数只有④其中1,1,0a b c =-==故答案为 ④ 1- 1 0【点拨】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.14. y =12x 2-12 是解:设有x 人参加聚会,每个人需要和另外的(x -1)个人握手,所以共握手12x (x −1) 次,所以y =12x (x −1)=12x 2-12,是二次函数.故答案为y =12x 2-12,是.【点拨】本题考查了根据实际问题列二次函数关系式,解题的关键是了解握手问题中两人之间相互握手一次.15.②④解:根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.解:①y=5x-5为一次函数;②y=3x 2-1为二次函数;③y=4x 3-3x 2自变量次数为3,不是二次函数;④y=2x 2-2x+1为二次函数;⑤y=21x 函数式为分式,不是二次函数.故答案为②④.16.232012y x x =-+【分析】把函数()()236y x x =--右边相乘展开合并成2y ax bx c =++形式即可.解:()()22236=12218+332012y x x x x x x x =----=-+,则232012y x x =-+.【点拨】本题是对二次函数基础的考查,熟练把二次函数其他形式化成一般式是解决本题的关键.17.2019【分析】先将点(m ,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m ,0)代入函数解析式得,m 2-m -1=0,∴m 2-m =1,∴-3m 2+3m +2022=-3(m 2-m )+2022=-3+2022=2019.故答案为:2019.【点拨】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m ,0)代入函数解析式得到有关m 的代数式的值.18.-1【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;解:由题意得:21012m m -¹ìí+=î,解得:m =-1,故答案为:-1.【点拨】本题考查了二次函数的定义,理解二次函数的定义是解题关键.19. 4,-2 4【分析】根据二次函数的定义可得当2280m m --¹时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当2280m m --=且20m +¹时,这个函数是一次函数.解:由函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数,得m 2﹣2m ﹣8≠0.解得m ≠4,m ≠﹣2,由y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是一次函数,得228020m m m ì--=í+¹î,解得m =4,故答案为:4,﹣2;4.【点拨】本题考查了二次函数的定义求参数,熟知相关定义是解本题的关键.20.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,∵30m +¹,∴3m ¹-,∴3m =.故答案为:3.【点拨】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.21.y =-212x +48【分析】先求出212AMN S x =V ,进而即可得到答案.解:由题意得:21122AMN S AM AN x =×=V ,∴阴影部分的面积=6×8-212x ,即:y =-212x +48.故答案是:y =-212x +48.【点拨】本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.22.26y x =【分析】正方体有6个面,每一个面都是边长为x 的正方形,这6个正方形的面积和就是该正方体的表面积.解:∵正方体有6个面,每一个面都是边长为x 的正方形,∴表面积26y x =.故答案为:26y x =.【点拨】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键.23.6【分析】设y 与x 之间的函数关系式为y=kx 2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解:设y 与x 之间的函数关系式为y=kx 2,由题意,得18=9k ,解得:k=2,∴y=2x 2,当y=72时,72=2x 2,∴x=6,故答案为:6.【点拨】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.24.y =(60+2x )(40+2x )解:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).【点拨】本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.2132y x =-+和215s t t =++是二次函数【分析】根据二次函数的定义逐一判断即可.解:2132y x =-+是y 关于x 的二次函数;231252y x x =-+不是二次函数;222y x =+是一次函数,不是二次函数;215s t t =++是s 关于t 的二次函数,故2132y x =-+和215s t t =++是二次函数.【点拨】本题主要考查二次函数的定义,解题的关键是掌握其定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ¹的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.2(y ax bx c a ==++、b 、c 是常数,0)a ¹也叫做二次函数的一般形式.26.(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可.解:(1)依题意有234210k k k ì-+=í-¹î,解得:k =2,∴k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∴y 的值为14.【点拨】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.27.(1)1m =;(2)1m ¹±【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;解:(1)由题意得,1010m m ì-=í+¹î解得1m =;(2)由题意得,||10m -¹,解得1m ¹且1m ¹-.【点拨】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.28.(1)2t ,6t -;(2)2S =+;(3)存在,t =4时,四边形PQP C ¢是菱形.【分析】(1)根据∠A =60°,AB =12cm ,得出AC 的长,进而得出AP =2t ,6AQ t =-.(2)过点P 作PH ⊥AC 于H .由AP =2t ,AH =t ,得出PH ,从而求得S 与t 的函数关系式;(3)过点P 作PM ⊥AC 于M ,根据菱形的性质得PQ =PC ,则可得出,CM MQ AQ ==求得t 即可.解:(1)∵在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,∴AC =6,∴由题意知:AP =2t ,6,AQ t =-故答案为:2,6.t t -(2)如图①过点P 作PH ⊥AC 于H .∵∠C =90°,∠A =60°,AB =12cm ,∴∠B =30°,∴∠HPA =30°,∵AP =2t ,AH =t ,∴,PH ===∴()2116,22S AQ PH t ==-=+g g (3)当t =4时,四边形PQP′C 是菱形,理由如下:证明:如图②过点P 作PM ⊥AC 于M ,∵CQ =t ,由(2)可知,AM =12AP =t ,∴QC =AM ,,CM AQ \=Q 由对折可得:,,PC P C PQ P Q ¢¢==\ 当PC =PQ 时,四边形PQP C ¢是菱形,,CM MQ \=\ CM =MQ =AQ =13AC =2,4,CQ \=4.t \= 当t =4时,四边形PQP C ¢是菱形.【点拨】本题考查的是含30°的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键.。
二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。
3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。
4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。
5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。
6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。
9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。
12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。
14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。
15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。
18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
二次函数试题及答案一、选择题1. 下列哪个函数是二次函数?A. y = x^2 + 3x + 2B. y = 3x + 2C. y = x^3 - 1D. y = 1/x答案:A2. 二次函数 y = ax^2 + bx + c 的顶点坐标是什么?A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2) / 4aD. (-b/2a, 4ac - b^2) / (4a)答案:D3. 如果二次函数 y = ax^2 + bx + c 的 a < 0,那么它的图像开口方向是?A. 向上B. 向下C. 向左D. 向右答案:B二、填空题4. 二次函数 y = 2x^2 - 4x + 3 的顶点坐标是()。
答案:(1, 1)5. 如果二次函数 y = ax^2 + bx + c 与 x 轴有两个交点,那么 a 的取值范围是()。
答案:a ≠ 0 且Δ > 0三、解答题6. 已知二次函数 y = -3x^2 + 6x - 5,求该函数与 x 轴的交点。
答案:解:令 y = 0,得 -3x^2 + 6x - 5 = 0,解得x1 = (3 + √33) / 6,x2 = (3 - √33) / 6,因此,该函数与 x 轴的交点坐标为( (3 + √33) / 6, 0) 和( (3 - √33) / 6, 0)。
7. 某二次函数的图像经过点 (1, 2) 和 (2, 3),且顶点在 x 轴上,求该二次函数的解析式。
答案:解:设二次函数为 y = a(x - h)^2 + k,由于顶点在 x 轴上,所以 k = 0,又因为图像经过点 (1, 2) 和 (2, 3),代入得:a(1 - h)^2 = 2a(2 - h)^2 = 3解得 h = 1.5,a = 2,因此,该二次函数的解析式为 y = 2(x - 1.5)^2。
四、应用题8. 一个矩形的长是宽的两倍,如果面积为 24 平方米,求这个矩形的长和宽。
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
22.1二次函数同步基础练习题(含答案)一、选择题(本大题共9小题)1.下列函数中是二次函数的是()A.y=3x-1B.y=x3-2x-3C.y=(x+1)2-x2D.y=3x2-12.下列各式中,y是x的二次函数的为()A.y=-9+x2B.y=-2x+1C.y=D.y=-(x+1)+33.对于任意实数m,下列函数一定是二次函数的是()A.y=(m-1)2x2B.y=(m+1)2x2C.y=(m2+1)x2D.y=(m2-1)x24.下列函数中,是二次函数的有()①y=1-x2②y=③y=x(1-x)④y=(1-2x)(1+2x)A.1个B.2个C.3个D.4个5.二次函数y=-x2-2x+1的二次项系数是()A.1 B.-1 C.2 D.-26.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.-2 B.2 C.±2 D.07.在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有()①设正方形的边长为x面积为y,则y与x有函数关系;②x个球队参加比赛,每两个队之间比赛一场,则比赛的场次数y与x之间有函数关系;③设正方体的棱长为x,表面积为y,则y与x有函数关系;④若一辆汽车以120km/h的速度匀速行驶,那么汽车行驶的里程y(km)与行驶时间x(h)有函数关系.A.1个B.2个C.3个D.4个8.已知函数:①y=3x-1;②y=3x2-1;③y=-20x2;④y=x2-6x+5,其中是二次函数的有()A.1个B.2个C.3个D.4个9.下列函数关系中,满足二次函数关系的是()A.圆的周长与圆的半径之间的关系B.在弹性限度内,弹簧的长度与所挂物体质量的关系C.圆柱的高一定时,圆柱的体积与底面半径的关系D.距离一定时,汽车行驶的速度与时间之间的关系二、填空题(本大题共11小题)10.已知函数y=(m-1)x2+2x-m中,y是关于x的二次函数,则写一个符合条件的m的值可能是______ .11.若函数是二次函数,则m的值为______ .12.若y=x m-2是二次函数,则m= ______ .13.已知函数是关于x的二次函数,则m的值为______ .14.已知函数,当m= 时,它是二次函数.15.函数的图象是抛物线,则m= ______ .16.若函数y=(m2+m)是二次函数,则m= ______ .17.如果函数y=(k-3)+kx+1是二次函数,那么k的值一定是______ .18.函数y=(m+1)x|m|+1+4x-5是二次函数,则m= ______ .19.在函数①y=ax2+bx+c,②y=(x-1)2-x2,③y=5x2-,④y=-x2+2中,y关于x的二次函数是______ .(填写序号)20.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当______ 时,x,y之间是二次函数关系;(2)当______ 时,x,y之间是一次函数关系.三、解答题(本大题共1小题)21.一个二次函数y=(k-1)+2x-1.(1)求k值.(2)求当x=0.5时y的值?【答案】1.D2.A3.C4.C5.B6.B7.C8.C9.C10.011.-312.413.-114.-115.-116.17.018.119.④20.a≠2;a=2且b≠221.解:(1)由题意得:k2-3k+4=2,且k-1≠0,解得:k=2;(2)把k=2代入y=(k-1)+2x-1得:y=x2+2x-1,当x=0.5时,y=.。
【最新整理,下载后即可编辑】二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x;④ 21yx x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y m m x 是关于x 的二次函数5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S(米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是(或 ),顶点坐标是 ,当x时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D .6、已知函数24m m y mx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; st O st O s t O s t O(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最值,是.(3)当x 时,y随x的增大而增大;当x 时,y随x 的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23x=的图象经过怎样的平移得到的?y-8、已知函数()412-y.=x+(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.练习六c=2的图象和性质y++bxax1、抛物线942+y的对称轴是.x+=x2、抛物线2522+12y的开口方向是,顶点坐标x=x-是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式;2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 练习七 c bx ax y ++=2的性质1、函数2y x px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c (0≠a )的图象如图所示,则下列结论: 1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b 中,若0a b ,则它的图象必经过点( )A1,1 B 1,1 C 1,1 D 1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。
二次函数基础测试题附解析一、选择题1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab <0,∵抛物线与y 轴的交点在正半轴上,∴c >0,∴abc <0,故①正确;②∵﹣=1, ∴b =﹣2a ,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ),而x =0时,y =c >0,∴x =2时,y =c >0,∴y =4a +2b +c >0,故③正确;④由图象可知:△>0,∴b 2﹣4ac >0,故②正确;故选:D .【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.4.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O点为AB的中点,又∵圆心C坐标为(0,4),∴OC=4,∴BC长度=2205OB C+=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有两个不相等的实数根,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a,b,c的正负;根据抛物线的对称轴位置可判别在x轴上另一个交点;根据抛物线与直线y=m的交点可判定方程的解.【详解】∵函数的图象开口向上,与y轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a - =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上,0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.7.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A.B.C.D.【答案】B【解析】【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c 之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.【详解】①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx +c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( )A .①③④B .①②④C .①②③D .②③【答案】B【解析】【分析】①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确.【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴a +bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.16.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a-<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确; D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.17.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤【答案】D【解析】 【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.18.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】B【解析】试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+<故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .19.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a ->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫-- ⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。
二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数基础练习练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离5(米)与时间1(秒)的数据如下表:时间短秒)1234• • •距离5(米)281832• • •写出用1表示5的函数关系式.2、下列函数:① g = \:'3x2 ;② y — x2 — x 1 + x ;③ y = x2 x2 -p x— 4 ;④y = — + x;⑤y = x 1_x,其中是二次函数的是,其中a= ,x 2b =,c =3、当m时,函数y= m-2 x 2 + 3x—5 (m为常数)是关于x的二次函数4、当m ______ 时,函数y = m2 + m x m厂2m-1是关于x的二次函数5、当m ______ 时,函数y = m-4 x m 2-5 m+ 6 +3x是关于x的二次函数6、若点A (2, m)在函数y = x 2 -1的图像上,则A点的坐标是_________ .7、在圆的面积公式S二n「2中,5与r的关系是()人、一次函数关系8、正比例函数关系1反比例函数关系口、二次函数关系8、正方形铁片边长为15^^,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.⑴求盒子的表面积5552)与小正方形边长x(cm)之间的函数关系式;⑵当小正方形边长为3cm时,求盒子的表面机9、如图,矩形的长是4^^,宽是3^^,如果将长和宽都增加x cm, 那么面积增加ycm2,①求y与x之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数y = ax 2 + c(a丰0),当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为2米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽人8为*米,则猪舍的总面积$(米2)与*有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽人8的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y = ax2的图象与性质1、填空:(1)抛物线y = 1 x2的对称轴是(或),顶点坐标是,当X 时,y随*的增大而增大,当x 时,y随*的增大而减小,当x=时,该函数有最____ 值是_________ ;(2)抛物线y = - 1 x 2的对称轴是(或),顶点坐标是________________________________ ,当x 时,"随*的增大而增大,当x 时,"随*的增大而减小,当x=时,该函数有最值是;2、对于函数y = 2 x 2下列说法:①当*取任何实数时,y的值总是正的;②x的值增大,旷的值也增大;③"随*的增大而减小;④图象关于"轴对称.其中正确的是.3、抛枷线V= -X2不具有的性质是( )A 、开口向下B 、对称轴是V 轴C 、与V 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程S 与下落时间t 满足S = 1 gt 2(g = 9.8),则s 与t 的 25、函数y = ax 2 3与y = — ax + b 的图象可能是( )6、已知函数y =mx m 2 ~m~ 4的图象是开口向下的抛物线,求m 的值.7、二次函数y = mx m 2 -i 在其图象对称轴的左侧,"随*的增大而增大,求团的值.3••一8、二次函数y = -- x 2,当x 1>x 2>0时,求匕与旷2的大小关系. 已知函数y & + 2^m 2 + m -4是关于*的二次函数,求:团为何值时,抛物线有最低点?求出这个最低点,这时*为何值时,"随*的增大而增大;团为何值时,抛物线有最大值?最大值是多少?当*为何值时,"随*的增大而减小?9、(1) 满足条件的m 的值;(2)(3)10、如果抛物线y = ax2与直线y=x — 1交于点b,2,求这条抛物线所对应的二次函数的关系式.练习三函数y=ax 2 +。
的图象与性质1、抛物线y=—2x2 —3的开口,对称轴是,顶点坐标是Bx 时,旷随乂的增大而增大,当乂时,旷随乂的增大而减小.2、将抛物线y = 3x2向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数心得到不同的抛物线y= X2+k,当k取0, 土1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线y= 2x2 -1向上平移4个单位后,所得的抛物线是,当乂=时,该抛物线有最—(填大或小)值,是.5、已知函数y = mx2 + (m2-m)x + 2的图象关于y轴对称,则m二;6、二次函数y=ax 2 +c (a丰0)中,若当*取小人(入孙2)时,函数值相等,则当*取入+与时,函数值等于.练习四函数y = a (x - h)2的图象与性质1、抛物线y = -1 (x - 3)2,顶点坐标是_________ Jx 时,旷随乂的增大而减小,函数有最值.2、试写出抛物线y = 3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.2(1)右移2个单位;(2)左移2个单位;(3)先左移1个单位,再右移4个单位.33、请你写出函数y =(x +1)2和y = x 2 +1具有的共同性质(至少2个).4、二次函数y = 〃(x - h)2的图象如图:已知a = 1 , OA=OC,试求该抛物线的解析式.5、抛物线y = 3(x-3)2与*轴交点为人,与旷轴交点为8,求人、8两点坐标及0人08的面积.6、二次函数y = a (x-4)2,当自变量x由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值9随*值的变化情况.7、已知抛物线y = x 2 - (k + 2)x + 9的顶点在坐标轴上,求卜的值.练习五y = a (x - h )2+ k的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上. ___________________________ .2、二次函数y = (x—1)2 + 2,当x= _________ 时,y有最小值.3、函数V = 1 (x —1)2 + 3,当x _______ 时,函数值y随x的增大而增大.24、函数旷=1仅+3)2-2的图象可由函数旷=」*2的图象向平移3个单位,再向平移2 22个单位得到.5、已知抛物线的顶点坐标为2,1 ,且抛物线过点3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P(1, 3),则函数"随自变量*的增大而减小的*的取值范围是( )A、x>3B、x<3C、x>1D、x<17、已知函数y = -3(x - 2 )2 + 9 .(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当*=时,抛物线有最值,是(3)当x 时,y随*的增大而增大;当* 时,"随*的增大而减小.(4)求出该抛物线与*轴的交点坐标及两交点间距离;(5)求出该抛物线与旷轴的交点坐标;(6)该函数图象可由y = -3 x 2的图象经过怎样的平移得到的?8、已知函数y =(x +1)2—4.(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与*轴的交点为A、B和与y轴的交点心求448吸面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当*取何值时,函数值大于0;当*取何值时,函数值小于0.练习六y = ax2 + bx + c的图象和性质1、抛物线y = x2 + 4x + 9的对称轴是__________ .2、抛物线y = 2x 2 -12x + 25的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式.4、将y = X2 —2x + 3 化成y = a (x —h)2 + k 的形式,则y= ___ .___ — 1 一 5 一一^ .5、把二次函数y= x2—3x —万的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线y = x 2 — 6x —16与x 轴交点的坐标为;7、函数y = —2x2 + x 有最—值,最值为;8、二次函数y = x 2 + bx + c 的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为y = x 2 — 2 x +1,则匕与©分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-14 9、二次函数y = x 2 — 2 x —1的图象在x 轴上截得的线段长为( )A 、2.2B 、3.2C 、2cD 、3v310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:11、把抛物线y = —2x 2 + 4x +1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的 抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数y = —x 2 — x + 6的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线y =碇+ 2?+ 3的顶点和坐标原点1)求一次函数的关系式;2)判断点一2,5是否在这个一次函数的图象上(1 ) y = —x 2 — 2x +1 ;2 ;(2 ) y = —3x 2 + 8x — 2 ; (3 ) y = — - x 2 + x — 4414、某商场以每台2500元进口一批用电.如每台售价定为2700元,可卖出400台,以每100元为—个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利桐?最大利烟是多少元?练习七y = ax2 +bx + c的性质1、函数9 =戏+2? + 4的图象是以3,2为顶点的一条抛枷线,这个二次函数的表达式为2、二次函数y = mx 2+2x + m -4m 2的图象经过原点,则此抛物线的顶点坐标是________________ac3、如果抛物线y=ax 2 + bx+c与y轴交于点A (0,2),它的对称轴是x = -1,那么丁 = b4、抛物线y = X2 + bx + c与x轴的正半轴交于点八、8两点,与y轴交于点心且线段人8的长为1, △ ABC的面积为1,则b的值为.5、已知二次函数y = 〃x 2 + bx + c的图象如图所示,则a—0, b—0, c—0, b2 -4ac 0;6、二次函数y = ax2 + bx + c的图象如图,则直线y = ax + bc 的图象不经过第一象限.7、已知二次函数y = ax2 + bx + c ( a丰0 )的图象如图所示, 则下列结论:1 ) a, b同号;2)当x = 1和x = 3时,函数值相同;3)4a + b = 0;4)当y = -2时,x的值只能为0;其中正确的是______________________ , 一 _2m + 48、已知—次函数y = -4x2—2痛+加2与反比例函数)= ----------- 的图象在第二象限内的一个交x点的横坐标是-2,则m= 9、二次函数?/ = 72+Q/ + b 中,若。