(整理)开关电源电路设计实例分析(设计流程)
- 格式:doc
- 大小:600.00 KB
- 文档页数:16
开关电源电路设计实例分析开关电源电路是一种常用的电源供电方式,其优点包括高效能、体积小、重量轻等特点,因此在电子设备中得到广泛应用。
本文将介绍开关电源电路设计的一般流程,并以设计一个12VDC输出的开关电源电路为例进行分析。
1.确定需求和规格在设计开关电源电路之前,首先要确定需求和规格。
例如,我们要设计一个12VDC输出电源,输出电流为1A,并且需要输入电压范围为220VAC。
此外,我们还需要确定开关电源的效率、功率因数等要求。
2.选取开关电源拓扑结构根据需求和规格,选择适合的开关电源拓扑结构。
常见的开关电源拓扑包括反激式、半桥或全桥式等。
根据需求,我们选择反激式开关电源。
3.选择主要元件根据选取的拓扑结构,选择适当的主要元件,包括主变压器、开关管、输出电容和滤波电感等。
选取主变压器时需要考虑输入输出电压比例、功率等因素;选择开关管时需要考虑导通电阻、开通速度等因素。
4.电路图设计根据所选的开关电源拓扑结构和主要元件,设计电路图。
包括输入滤波电路、整流电路、开关电路和输出滤波电路。
同时,需要设计开关电源的保护电路,如过流保护、过压保护等。
5.计算关键参数根据设计的电路图,计算关键参数。
例如,计算输入电流、输出电流、开关频率等。
这些参数可以通过电路图中的公式和关系计算得出。
6.仿真和优化通过电路仿真软件,对设计的电路进行仿真和优化。
可以通过调整元件参数和拓扑结构来优化电路性能,如提高效率或降低成本。
7.PCB布局设计在完成电路图设计和仿真优化后,需要进行PCB布局设计。
将电路图转化为实际的PCB布局,并考虑元件之间的布置、走线、散热等因素。
8.元件选型和采购根据PCB布局设计,选择合适的元件,并进行采购。
需要考虑元件的性能、价格、可靠性等因素。
9.确定元件焊接方式根据元件选型和PCB布局,确定元件的焊接方式。
根据焊接方式,可以选择手工焊接或波峰焊接等。
10.制作和调试样机根据设计和选型的元件,制作和调试样机。
开关电源设计实例之保护电路实例详解-设计应用开关电源各种保护电路实例详细解剖!输入欠压保护电路一1概述(电路类别、实现主要功能描述):该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。
2电路组成(原理图):输入欠压保护电路二1概述(电路类别、实现主要功能描述):输入欠压保护电路。
当输入电压低于设定欠压值时,关闭输出;当输入电压升高到设定恢复值时,输出自动恢复正常。
2电路组成(原理图):3工作原理分析(主要功能、性能指标及实现原理):输入电压在正常工作范围内时,Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功能。
R21、VT6、R23组成欠压关断、恢复时的回差电路。
当欠压关断时,VT6导通,将R21与R2并联,;恢复时,VT6截止,4电路的优缺点优点:电路形式简单,成本较低。
缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。
5应用的注意事项:VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。
输出过压保护电路一1概述(电路类别、实现主要功能描述):输出过压保护电路。
当有高于正常输出电压范围的外加电压加到输出端或电路本身故障(开环或其他)导致输出电压高于稳压值时,此电路会将输出电压钳位在设定值。
2电路组成(原理图):3工作原理分析(主要功能、性能指标及实现原理):输出过压时,加在VD3上的电压大于其稳压值时,VD3导通,输出电压被钳位,同时通过IC4向原边反馈。
4电路的优缺点优点:电路形式简单,成本较低。
缺点:因稳压管VD3批次间稳压值的差异,导致过压钳位点上下浮动,大批量生产时需经常调试相关参数。
开关电源放电电路设计一、引言开关电源是一种常用的电源类型,其工作原理是通过开关器件控制电源的输入和输出,实现电能的转换和调节。
在实际应用中,开关电源放电电路常用于处理电源中的能量,以保证电路的安全性和稳定性。
本文将介绍开关电源放电电路的设计原理和步骤。
二、设计原理开关电源放电电路的设计原理是利用电容器来接收和释放电源中的能量。
当开关电源工作时,电容器会接收电源的电能并储存起来;而当需要放电时,电容器会释放储存的电能,以满足电路的需求。
三、设计步骤1. 确定电容器的规格和参数:根据电路的需求和工作条件,选择合适的电容器,并确定其额定电压、容量和温度范围等参数。
常用的电容器有铝电解电容器和陶瓷电容器等。
2. 确定放电电阻的数值:为了控制电容器的放电速率,需要在电容器和电路之间串联一个放电电阻。
放电电阻的数值可以通过计算得到,通常选择合适的数值以确保电容器能够在需要的时间内释放出所需的电能。
3. 连接电路:将电容器和放电电阻按照设计要求连接到开关电源电路中。
确保连接正确并牢固可靠。
4. 测试和调整:完成电路的连接后,进行测试和调整。
通过测量电容器的放电时间和电压波动等参数,检查电路的工作情况并进行必要的调整,以确保电路的稳定性和性能符合设计要求。
四、注意事项1. 在设计和连接电路时,要注意电容器的极性,确保正负极正确连接,避免反向放电导致电路故障。
2. 选择合适的电容器和放电电阻,以满足电路的需求和性能要求。
3. 在实际应用中,要考虑电容器的寿命和容量衰减等因素,及时更换和维护电路设备。
4. 在进行测试和调整时,要小心操作,避免触电和其他安全事故的发生。
五、总结开关电源放电电路的设计是一项重要的工作,能够有效地处理电源中的能量,保证电路的稳定性和安全性。
在设计过程中,需要注意选择合适的电容器和放电电阻,确保电路的性能符合要求。
在实际应用中,还要注意电容器的寿命和容量衰减等因素,及时进行维护和更换。
通过合理的设计和维护,能够提高开关电源放电电路的工作效率和可靠性。
开关电源设计开发流程1. 需求分析
- 确定电源输入电压范围和输出电压规格
- 确定电源输出功率和效率要求
- 确定电源尺寸和工作环境要求
2. 拓扑结构选择
- 分析常见拓扑结构的优缺点
- 根据需求选择合适的拓扑结构
3. 关键器件选择
- 选择功率开关管
- 选择变压器
- 选择输出滤波电容和其他辅助器件
4. 电路设计
- 进行电路原理设计和仿真验证
- 进行PCB布局设计
5. 电源原型制作与调试
- 制作样机电路板
- 对电路进行调试和测试
- 进行功率和效率测试
6. 电磁兼容性(EMC)设计
- 分析电路的EMC问题
- 采取相应的EMC设计措施
7. 热设计
- 进行热分析和模拟
- 设计散热结构
8. 机械结构设计
- 确定外壳尺寸和材料
- 设计机械结构和组装工艺
9. 安全认证和标准符合性
- 进行安全认证测试
- 确保满足相关标准和规范
10. 试产和量产
- 制作小批量试产样品
- 进行可靠性测试和改进
- 量产和交付
这个流程概括了开关电源设计开发的主要步骤,具体细节需要根据实际产品需求进行调整和完善。
良好的设计流程有助于提高开发效率,确保产品质量和可靠性。
开关电源设计方案1. 导言开关电源是一种将交流电转换为直流电的电源设备。
它具有高转换效率、小体积、轻重量等特点,被广泛应用于电子设备中。
本文将介绍开关电源的基本工作原理、设计流程以及几个常见的开关电源设计方案。
2. 开关电源的工作原理开关电源的工作原理包括输入滤波、整流、能量存储、调节和输出等步骤。
以下是一个典型的开关电源的工作原理图:开关电源工作原理图开关电源工作原理图1.输入滤波:交流电通过电源的输入端,首先经过输入滤波电路。
该电路使用电容和电感元件,去除交流电中的高频噪声和干扰,使得电源输入的电流更加稳定。
2.整流:经过滤波的交流电信号,经过整流桥或整流管,被转换为一个较高的直流电压。
整流桥通常由4个二极管组成,它们交替导通,使得输入交流电的正半周和负半周都能够被转换为正向的直流电。
3.能量存储:整流后的直流电压通过电容器进行存储。
电容器的作用是储存电荷以平滑输出电压,防止输出电压的波动。
4.调节:开关电源通常具有可调节输出电压的功能。
这是通过调整开关管的导通和截止时间来实现的。
调节电路通常由一片PWM控制芯片和电路反馈元件(如电感、变压器等)组成,以控制开关频率和占空比。
5.输出:经过调节后的直流电压,通过输出滤波电路去除残余的高频噪声,然后供给电子设备的负载。
3. 开关电源设计流程设计一个功能稳定、安全可靠的开关电源需要经过以下几个步骤:3.1 确定设计规格在开始设计之前,需要明确电源的输入和输出要求。
输入要求包括交流电的电压范围、频率、输入的稳定性等;输出要求包括直流电的电压、电流、纹波与噪声等。
3.2 选择拓扑结构常见的开关电源拓扑结构有多种,如Boost、Buck、Buck-Boost、Flyback等。
根据实际需求选择最适合的拓扑结构。
3.3 确定主要元件参数根据设计规格和拓扑结构,确定主要元件的参数,如开关管、变压器、电感、电容等。
3.4 确定控制策略根据实际需求,选择合适的控制策略,如PWM控制、电流模式控制等。
开关电源从原理图到PCB设计的流程解析描述一、从原理图到PCB的设计流程建立元件参数-输入原理网表-设计参数设置-手工布局-手工布线-验证设计-复查-CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。
最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。
当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路:(1)。
电源开关交流回路(2)。
输出整流交流回路(3)。
输入信号源电流回路(4)。
输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。
所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。
如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。
设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。
万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。
开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。
在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。
1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。
在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。
2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。
无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进行分解。
分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。
3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。
设计前最好都先看一下相应的datasheet,确认一下简单的参数。
无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。
一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。
4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。
当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。
开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。
开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。
二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。
2. 整流桥:将输入交流电转换为直流电信号。
3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。
4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。
5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。
三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。
2. 选择合适的变压器。
3. 设计整流桥和直流滤波器。
4. 设计开关变换器,包括选择合适的开关管和控制电路。
5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。
6. 进行整个电路的仿真和优化。
7. 进行实际电路的搭建和调试。
四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。
1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。
2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。
通过计算得到变压比为1:2。
3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。
4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。
控制信号通过脉冲宽度调制(PWM)技术进行控制。
同时,在输入端加入输入滤波器进行滤波处理。
5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。
同时,加入输出滤波电容进行滤波处理。
6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
开关电源电路设计实例分析(设计流程)1. 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33 为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm2)B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40 为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
设计流程简介3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
NS = 二次侧圈数NP = 一次侧圈数Vo = 输出电压VD= 二极管顺向电压Vin(min) = 滤波电容上的谷点电压D = 工作周期(Duty cycle)3.2.5 决定Ip 值:Ip = 一次侧峰值电流Iav = 一次侧平均电流Pout = 输出瓦数h =效率f = PWM 振荡频率3.2.6 决定辅助电源的圈数:依据变压器的圈比关系,可决定辅助电源的圈数及电压。
3.2.7 决定MOSFET 及二次侧二极管的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。
3.2.8 其它:若输出电压为5V 以下,且必须使用TL431 而非TL432 时,须考虑多一组绕组提供Photo coupler 及TL431 使用。
3.2.9 将所得资料代入公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整。
3.2.10 DA-14B33 变压器计算:输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm.假设fT = 45 KHz ,Vin(min)=90V,η =0.7,P.F.=0.5(cos θ),Lp=1600 Uh计算式:变压器材质及尺寸:由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm2,可绕面积(槽宽)=10mm,因Margin Tape使用2.8mm,所以剩余可绕面积为4.4mm.2 假设滤波电容使用47uF/400V,Vin(min)暂定90V。
l 决定变压器的线径及线数:2 假设N P使用0.32ψ的线电流密度可绕圈数假设Secondary使用0.35ψ的线假设使用4P,则决定Duty cycle:假设Np=44T,Ns=2T,VD=0.5(使用schottky Diode)决定Ip 值:决定辅助电源的圈数:假设辅助电源=12V假设使用0.23ψ的线若N A1=6Tx2P,则辅助电源=11.4V决定MOSFET 及二次侧二极管的Stress(应力):Ns其它:因为输出为3.3V,而TL431 的Vref值为2.5V,若再加上photo coupler 上的压降约1.2V,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。
假设NA2 = 4T 使用0.35ψ线,则所以可将N A2定为4Tx2P变压器的接线图:3.3 零件选用:零件位置(标注)请参考线路图: (DA-14B33 Schematic)3.3.1 FS1保险丝:由变压器计算得到Iin 值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。
3.3.2 TR1(热敏电阻):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power 产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec 之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1 电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power 上)。
3.3.3 VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power 的正常动作,所以必须在靠AC 输入端(Fuse 之后),加上突波吸收器来保护0.32Φx1Px22T0.32Φx1Px22T0.35Φx2Px4T0.35Φx4Px2T0.23Φx2Px6T设计流程简介Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
3.3.4 CY1,CY2(Y-Cap):Y-Cap 一般可分为Y1 及Y2 电容,若AC Input 有FG(3 Pin)一般使用Y2- Cap ,AC Input 若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2 的差异,除了价格外(Y1 较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2 的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin 公司标准为750uAmax)。
3.3.5 CX1(X-Cap)、RX1:X-Cap 为防制EMI零件,EMI 可分为Conduction及Radiation 两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR22 测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~数M 之间)的EMI 防制有效,一般而言X-Cap 愈大,EMI 防制效果愈好(但价格愈高),若X-Cap 在0.22uf 以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。
3.3.6 LF1(Common Choke):EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
3.3.7 BD1(整流二极管):将AC 电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V 的整流二极管,因为是全波整流所以耐压只要600V 即可。
3.3.8 C1(滤波电容):由C1 的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V 的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1 电压最高约380V,所以必须使用耐压400V 的电容。
3.3.9 D2(辅助电源二极管):整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异:1.耐压不同(在此处使用差异无所谓)2.VF不同(FR105=1.2V,BYT42M=1.4V)3.3.10 R10(辅助电源电阻):主要用于调整PWM IC 的VCC 电压,以目前使用的3843 而言,设计时VCC 必须大于8.4V(Min. Load 时),但为考虑输出短路的情况,VCC 电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。
3.3.11 C7(滤波电容):辅助电源的滤波电容,提供PWM IC 较稳定的直流电压,一般使用100uf/25V 电容。
3.3.12 Z1(Zener 二极管):当回授失效时的保护电路,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843VCC 与3843 Pin3 脚之间加一个Zener Diode,当回授失效时ZenerDiode 会崩溃,使得Pin3 脚提前到达1V,以此可限制输出电压,达到保护零件的目的.Z1 值的大小取决于辅助电源的高低,Z1 的决定亦须考虑是否超过Q1 的VGS耐压值,原则上使用公司的现有料(一般使用1/2W 即可).3.3.13 R2(启动电阻):提供3843 第一次启动的路径,第一次启动时透过R2 对C7 充电,以提供3843 VCC 所需的电压,R2 阻值较大时,turn on的时间较长,但短路时Pin 瓦数较小,R2 阻值较小时,turn on的时间较短,短路时Pin 瓦数较大,一般使用220KΩ/2W M.O。
3.3.14 R4 (Line Compensation):高、低压补偿用,使3843 Pin3 脚在90V/47Hz 及264V/63Hz 接近一致(一般使用750KΩ~1.5MΩ 1/4W 之间)。
3.3.15 R3,C6,D1 (Snubber):此三个零件组成Snubber,调整Snubber 的目的:1.当Q1 off 瞬间会有Spike 产生,调整Snubber 可以确保Spike 不会超过Q1 的耐压值,2. 调整Snubber 可改善EMI. 一般而言,D1 使用1N4007(1A/1000V)EMI 特性会较好.R3 使用2W M.O.电阻,C6 的耐压值以两端实际压差为准(一般使用耐压500V 的陶质电容)。