晶体结构与性质
- 格式:doc
- 大小:442.50 KB
- 文档页数:3
《晶体结构与性质》讲义一、晶体的定义与特征当物质内部的粒子(原子、分子或离子)在三维空间中呈现出周期性的有序排列时,我们就称这种物质为晶体。
晶体具有一些显著的特征。
首先,晶体具有规则的几何外形。
这是因为其内部粒子的有序排列决定了晶体在宏观上呈现出特定的形状。
其次,晶体具有固定的熔点。
当晶体受热时,温度升高到一定程度,晶体开始熔化,且在熔化过程中温度保持不变,直到完全熔化。
再者,晶体具有各向异性。
这意味着晶体在不同方向上的物理性质(如导电性、导热性、光学性质等)可能存在差异。
二、晶体结构的基本概念1、晶格为了描述晶体中粒子的排列规律,我们引入了晶格的概念。
晶格是由无数个相同的点在空间有规则地排列而成,这些点称为晶格点。
通过连接晶格点,可以得到晶格的框架。
2、晶胞晶胞是晶体结构中能够反映晶体周期性和对称性的最小重复单元。
晶胞的形状和大小可以用三条棱边的长度 a、b、c 和它们之间的夹角α、β、γ来表示,这六个参数被称为晶胞参数。
3、原子坐标在晶胞中,原子的位置可以用原子坐标来表示。
通常以晶胞的某个顶点为原点,以晶胞的三条棱边为坐标轴,原子在晶胞中的位置可以用其在三个坐标轴上的分数坐标来确定。
三、常见的晶体结构类型1、离子晶体离子晶体是由阳离子和阴离子通过离子键结合而成。
典型的离子晶体如氯化钠(NaCl),钠离子和氯离子在空间交替排列。
离子晶体具有较高的熔点和沸点,硬度较大,在熔融状态或水溶液中能够导电。
2、原子晶体原子晶体中,原子之间通过共价键结合形成空间网状结构。
常见的原子晶体有金刚石和二氧化硅。
原子晶体具有很高的熔点和硬度,一般不导电。
3、分子晶体分子晶体中,分子之间通过分子间作用力(范德华力或氢键)结合。
例如干冰(固态二氧化碳)就是一种分子晶体。
分子晶体通常熔点和沸点较低,硬度较小。
4、金属晶体金属晶体由金属阳离子和自由电子通过金属键结合而成。
金属晶体具有良好的导电性、导热性和延展性。
四、晶体的性质1、光学性质晶体对光的折射、反射和吸收等性质与其内部结构密切相关。
晶体结构的性质晶体是由具有规则排列的原子、离子或分子构成的固体,具有独特的结构和性质。
晶体结构的性质对物质的形态、力学性质、电子性质等起着重要的影响。
本文将从晶体的周期性结构、晶体的对称性和晶体的物理性质等方面进行探讨。
一、晶体的周期性结构晶体的周期性结构是指晶体内部的原子、离子或分子按照一定的规则有序排列,并且这种排列在空间中不断重复。
晶体结构的周期性可以通过X射线衍射等方法进行研究。
晶体的周期性结构决定了晶体的宏观形态和性质。
二、晶体的对称性晶体的对称性是指晶体结构中存在的不变性操作。
晶体的对称性可以通过点群、空间群等数学概念来描述。
晶体具有不同的对称性,如平移对称、旋转对称、镜面对称等。
晶体的对称性决定了其物理性质,如光学性质和磁性等。
三、晶体的物理性质晶体具有一系列特殊的物理性质,其中包括晶格常数、晶体的光学性质和电学性质等。
1. 晶格常数晶体的晶格常数是指晶体中每个晶胞的尺寸,通常用晶格参数表示。
晶格常数决定了晶体的密度和结构的紧密程度。
不同的晶体具有不同的晶格常数,可以通过X射线衍射等手段来测量。
2. 晶体的光学性质晶体的光学性质与其对光的吸收、折射和散射有关。
不同晶体对不同波长的光表现出不同的吸收和折射特性,这可以解释为晶体内部的原子、离子或分子结构对光的相互作用导致的。
3. 晶体的电学性质晶体的电学性质与其内部的电荷分布和电场的作用有关。
晶体可以是绝缘体、导体或半导体,这取决于晶体中电子的能带结构和载流子的存在情况。
不同晶体的电学性质对电场的响应和传导电流的能力各不相同。
晶体的性质不仅与其结构密切相关,还与其成分和外部条件有关。
通过对晶体结构的研究,可以更好地理解和解释晶体的各种性质。
此外,晶体结构的性质也为材料科学和物理化学等领域的研究提供了重要的基础。
高中化学知识点:晶体结构与性质晶体结构与性质是高中化学中重要的知识点之一。
晶体是由原子、分子或离子等微观粒子沿着空间做周期性重复排列所形成的固体物质,具有规则的几何外形和固定的熔点。
晶体结构与其性质有着密切的关系,了解晶体结构可以帮助我们更好地理解晶体的性质和特征。
一、晶体结构晶体结构是指晶体中原子或离子的排列方式以及它们之间的相互作用。
根据晶体中微观粒子的种类和排列方式,可以将晶体分为离子晶体、分子晶体、原子晶体等不同类型。
其中,离子晶体是最常见的晶体之一,其基本结构单元是正负离子,这些离子通过离子键相互结合。
分子晶体则是由分子通过范德华力相互结合形成的,而原子晶体则是原子通过共价键相互结合形成的。
在晶体结构中,晶胞是最基本的结构单元,它是一个重复单位,可以代表整个晶体结构。
晶胞具有规则的几何外形,并且具有对称性。
晶胞中的原子或离子的排列方式以及它们之间的相互作用,决定了晶体的物理和化学性质。
二、晶体的性质1、晶体的导电性晶体的导电性是指晶体在电场的作用下能够导电的能力。
离子晶体具有较好的导电性,因为离子晶体中存在可以自由移动的离子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其导电性相对较差。
2、晶体的热稳定性晶体的热稳定性是指晶体在温度变化时保持其结构的稳定性和物理性质的能力。
离子晶体具有较高的热稳定性,因为离子键的键能较大,而分子晶体和原子晶体由于分子或原子之间的相互作用比较弱,其热稳定性相对较差。
3、晶体的还原性晶体的还原性是指晶体在化学反应中失去电子的能力。
离子晶体具有较强的还原性,因为离子晶体中的离子容易失去电子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其还原性相对较差。
此外,晶体的光学性质、磁性、机械性质等也是晶体性质的重要组成部分。
不同的晶体结构对应不同的物理和化学性质,理解和掌握晶体结构和性质之间的关系对于我们更好地认识化学世界具有重要的意义。
三、晶体结构与性质的关系晶体结构和性质之间存在着密切的关系。
晶体的结构与性质晶体是由原子、分子或离子有序排列组成的固体物质。
它们具有高度的周期性和对称性,这导致了晶体与其他非晶体固体在性质上的差异。
晶体的结构决定了它们的物理和化学性质。
本文将探讨晶体的结构与性质之间的关系,并介绍一些常见的晶体结构。
一、晶体的结构晶体的结构是指晶体中原子、分子或离子的排列方式。
晶体的结构可以通过X射线衍射等实验方法进行研究和确定。
根据晶体结构的不同,可以将晶体分为正交晶系、立方晶系、六方晶系、四方晶系、三斜晶系和三角晶系等几个主要类别。
在晶体的结构中,原子、分子或离子按照一定的规则排列,形成周期性的空间网络。
这个空间网络由晶格点和晶胞构成。
晶格点是晶体结构中最小的重复单元,晶胞则是由一个或多个晶格点组成的空间区域。
不同的晶体结构具有不同的特点。
例如,立方晶系的晶体结构具有最高的对称性,晶格点位于立方体的顶点、中心和边心位置等规则位置。
而六方晶系的晶体结构则具有六角形晶胞和六方柱的对称性。
二、晶体的性质晶体在许多性质上与非晶体有明显的区别。
晶体的周期性结构导致了许多特殊的物理和化学性质。
1. 光学性质:由于晶体结构的周期性,晶体对光的传播和吸收具有特殊的规律性。
晶体可以表现出各种各样的光学效应,如散射、折射、吸收和双折射等。
这些光学性质常常用于晶体的识别和应用。
2. 热性质:晶体的热导性和热膨胀性与其结构有密切关系。
晶体的周期性结构使得热能在其中传导时受到阻碍,导致晶体具有较低的热导率。
此外,晶体的热膨胀性也因结构的周期性而呈现出特殊的规律性。
3. 电学性质:晶体中的离子或电子在结构的作用下呈现出特定的电学性质。
晶体可以表现出正电介质、负电介质、半导体和导体等不同的电导特性。
这些性质与晶体中离子或电子的移动、相互作用以及能带结构等因素密切相关。
4. 力学性质:晶体的结构对其力学性质也有显著的影响。
晶体的硬度、断裂韧性、弹性模量等力学特性与晶体结构的紧密程度、原子排列的方式等因素有关。
第三章晶体结构与性质一、晶体与非晶体第一节晶体的常识1.晶体的特征常见的物质聚集态有三种:固态、液态和气态。
固态物质(即固体)有晶体与非晶体之分。
晶体主要有以下四个特征:(1)晶体的构成粒子在三维空间呈周期性有序排列,因而外观上表现出规则的几何外形。
而非晶体却无规则的外形。
(2)自范性:晶体能自发呈现多面体外形,即熔融态物质在冷却凝固时,速率适当,能自法形成晶体。
这是晶体的本质特征,直接决定了其他性质。
(3)晶体有固定的熔,加热晶体.到达熔点时即开始熔化,在未完全熔化前,持续加热,温度不上升,此时供给的热都用来使晶体熔化,直到完全熔化,温度才开始上升。
(4)各向异性:同一晶格中在不同方向上质点排列一般不同,因此晶体的性质也随着方向的不同而有所差异.如强度、导热性、导电性、光学性质等。
此外在分析和实验过程中.我们还发现晶体的某些特点,如均一性:指晶体的化学组成、密度等性质在晶体中各部分都相同对称性:晶体的外形和内部结构都具有特有的对称性。
最小内能:在相同的热力学条件下,晶体与同种物质的非晶体固体、液体、气体相比较内能最小。
稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。
能使X射线产生衍射:当入射光的波长与光栅缝隙大小相当时.能产生光的衍射现象。
X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅。
它能使X射线产生t衍射。
利用这种性质,人们建立了测定晶体结构的主要实验方法。
非晶态物质没有周期性结构,不能使X射线产生衍射,只有散射效应。
生活中常用上述性质上差异的可行方面,来间接地区分晶体与非晶体,但最可靠的科学方法是对固体X射线衍射实验,常朋X射线衍射仪。
单一波长的X射线通过晶体时,会在记录仪上看到分离的斑点或谱线而在同一条件下摄取的非晶体图谱中却看不到分离的斑点或明显的谱线。
3.得到晶体的三条途径(1)熔融态物质凝固。
(2)气态物质凝华。
(3)溶质从溶液中析出。
二、晶胞1.晶胞是从晶体中“截取"出来具有代表性的最小结构单元从微观上讲,晶体是由构成粒子(分子、原子、离子)按一定几何规则构成的基本结构单元(晶胞),无间隙,并在立体空间里重复排列而成,正是这种排列的有序性和规则性决定了方向不同,排列不同,从而表现出各向异性。
晶体结构与性质知识总结晶体是由原子、离子或分子组成的固体,它们按照一定的规则排列而形成的,在空间上具有周期性的结构。
晶体的结构与性质密切相关,下面对晶体的结构和性质进行总结。
一、晶体的结构:1.晶体的基本单位:晶体的基本单位是晶胞,它是晶格的最小重复单位。
晶胞可以是点状(原子)、离子状(离子)或分子状(分子)。
2.晶格:晶格是一种理想的周期性无限延伸的结构,它由晶胞重复堆积而成。
晶格可以通过指标来描述,如立方晶系的简单立方晶格用(100)、(010)和(001)来表示。
3.晶系:晶体按照对称性的不同可以分为立方系、四方系、正交系、单斜系、菱面系、三斜系和六角系等七个晶系。
4.点阵:点阵是晶胞中原子、离子或分子的空间排列方式。
常用的点阵有简单立方点阵、体心立方点阵和面心立方点阵。
5.晶体的常见缺陷:晶体中常见的缺陷有点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子等;线缺陷包括晶体的位错和附加平面等;面缺陷包括晶体的晶界、孪晶和堆垛疏松等。
二、晶体的性质:1.晶体的光学性质:晶体对光有吸收、透射和反射等作用,这取决于晶格结构和晶胞的对称性。
晶体在光学显微镜下观察时,有明亮的晶体颗粒。
2.晶体的热学性质:晶体的热学性质主要包括热容、热传导和热膨胀等。
晶体的热传导性能与晶胞的结构和相互作用有关,不同晶体的热传导性能差异很大。
3.晶体的电学性质:晶体的导电能力与晶体的结构和化学成分密切相关。
一些晶体可以具有金属导电性,例如铜、银和金等;而其他晶体可以具有半导体或绝缘体导电性。
4.晶体的力学性质:晶体的力学性质涉及到晶体的刚性、弹性和塑性等。
晶体在受力作用下可能发生形变,这取决于晶格的结构和原子、离子或分子之间的相互作用力。
5.晶体的化学性质:晶体的化学性质取决于晶体的成分和结构。
晶体可能与其他物质发生化学反应,形成新的物质。
晶体的化学性质对其功能和应用具有重要影响。
综上所述,晶体的结构与性质密切相关。
晶体的结构和性质晶体,是由原子、离子或分子有序排列而成的固态物质。
其独特的结构和性质使得晶体在科学研究和工业应用中占据重要地位。
本文将着重探讨晶体的结构和性质,并对其应用领域进行简要介绍。
一、晶体的结构晶体的结构可以分为两个层次来讨论:微观结构和宏观结构。
微观结构是指晶体中原子、离子或分子的排列方式。
晶体的微观结构可以由X射线衍射、电子显微镜等高分辨率实验手段进行研究。
例如,石英晶体的微观结构是由硅氧簇构成的,这些硅氧簇按照一定的规则排列形成晶体的三维结构。
宏观结构是指晶体的晶体形状,也就是晶体表面的外部几何形态。
晶体的宏观结构与其内部微观结构密切相关。
例如,钻石晶体的宏观结构呈现为八面体的形状,与其微观结构中碳原子之间的强共价键有关。
晶体的结构对于其性质具有重要的影响,下面将对晶体的一些性质进行探讨。
二、晶体的性质1. 光学性质晶体的不同结构决定了它们不同的折射率、吸收特性和透明度等光学性质。
例如,石英晶体具有较高的透明度,可以广泛用于光学仪器和光学器件制造。
而金刚石晶体在适当条件下具有高折射率和强光散射能力,使其成为用于研究光学行为的重要晶体。
2. 电学性质晶体的结构和电子排布方式影响着它们的电学性质。
不同的晶体可以表现出不同的电导率、介电常数和电荷迁移速率等。
这些性质使得晶体在电子学领域具有重要应用,如半导体材料和光电器件。
3. 热学性质晶体的结构也会对其热学性质产生影响。
晶体的热导率、热膨胀系数和热稳定性等热学性质对于材料的热管理和稳定性至关重要。
例如,硅晶体由于其较高的热导率和稳定性,是制造集成电路中必不可少的材料之一。
三、晶体的应用由于晶体独特的结构和性质,它们广泛应用于多个领域:1. 材料科学领域晶体结构研究对于新材料的开发具有重要意义。
通过对晶体结构的深入理解,科学家能够设计出具有特定性能的新材料,如高强度陶瓷、高温超导材料等。
2. 光电子学领域晶体的光学和电学性质使其成为光电子学领域的核心材料。
晶体结构与性质
考试时间:40分钟 考试范围:晶体结构与性质 姓名:__________班级:__________考号:__________
一、选择题(本大题共10小题,每小题0分,共0分。
在每小题给出的四个选项中,只有一个选项是符合
题目要求的)
1.同周期元素W.X.Y.Z 的原子序数依次增大,
W.X 原子的最外电子层电子数之比为4︰3,Z 原子比X 原子的
核外电子数多4。
下列说法正确的是
A. W.Y.Z 的电负性大小顺序一定是Z>Y>W
B. W.X.Y.Z 的原子半径大小顺序可能是W>X>Y>Z
C.Y.Z 形成的分子的空间构型可能是正四面体
D.WY 2分子中σ键与π键的数目之比是2︰1 2.01年曾报道,硼元素和镁元素形成的化合物刷新了金属化合物超导温度的最高记录.该化合物的晶体结构
如图所示:镁原子间形成正六棱柱,且棱柱的上下底面还各有1个镁原子;6个硼原子位于棱柱内,则该化合物的化学式可表示为
A.MgB
B.MgB 2
C.Mg 2B
D.Mg 3B 2
○镁原子,位于顶点和上下两个面心 ●硼原子,位于六棱柱的内部
3.下列说法正确的是
A.在晶体中只要有阳离子就一定有阴离子
B.原子晶体的熔点一定比金属晶体的高
C.正四面体的分子结构中键角一定为109º28’
D.不同的原子化学性质可能相同
4.分子晶体中如果不是由于分子本身形状的影响,它的晶体将取密堆积结构,原因是分子晶体中
A.分子间作用力无一定方向性
B.占据晶格结点的微粒是原子
C.化学键是共价键
D.三者都是
5.下列叙述中正确的是
A.离子晶体中肯定不含非极性共价键
B.原子晶体的熔点肯定高于其他晶体
C.由分子组成的物质其熔点一定较低
D.原子晶体中除极性键外不可能存在其他的化学键
6.金属键具有的性质是
A.饱和性
B.方向性
C.无饱和性和方向性
D.既有饱和性又有方向性
7.高温下,超氧化钾晶体(KO 2)呈立方体结构。
如下图为超氧化钾晶体的一个晶胞(晶体中最小的重复单元),
则下列有关说法正确的是 ( )
A.KO 2中只存在离子键
B.超氧化钾的化学式为KO 2,每个晶胞含有1个K +和1个O 2-
C.晶体中与每个K +
距离最近的O 2-有6个 D.晶体中,所有原子之间都以离子键相结合
8.下列叙述中正确的是
A.离子晶体中肯定不含非极性共价键
B.原子晶体的熔点肯定高于其他晶体
C.由分子组成的物质其熔点一定较低
D.原子晶体中除极性键外不可能存在其他的化学键
9.某离子晶体中晶体结构最小的重复单元如图:A 为阴离子,
在正方体内,B 为阳离子,分别在顶点和面心,则该晶体的化学式为 A.B 2A B.BA 2 C.B 7A 4D.B 4A 7
10.根据离子晶体的晶胞(晶体中最小重复单位),求阴.阳离子个数比的方法是:
(1)处于顶点的离子,同时为8个晶胞共有,每个离子有1/8属于晶胞; (2)处于棱上的离子,同时为4个晶胞共有,每个离子有1/4属于晶胞; (3)处于面上的离子,同时为2个晶胞共有,每个离子有1/2属于晶胞。
现有甲.乙.丙.丁四种晶体,离子排列方式如图所示,其中化学式不正确的是
B
二、填空、实验、简答题(本大题共3小题,共0分)
11.氮化硼(BN )晶体有多种相结构。
六方相氮化硼是通常存在的稳定相,与石墨相似,具有层状结构,可
作高温润滑剂。
立方相氮化硼是超硬材料,有优异的耐磨性。
它们的晶体结构如右图所示。
⑴.基态硼原子的电子排布式为_____。
⑵.关于这两种氮化硼的说法,正确的是___(填序号)。
a .立方相氮化硼含有σ键和π键,所以硬度大 b .六方相氮化硼层间作用力小,所以质地软 c .两种晶体中的B -N 键均为共价键 d .两种晶体均为分子晶体
⑶.六方相氮化硼晶体层内一个硼原子与相邻氮原子构成的空间构型为___,其结构与石墨相似却不导电,原因是____。
⑷.立方相氮化硼晶体中,硼原子的杂化轨道类型为____。
该晶体的天然矿物在青藏高原地下约300 km 的古地壳中被发现。
根据这一矿物形成事实,推断实验室由六方相氮化硼合成立方相氮化硼需要的条件应是______。
⑸.NH 4BF 4(氟硼酸铵)是合成氮化硼纳米管的原料之一。
1 mol NH 4BF 4含有__mol 配位键。
12.【化学—物质结构与性质】
石墨烯(图甲)是一种由单层碳原子构成的平面结构新型碳材料,石墨烯中部分碳原子被氧化后,其平面结构会发生改变,转化为氧化石墨烯(图乙)
图甲 石墨烯结构 图乙 氧化石墨烯结构
(1)图甲中,1号C 与相邻C 形成σ键的个数为___________。
(2)图乙中,1号C 的杂化方式是_________,该C 与相邻C 形成的键角_______(填“>”“<”或“=”)图甲中1号C 与相邻C 形成的键角。
(3)若将图乙所示的氧化石墨烯分散到H 2O 中,则氧化石墨烯可与H 2O 形成氢键的原子有_______(填元素符号)。
(4)石墨烯可转化为富勒烯(C 60),某金属M 与C60可制备一种低温超导材料,晶胞如图所示,M 原子位于晶胞的棱上与内部,该晶胞中M 原子的个数为______,该材料的化学式为______。
图丙
13. (9分)硼酸能够吸收中子,屏蔽核辐射。
硼酸晶体具有层状结构,每一层结构如图所示。
(1)硼酸晶体属于 (填“离子晶体. “分子晶体”或“原子晶体”), B 元素的电负性 O 元素(填“>”或“<”)。
(2)硼酸晶体中,B 的杂化轨道类型是 。
(3)硼酸晶体中,微粒间的作用力类型有 。
(4)硼酸是一元弱酸,呈酸性的机理是硼酸与水作用时,硼原子与水电离产生
的OH -以配位键结合形成Y -,导致溶液中c(H +)>c(OH -)。
Y ―的结构简式
是 ;硼酸与水作用时,每生成一个Y -,断裂 个σ键。
(5)三氟化硼(BF 3)水解生成硼酸和氟硼酸(H[BF 4]),4BF -的空间结构与CH 4相似。
4BF -和BF 3中的硼氟键的
从表中数据可以看出, BF 3中硼氟键的键长比4BF ―中硼氟键的键长短,原因可能是
晶体结构与性质答案解析
一、选择题
1.C
2.B
3.D
4.A
5.C
6.C
7.解析:根据题给信息,超氧化钾晶胞是面心立方晶胞,超氧化钾晶体(KO
2
)是离子化合物,阴.阳离子分
别为K+.O
2-,晶体中K+与O
2
-间形成离子键,O
2
-中O—O键为共价键。
作为面心立方晶胞,每个晶胞中
含有8×1/8+0.5× 6=4个K+,1+1/4×12=4个O
2-,晶胞中与每个K+距离最近的O
2
-有6个。
答案: C
8.C
9.B
10.A
二、填空、实验、简答题
11.⑴.1s22s22p1
⑵.b、c
⑶.平面三角形;层状结构中没有自由移动的电子
⑷.sp3;高温、高压
⑸.2
12.【答案】(1) 3 (2)sp3;<(3)O、H (4)12;M
3C 60
【解析】(1)由图可知,甲中,1号C与相邻C形成3个C-C键,形成σ键的个数为3,故答案为:3;(2)图乙中,1号C形成3个C-C及1个C-O键,C原子以sp3杂化,为四面体构型,而石墨烯中的C 原子杂化方式均为sp2,为平面结构,则图乙中C与相邻C形成的键角<图甲中1号C与相邻C形成的键角,故答案为:sp3;<;
(3)水中的O电负性较强,吸引电子能力的强,易与氧化石墨烯中的O-H上的H形成氢键,氧化石墨烯中O与水中的H形成氢键,故答案为:O、H;
(4)M原子位于晶胞的棱上与内部,棱上有12个M,内部有8个M,其个数为12×1
4
+8=12,C
60
分子
位于顶点和面心,C
60分子的个数为8×
1
8
+6×
1
2
=4,M原子和C
60
分子的个数比为3:1,则该材料的化
学式为M
3C
60
,故答案为:12;M
3
C
60。
13. (1)分子晶体 <
(2) sp2杂化 (3)共价键.氢键.范德华力
(4) []
OH
HO
OH
−
↑
[]
()
OH
HO
OH
∣
−
−B−OH
∣
或 4个
(5)BF
3中的B与F原子之间还形成π键(或BF
3
中的硼氟键具有一定程度的双键性质等合理答案均可)。