核电汽轮机高压缸回热抽汽及排汽湿度测量方法研究
- 格式:pdf
- 大小:267.69 KB
- 文档页数:4
汽轮机内部除湿技术的发展随着我国汽轮机研究与应用的不断发展,研究其内部除湿技术成为了一项十分重要的课题。
本文首先概述了汽轮机的相关内容,分析了汽轮机内部除湿技术,研究了不同种类的内部除湿技术,最后结合实际,深入探讨了热蒸汽喷射的除湿方法。
标签:汽轮机;内部;除湿技术;发展一、前言汽轮机是一项十分重要的设备,被广泛应用在电力系统中。
汽轮机的广泛应用,对研究其内部除湿技术提出了新的要求。
此外,在汽轮机的实际应用中,频繁出现的各种问题,同样要求汽轮机具备一套完善的内部除湿技术。
二、概述在大规模的发电厂或者是核电站中,汽轮机的进口一般都是过热蒸汽,这就导致汽轮机低压缸的最后几级都处于湿蒸汽氛围之下运行。
而这种湿蒸汽不但使得汽轮机的运行效率下降,同时还使得低压缸末端的叶片受到极为严重的水蚀破坏,造成汽轮机叶片的受损。
尤其是在地热电站或者是核电站中,这种饱和的过热蒸汽给汽轮组带来的安全与经济损害尤为严重。
蒸汽,使得低压缸中的后几级均在湿蒸汽下状态下运行。
湿蒸汽的产生和存在不仅使汽轮机的效率降低了,并且使低压末级的叶片遭到非常严重的水蚀破坏,在一些核电站和地热电站中,饱和蒸汽给汽轮发电机组经济性和安全性带来的危害尤为突出。
因此,汽轮机除湿方法的开展和研究具有重大意义。
汽轮机是通过叶栅使蒸汽膨胀变热能为机械能的旋转叶轮机械。
它具有单轴功率大、效率高、运转平稳和使用寿命长等优点。
当今火电汽轮机的发展趋势为大容量、高参数、高效率机组。
设计者一般都采用超(超)临界参数以提高蒸汽循环热效率。
因为新蒸汽的初压越高,末级叶片的尺寸也将随之增大,出口蒸汽湿度也就变得越大,这样蒸汽中含有的流动水滴对汽轮机叶片产生撞击,使汽轮机低压转子叶片发生严重的冲蚀,甚至断裂。
积极的抗蚀方法是降低汽轮机做功蒸汽湿度。
三、汽轮机内部除湿技术当前火电厂的汽轮机开始朝着大容量、高参数以及高效率的方向发展,为了达到足够高的蒸汽热效率,汽轮机的设计者一般都采用了超临界的设计参数来予以实现,导致新蒸汽的初压越来越高,而汽轮机末级的叶片尺寸也不断增加,出口蒸汽的湿度也就随着明显增加。
哈尔滨工程大学本科生课程设计(二)压水堆核电厂二回路热力系统初步设计说明书班学姓级:号:名:院系名称:核科学与技术学院专业名称:核工程与核技术指导教师:2013年6月摘要:该说明书介绍了一个1000MWe核电厂二回路热力系统设计及其设计过程。
该设计以大亚湾900MWe核电站为母型,设置了一个高压缸,三个低压缸,设有两级再热器的汽水分离器,四个低压给水加热器,一个除氧器,两个高压给水加热器。
一回路冷却剂系统工作压力为15.8MPa,蒸汽发生器的运行压力为 6.7MPa,取分缸比为12.5,高压缸排气压力为0.7956MPa,一级再热器抽汽压力3MPa,低压缸进口过热蒸汽压力为0.7630MPa,温度为268.90℃,冷凝器的运行压力为6.632kPa,给水温度为222.79℃。
两级再热器分别由高压缸抽气及新蒸汽加热,疏水分别流入两级高压给水加热器。
高压给水加热器由高压缸抽气加热,疏水逐级回流送入除氧器,低压给水加热器由低压缸加热,疏水逐级回流送入冷凝器。
排污水经净化后排进冷凝器或除氧器,本设计采用排污水打回至除氧器方案。
各级回热器和再热器的蒸汽经合理分配,经过加热器后,蒸汽全部冷凝成疏水,整个系统电厂效率为30.94%。
设计时,假设蒸汽发生器蒸汽产量为1,根据选定的合理的参数值可求出给水泵的耗汽份额为6.61%,假设低压缸进口蒸汽份额为a,低压回热蒸汽、再热蒸汽、高压回热蒸汽、除氧器加热蒸汽份额都可以用a表示。
对除氧器列质量守恒、能量平衡方程即可求出a值,从而知道各设备的蒸汽分配。
利用各设备的蒸汽分配后可求出高压缸、低压缸比做功量,根据电功率要求可求出蒸汽发生器蒸汽产量,进而求出堆芯热功率,即可得出电厂效率。
对效率不满意时可调整合理调整各设备的运行参数,直至求出电厂效率满意为止。
1、设计内容及要求:1.1设计内容(1)确定二回路热力系统的形式和配置方式;(2)根据总体需求和热工约束条件确定热力系统的主要热工参数;(3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标;(4)编制课程设计说明书,绘制原则性热力系统图。
汽轮机介绍之回热抽汽系统汽轮机是一种利用高温高压蒸汽驱动的热能转换装置,其工作原理是通过燃烧燃料产生高温高压蒸汽,然后利用蒸汽的热能将轮叶推动转子旋转,最终输出机械能。
而在汽轮机的工作过程中,会产生大量的低温低压蒸汽,这些蒸汽还能够进一步发挥作用,提高汽轮机的热能利用效率。
回热抽汽系统就是利用这种低温低压蒸汽,将其回收利用的一种技术。
其主要作用是在汽轮机的排汽过程中,将高温高压的蒸汽与低温低压的蒸汽进行热量交换,从而使低温低压蒸汽的热能得到利用,提高汽轮机的热能转换效率。
回热抽汽系统由回热器、抽汽涡轮以及与主汽轮机相连接的管道系统组成。
在汽轮机工作过程中,高温高压的蒸汽从高压缸排出后,进入回热器进行热量交换。
回热器是一种换热设备,通过将高温高压蒸汽与低温低压蒸汽进行热量交换,使高温高压蒸汽冷却、降压同时,使低温低压蒸汽升温、升压,从而实现热量的回收利用。
在回热抽汽系统中,低温低压蒸汽经过回热器后,进一步被抽入抽汽涡轮中,通过抽汽涡轮的旋转将蒸汽的热能转化为机械能输出。
抽汽涡轮与主汽轮机是通过一条共同的轴线连接的,因此抽汽涡轮的旋转也将带动主汽轮机的旋转,增加了汽轮机的输出功率。
回热抽汽系统的优势在于可以将一部分原本被浪费的低温低压蒸汽的热能回收利用。
通过回热抽汽系统,汽轮机的热能利用效率得到了提高,可以有效地节约能源资源,减少对环境的影响。
此外,由于回热抽汽系统可以提高汽轮机的输出功率和热效率,因此对于提高汽轮机的运行经济性和稳定性也具有重要作用。
然而,回热抽汽系统也存在一些挑战。
首先,回热抽汽系统的设计与优化需要考虑更多的参数,如回热器的结构与性能、抽汽涡轮的转速等,增加了系统的复杂性。
其次,由于回热抽汽系统的操作与控制相对较为复杂,需要精确调节和控制各个部件的工作参数,以实现系统的平稳运行。
总之,回热抽汽系统是汽轮机中一种重要的热能回收利用技术,通过回收利用低温低压蒸汽的热能,提高汽轮机的热能利用效率,节约能源资源,减少对环境的影响。
汽轮机热力性能指标公式推导及验证吕海祯; 丁立新【期刊名称】《《发电设备》》【年(卷),期】2019(033)006【总页数】5页(P389-392,398)【关键词】汽轮机; 热力性能指标; 再热回热循环【作者】吕海祯; 丁立新【作者单位】国网山东省电力公司电力科学研究院济南250003【正文语种】中文【中图分类】TK261为了从热力学的角度,对再热回热汽轮机性能进行具体的理论分析,比照简单朗肯循环的热力学分析,需要知道理想比内功率、相对内效率、理想循环效率、理想循环的平均吸热温度和平均放热温度等热力性能指标。
通过这些指标,把热力学和热力工程两个领域联系起来,更有利于从理论与实践相结合上实现两个专业的全面协作;因此,有必要确定再热回热汽轮机的这些热力性能指标。
笔者以典型的一次再热八级回热凝汽式汽轮机为例,对这些热力性能指标进行公式推导、验证和分析讨论。
1 热力性能指标公式推导1.1 理想比内功率一次再热八级回热凝汽式汽轮机的绝对内效率可表示为:(1)式中:η i为汽轮机绝对内效率;αj、αrh、αc分别为汽轮机进汽1 kg时1~8级抽汽、中压缸进汽、低压缸排汽份额;h0、hfw分别为汽轮机自动主汽门前实测的进汽焓、锅炉省煤器入口实测的给水焓,kJ/kg;qrh为再热蒸汽吸热量,kJ/kg;Δhj为抽汽在汽轮机中的实际焓降,kJ/kg,再热前Δhj=h0-hj,再热后Δhj=h0+qrh-hj,hj为汽轮机1~8级抽汽焓,kJ/kg;Δhc为凝汽在汽轮机中的实际焓降,kJ/kg,Δhc=h0+qrh-hc,hc为低压缸排汽与凝汽器喉部结合面排汽焓,kJ/kg。
该汽轮机高压缸有2级抽汽,第2级抽汽为高压缸排汽;中、低压缸各3级,第5级抽汽为中压缸排汽;机组共有8级抽汽。
式(1)分子第一项可写为:(2)式中:Δhsj为抽汽对应的等熵焓降,kJ/kg;ηj为抽汽点的级段效率;ΔhsH为自动主汽门前至高压缸排汽对应的等熵焓降,kJ/kg,ΔhsH=h0-hsH,hsH为高压缸排汽的等熵焓,kJ/kg;η H为高压缸效率;ΔhsI为中联门至中低压连通管中点对应的等熵焓降,kJ/kg,ΔhsI=hrh,out-hsI,hrh,out为中压缸中联门前实测蒸汽焓,kJ/kg,hsI为中低压连通管中点的等熵焓,kJ/kg;η I为中压缸效率。
注:本资料主要针对《核电厂系统及设备》臧希年编著第2版清华大学出版社2011年7月;笔者根据所学知识及综合一些其它资料汇编而成,分为课后习题解答与复习提纲两部分;本资料仅供读者作些参考,由于笔者知识有限,有些知识难免存在一些偏差,请批评指正。
2014年2月16日星期日第一部分:课后习题参考答案(2、3、4、5、7、8)第二章压水堆核电厂1.从电能生产的观点看,压水堆核电厂有哪些部分?各自有什么作用?答:从电能生产的角度看,压水堆核电厂分为核岛与常规岛,核岛利用核能生产蒸汽,常规岛利用蒸汽生产电能。
2.从热力循环的观点看,压水堆核电厂由几个回路组成?各自的作用是什么?答:压水堆核电厂主要由反应堆冷却剂系统(简称一回路),蒸汽和动力转换系统(又称二回路),循环水系统组成。
一回路生产蒸汽,二回路与三回路将蒸汽的热能转换为推动核汽轮机组转动的机械能。
3.核电厂的厂址须满足什么要求?答:应考虑三个方面①核电厂的本身特性。
核反应堆是一个强大的放射源,核电厂的热功率决定了反应堆内的放射性的总储量,在相同的运行条件下,堆内放射的总量与功率成正比。
②厂址的自然条件与技术要求。
应尽可能地避免或减少自然灾害(如地震,洪水,及灾难性气象条件)造成的后果,并应利于排出的放射性物质在环境中稀释③辐射安全要求。
⑴辐射安全应符合国家环境保护,辐射防护等法规和标准的要求⑵将核电厂设置在非居民区⑶考虑厂址周围的人口密度和分布。
4.核电厂主要有哪些厂房?核电厂主要有反应堆厂房(即安全壳),燃料厂房,核辅助厂房,汽轮机厂房和控制厂房。
5.解释名词:多道屏障,纵深防御,单一故障准则多道屏障:在所有情况下保证绝对控制过量放射性物质对外释放,核电厂设置了三道屏障,只有这三道屏障全部被破坏才会释放大量的放射性物质。
纵深防御:将安全有关的所有事项置于多重防御之下,在一道屏障失效后还有另一道屏障来弥补。
单一故障准则:当系统中某一部件不能执行其预定功能安全功能时,并不影响整个系统功能的执行。
田湾核电站2x1000MW机组热力系统介绍田湾核电站2x1000MW机组热力系统介绍1.总体介绍田湾核电站厂址位于江苏省连云港市东北部连云区高公岛乡田湾村,东临黄海,西南距连云港市新浦区直线距离约28公里,西北距连云港市连云区中心约11公里,北与连云港码头隔山相对,直线距离约5公里。
1.1 电厂规模田湾核电厂规划容量为4台1000MW级核动力发电机组,一次规划分期建设。
第一期工程建设两台俄罗斯设计制造的WWER-1000/428/AES-91型压水堆核动力发电机组。
每台机组由额定热功率为3012MW的WWER-1000/428/AES-91型反应堆装置、K-1000-60/3000改进型汽轮机及TBB-1000-2YZ型发电机组成。
核电站主要由反应堆、一回路系统、二回路系统和辅助系统组成。
1.2 机组主要参数田湾核电厂一期工程采用AES-91型核动力发电机组,它是在具有多年运行经验的WWER-1000/320型压水堆核动力发电机组的基础上改进设计和制造的。
反应堆为V428型压水堆,汽轮机为带有中间汽水分离和单级再热蒸汽的K-1000-60/3000型汽轮机,与汽轮机相配的是由“Electrosila”工厂生产的直驱式TBB-1000-2Y3型发电机。
汽轮机与WWER-1000型压水堆配套运行,压水堆热功率为3012MW,汽轮机采用饱和蒸汽。
AES-91型核动力发电机组主要设计参数:田湾核电厂新建工程安装两台ЛМЗ生产的额定功率为1000MW、全速、单轴(一个双流高压缸和4个双流低压缸)、八排汽、中间去湿再热机组。
主要技术参数如下∶汽轮机额定转速 3000 rpm核岛提供蒸汽供应系统热功率能力 3012 MW汽轮机额定功率 1060 MW高压缸阀前新蒸汽的额定绝对压力 5.88 MPa高压缸阀前新蒸汽的额定温度274.3℃高压缸阀前新蒸汽的最大温度293.6℃高压缸阀前蒸汽额定干燥度(湿度,%)0.995(0.5%)冷却水设计温度18℃冷却水最大允许温度33℃汽机跳闸和高压缸阀关闭时的最大绝对压力 7.85 MPa辅助用汽量60 t/h新蒸汽额定流量(包括再热蒸汽流量) 5870 t/h再热蒸汽压力0.55 MPa再热蒸汽温度250℃凝汽器蒸汽额定绝对压力 4.7 kPa至凝汽器的冷却水额定流量 170,000 t/h除氧器蒸汽额定绝对压力0.84 MPa给水温度218℃保证工况时总热耗量 10190 kJ/kWh 反应堆热功率 3000 MW环路数 4一回路压力15.7MPa反应堆入口冷却剂温度292℃反应堆出口冷却剂温度321.7℃2.热力系统介绍2.1汽轮机原则性热力系统汽轮机热力系统是将蒸汽发生器产生的蒸汽的热能转换成汽轮机的机械能,再通过发电机转变成电能,做过功的蒸汽经凝汽器冷却凝结成水,再加热到217.9℃送入蒸汽发生器。
中国电力教育2010年管理论丛与技术研究专刊662核电站与火电厂汽轮机参数及热力系统的比较分析王晗丁* 周 涛(华北电力大学核热工安全与标准化研究所,北京 102206)摘 要:通过对核电站与火电厂各自的再热郎肯循环,汽轮机的主蒸汽的压力、温度、湿度、流量等参数的比较,分析了在汽轮机设计及结构上,如气缸设置、级效率、末级叶片长度和通流部分冲蚀等的不同点。
并分析比较了核电站与火电厂各自的热力系统,且归纳出不同点,提出了在借鉴常规火电热力系统计算时存在的难点,结合火电厂热经济性指标给出核电站发电能力评价指标。
为提高核电汽轮机运行效率及核电厂发电效率提供借鉴。
关键词:核电站;火电厂;汽轮机;热力系统;发电效率基金项目:本文系国家“973”计划项目 (项目编号:2007CB209800),横向研究课题的研究成果。
*作者简介:王晗丁,男,华北电力大学核热工安全与标准化研究所硕士研究生。
从能量转化角度看,核电站与火电厂都是将热能转换成电能,但核电站是利用反应堆所产生的核裂变能产生热能,这点与火电厂的锅炉不同。
核电站一回路维持约16MPa 的压力,反应堆出口冷却剂温度通常不超过330℃,在这样的冷却剂温度下,在蒸汽发生器中产生压力约6MPa 的饱和蒸汽。
而火电厂中的锅炉则是在过热器中加热主蒸汽的,蒸汽都处于过热状态,温度达540℃,其压力更是高于核电饱和蒸汽压力,从而使得核电站二回中的汽轮机主蒸汽参数较火电厂要低很多。
虽然核电站的汽轮机、凝汽器、加热器等设备与火电厂基本相同,但由于主蒸汽参数等的差异,其汽轮机参数、热力系统及运行方式与火电厂都存在较大差异。
一、热力循环比较大型火电站都采用蒸汽中间再热系统,其主要目的在于提高中、低压缸前蒸汽参数,从而提高大容量机组的热经济性;而对于压水堆核电站而言,采用再热的主要目的是提高蒸汽在汽轮机中膨胀终点的干度。
汽水分离再热器的主要作用是除去高压缸排汽中的水分,并加热高压缸排汽,提高低压缸进汽的温度,使其具有一定的过热度,若不采取任何措施,当蒸汽膨胀至0.0049MPa 时,其湿度将接近30%。
核电汽轮机的特点分析作者:黄鹏飞,黄伟来源:《科技视界》 2015年第24期核电汽轮机的特点分析黄鹏飞1黄伟2(1.海南核电有限公司,海南昌江 572700;2.国网吉林省电力有限公司检修公司,吉林长春 130021)【摘要】随着我国核电事业的迅猛发展,人们对核电关注的越来越多。
核电与火电一样都是以汽发电,但在设计、制造、安装、运行等方面,与常规火电汽轮机还是有一些区别的。
通过调研与课题题目相关的文献、成果,完成核电汽轮机的特点分析的综述。
【关键词】核电汽轮机;特点;比较研究0引言世界核电发展已经走过半个世纪的历程,其作为一种清洁能源,技术已经成熟,安全可靠性得到了实践验证,供应能力较强,已成为国家能源电力战略的重要组成部分。
本文通过对核电汽轮机和常规火电汽轮机的比较,了解了核电汽轮机独有的设计特点以及与火电机组的差异。
1核电厂汽轮机概述汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。
它的主要用途是在热力发电厂中做带动发电机的原动机。
在采用化石燃料(煤、石油和天然气)和核燃料的发电厂中,基本上都采用汽轮机作原动机。
有时,汽轮机还直接用来驱动泵,以提高电厂的经济性或安全性。
来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。
由于汽轮机排气口的压力大大低于进汽压力,蒸汽在这个压差作用下向排气口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。
做完功的蒸汽称为乏汽,从排气口排入凝汽器,在较低的温度下凝结成水。
此凝结水由凝结水泵抽出送往蒸汽发生器构成封闭的热力循环。
为了吸收乏汽在凝汽器放出的凝结热,并保持较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。
由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。
若任空气在凝汽器内积累,必使凝汽器内压力升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功;同时积累的空气还会带来乏汽凝结放热的恶化。
核电汽轮机结构设计及运行特点研究伍赛特(上海汽车集团股份有限公司,上海200438)摘要:以核电厂的技术特点引入论题,介绍了压水堆核电站及其热力循环系统,重点对核电汽轮机的技术特点进行了研究,阐述了其在设计和结构方面的运用及其运行特点,由此为相关理论研究与工程应用提供了必要的理论依据。
关键词:核电站;汽轮机;压水堆;半速汽轮机;核反应堆中图分类号:TK269文献标志码:A文章编号:2095-2945(2021)16-0098-04Abstract:Introduce the topic based on the technical characteristics of nuclear power plants,introduce the pressurized water reactor nuclear power plant and its thermodynamic cycle system,focus on the technical characteristics of nuclear power steam turbines,and explain its application in design and structure and its operating characteristics.This provides the necessary theoretical basis for related theoretical research and engineering applications.Keywords:nuclear power plant;steam turbine;pressurized water reactor;half-speed steam turbine;nuclear reactor1核电厂核电厂是将核燃料铀(钚)在反应堆内裂变链式反应中产生的能量转变为电能的发电厂核燃料产生的裂变能主要以热能的形式出现,其经过一次和二次冷却剂的载带和转换,最终以蒸汽驱动汽轮发电机组发电。