一元二次不等式基础练习题答案
- 格式:doc
- 大小:38.50 KB
- 文档页数:1
一元二次不等式练习题含答案1.求解集的选项中,应该删除明显有问题的选项B和D,因为T中的不等式的解集是{ x| -7<x<-3 },与选项B和D的范围不符。
改写选项A和C的表述,正确的选项为:A。
{x| -5<x<-3},C。
{x| -5<x<3}。
2.改写题目表述,题目中的“实数a的取值范围是()”应该改为“下列哪个选项是实数a的取值范围?”。
将选项中的符号改为大于等于和小于等于,正确的选项为:B。
a≥0,C。
a≤0,D。
a>0.3.将符号“≥”改为“>”,正确的选项为:A。
{x|x2}。
4.改写题目表述,将“则a,b的值分别是()”改为“下列哪个选项是a,b的值分别为?”。
正确的选项为:C。
a=-4,b=-9.5.改写题目表述,将“则()”改为“下列哪个选项成立?”。
正确的选项为:B。
a< -1.6.改写题目表述,将“则函数y=f(-x)的图象为()”改为“函数y=f(-x)的图象与函数y=f(x)的图象关于什么对称?”。
答案为x 轴。
7.改写题目表述,将“则满足x(x-2)<0的实数x的取值范围是()”改为“下列哪个选项是满足x(x-2)<0的实数x的取值范围?”。
正确的选项为:C。
( -∞,-2 )∪( 1,+∞ )。
8.将“不等式2x2-3x+a<0的解集为(m,1)”改为“不等式2x2-3x+a<0的解集为( m,1 ),则实数m的值为______。
”。
解出不等式的解集为( 3/2-a/2,1 ),因此m的值为3/2-a/2.9.将“若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式>0的解集是x-2________。
”改为“若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式(x-2)/a>0的解集是________。
”。
解出不等式的解集为( 2,+∞ ),因此(x-2)/a>0的解集为( -∞,2/a )。
一元二次不等式练习题含答案Last revision on 21 December 2020一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x 2-3x +a <0的解集为(m,1),则实数m 的值为________.9.若关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +b x -2>0的解集是________.10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________.三、解答题11.解关于x 的不等式:ax 2-2≥2x -ax (a <0)..12.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⎩⎪⎨⎪⎧ x +1x -2≥0,x -2≠0x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a (x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 12 9.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0(ax +b )(x -2)=a (x +1)(x -2)>0(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1; ②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立.若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。
一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
完整版)一元二次不等式练习题含答案则x<-1或x≥2;x-2x<-1或x>2;1≤x≤2.答案】C4.【解析】由题意可得a<0,且解集为x|-2<x<-4则可列不等式组a(-2)2+b(-2)-2>0,即4a-2b-4>0;a(-42+b(-42<0,即16a-4b-2<0;解得a=-1,b=2.答案】D5.【解析】不等式x(x-a+1)>a可化为x2-ax+a-1>0,解得xa.当x0,即a>1;当x>a时,a-1<0,即a<1.综上可得a<1或a≥1,故选项为C.答案】C6.【解析】由f(x)>0得a>0,c>0,代入可得f(x)=ax2+bx+c>0,x∈(-3,1).对x取相反数得f(-x)=ax2-bx+c>0,x∈(-1,3).故函数y=f(-x)的图象为:y=ax2+bx+c,x∈(-3,1).答案】略7.【解析】x⊙(x-2)=x(x-2)+2x+(x-2)=x2-x-2<0,解得x∈(-∞,-1)∪(2,+∞).答案】C8.【解析】由题意可得2x2-3x+a=(2x-m)(x-1),解得m=2a+1,又因为(m,1)在不等式解集内,故1<m<2.答案】1<m<29.【解析】不等式ax-b>0的解集为(1,+∞),则a>0,且ax>b,即x>b/a,代入不等式得x2-(a/b)x+1>0,解得x <2或x>b/a.综上可得x<2或x>b/a>2,即x>max{2,b/a},故填b/a即可.答案】b/a10.【解析】当x=-1时,方程左边为0,右边为(4+a)/27>0,故4+a>0,即a>-4.当x≠-1时,方程两边同时乘以3x+4,得27x2+(4+a)(3x+4)>0,即x2+(4+a)/27x+4/27>0,故Δ<0,解得a2<48,即-2√3<a<2√3.综上可得-2√3<a≤4,故选项为D.答案】D11.【解析】移项化简得ax2-2x+a-2≥0,即(x-1)2≤1-a,由于a0,化简得x∈(1-√(1-a),1+√(1-a)).答案】x∈(1-√(1-a),1+√(1-a))12.【解析】(1)由f(x)<0得x∈(-∞,0)∪(1,+∞),代入函数可得m∈(-∞,0)∪(1,+∞).2)由f(x)<-m+5得mx2-mx+m-6<0,对x∈[1,3],有m(x-3)(x-1)>0,故m>0且x∈(-∞,1)∪(3,+∞).综上可得m∈(0,1).答案】(1)m∈(-∞,0)∪(1,+∞);(2)m∈(0,1).3.解析:根据题意,可以得到不等式x-2≠0,即x≠2.然后根据x>2或x≤-1可以得到答案为B。
一元二次不等式及其解法知识梳理及典型练习题(含答案)一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式。
当a>0时,解集为x>b/a;当a<0时,解集为x<b/a。
2.一元二次不等式及其解法1) 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
2) 使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的解集。
3) 一元二次不等式的解:对于一元二次不等式ax^2+bx+c>0(a>0),我们可以先求出其对应的一元二次方程ax^2+bx+c=0的解集,然后根据一元二次函数的图像,判断不等式的解集。
3.分式不等式解法对于分式不等式f(x)/g(x)>0或f(x)/g(x)<0,我们可以先化为标准型,即将右边化为0,左边化为分母的符号,然后将分式不等式转化为整式不等式求解。
对于分式不等式f(x)/g(x)≥0或f(x)/g(x)≤0,我们可以先求出f(x)/g(x)>0或f(x)/g(x)<0的解集,然后根据分式函数的图像判断不等式的解集。
例题1:已知集合A={x|x^2-2x-3≥0},B={x|-2≤x<2},则A∩B=[-2,-1]。
例题2:设f(x)=x^2+bx+1且f(-1)=f(3),则f(x)>0的解集为{x|x≠1,x∈R}。
例题3:已知-2<x/11<1/2,则x的取值范围是-22<x<11.解:首先求出方程2x2-8x-4=0的解为x1=-1,x2=2.根据题意,不等式在(1,4)内有解,即在x1和x2之间有解,则2x2-8x-4-a的图像必定开口向上,且在x1和x2处有两个零点。
又因为a>0时,图像整体上移,不可能在(1,4)内有解,故a<0.又因为当a=-4时,2x2-8x-4=0在(1,4)内有解,故a的取值范围是a<-4.故选A.1) 给定不等式 $2x^2-8x-4-a>0$ 在区间 $(1,4)$ 内有解,即$a<2x^2-8x-4$ 在区间 $(1,4)$ 内有解。
[基础巩固]1.不等式x -2x -1≥0的解集是( ) A .{x |x ≥2}B .{x |x ≤1或x >2}C .{x |x <1}D .{x |x <1或x ≥2}解析 原不等式可化为⎩⎪⎨⎪⎧(x -2)(x -1)≥0,x -1≠0, ∴x ≥2或x <1,故原不等式的解集为{x |x <1或x ≥2}.答案 D2.若x 2-2ax +2≥0在R 上恒成立,则实数a 的取值范围是( )A .-2<a ≤ 2B .-2<a < 2C .-2≤a < 2D .-2≤a ≤ 2解析 Δ=(-2a )2-4×1×2≤0,∴-2≤a ≤ 2.答案 D3.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈N ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台解析 3000+20x -0.1x 2≤25x ⇔x 2+50x -30 000≥0,解得x ≤-200(舍去)或x ≥150. 答案 C4.不等式1x -1≥-1的解集是________. 解析 1x -1≥-1⇔1x -1+1≥0⇔x x -1≥0⇔⎩⎪⎨⎪⎧x (x -1)≥0,x -1≠0, ∴不等式的解集是{x |x ≤0或x >1}.答案 {x |x ≤0或x >1}5.若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________.解析 由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43. 答案 m ≥436.某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件.(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值?(3)若仅考虑每年税收金额最高,又应如何确定P 值?解析 税率为P %时,销售量为(80-10P )万件,即f (P )=80(80-10P ),税金为80(80-10P )·P %,其中0<P <8.(1)由⎩⎪⎨⎪⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6. 故P 的范围为2≤P ≤6.(2)设销售金额为S ,则S =80(80-10P )(2≤P ≤6)为减函数,∴当P =2时,厂家获得最大的销售金额为4800万元.(3)∵0<P <8,设税收金额为G ,则G =80(80-10P )·P %=-8(P -4)2+128,∴当P =4时,国家所得税金最高,为128万元.[能力提升]7.(多选)若命题“存在实数x ,使得(a -2)x 2+2(a -2)x -4≥0成立”是假命题,则实数a 可以是( )A .-2B .-1C .1D .2解析 命题“存在实数x ,使得(a -2)x 2+2(a -2)x -4≥0成立”是假命题,则其否定为“∀实数x ,使得(a -2)x 2+2(a -2)x -4<0成立”是真命题,当a =2时,原不等式化为-4<0恒成立;当a ≠2时,则⎩⎪⎨⎪⎧a -2<0Δ=4(a -2)2+16(a -2)<0, 解得-2<a <2.综上,实数a 的取值范围是-2<a ≤2.故选B 、C 、D.答案 BCD8.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .{x |15≤x ≤30}B .{x |12≤x ≤25}C .{x |10≤x ≤30}D .{x |20≤x ≤30} 解析 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y 40, ∴y =40-x ,∵xy ≥300,∴x (40-x )≥300,∴x 2-40x +300≤0,∴10≤x ≤30.答案 C9.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合为________.解析 (1)当a =0时,满足题意.(2)当a ≠0时,应满足⎩⎪⎨⎪⎧a >0,Δ≤0, 解得0<a ≤4.综上可知,a 值的集合为{a |0≤a ≤4}.答案 {a |0≤a ≤4}10.关于x 的方程x 2-2(m +2)x +m 2-1=0.(1)m 为何实数时,方程有两正实数根?(2)m 为何实数时,方程有一正实数根、一负实数根?解析 解法一 (1)由已知,得⎩⎪⎨⎪⎧ Δ=b 2-4ac =4(m +2)2-4(m 2-1)≥0,x 1+x 2=2(m +2)>0,x 1x 2=m 2-1>0,解得-54≤m <-1或m >1, 即m 的取值范围是-54≤m <-1或m >1. (2)由已知,得⎩⎪⎨⎪⎧Δ>0,x 1x 2=m 2-1<0, 解得-1<m <1.所以m 的取值范围是-1<m <1.解法二 (1)设y =x 2-2(m +2)x +m 2-1,因为方程有两正实数根,所以函数图象如图甲所示,则应满足⎩⎪⎨⎪⎧ Δ≥0,-b 2a =m +2>0,m 2-1>0,解得m 的取值范围是⎩⎨⎧⎭⎬⎫m |-54≤m <-1,或m >1.甲 乙(2)因为方程有一正实数根、一负实数根,则函数图象如图乙,由题意知,满足f (0)<0⇒m 的取值范围是{m |-1<m <1}.[探索创新]11.某热带风暴中心B 位于海港城市A 南偏东60°的方向,与A 市相距400 km ,该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?解析 如图,以A 市为原点,正东方向为x 轴建立直角坐标系.∵AB =400,∠BAx =30°,∴台风中心B 的坐标为(2003,-200),x h 后台风中心B 到达点P (2003,40x -200)处.由已知,A 市受台风影响时,有AP ≤350,即(2003)2+(40x -200)2≤3502,整理得16x 2-160x +375≤0,解这个不等式得,3.75≤x ≤6.25,A 市受台风影响的时间为6.25-3.75=2.5(h).故在3.75 h 后,A 市会受到台风的影响,时间长达2.5 h.。
一元二次不等式练习一、选择题1.设集合S={x|-5<x<5},T={x|x2+4x-21<0},则S∩T=A.{x|-7<x<-5} B.{x|3<x<5}C.{x|-5<x<3} D.{x|-7<x<5}2.已知函数y=错误!的定义域为R,则实数a的取值范围是A.a>0 B.a≥错误! C.a≤错误! D.0<a≤错误!3.不等式错误!≥0的解集是A.{x|x≤-1或x≥2} B.{x|x≤-1或x>2}C.{x|-1≤x≤2} D.{x|-1≤x<2}4.若不等式ax2+bx-2>0的解集为错误!,则a,b的值分别是A.a=-8,b=-10 B.a=-1,b=9C.a=-4,b=-9 D.a=-1,b=25.不等式xx-a+1>a的解集是错误!,则A.a≥1 B.a<-1C.a>-1 D.a∈R6.已知函数fx=ax2+bx+c,不等式fx>0的解集为错误!,则函数y=f-x的图象为7.在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙x-2<0的实数x的取值范围是A.0,2 B.-2,1C.-∞,-2∪1,+∞ D.-1,2二、填空题8.若不等式2x2-3x+a<0的解集为m,1,则实数m的值为________.9.若关于x的不等式ax-b>0的解集是1,+∞,则关于x的不等式错误!>0的解集是________.10.若关于x的方程9x+4+a3x+4=0有解,则实数a的取值范围是________.三、解答题11.解关于x的不等式:ax2-2≥2x-axa<0..12.设函数fx=mx2-mx-1.1若对于一切实数x,fx<0恒成立,求m的取值范围;2若对于x∈1,3,fx<-m+5恒成立,求m的取值范围.答案1.解析∵S={x|-5<x<5},T={x|-7<x<3},∴S∩T={x|-5<x<3}.答案C2.解析函数定义域满足ax2+2x+3≥0,若其解集为R,则应错误!即错误!∴a≥错误!.答案B3.解析错误!≥0错误!x>2或x≤-1.答案B4.解析依题意,方程ax2+bx-2=0的两根为-2,-错误!,∴错误!即错误!答案C5.解析xx-a+1>ax+1x-a>0,∵解集为错误!,∴a>-1.答案C.6. 解析由题意可知,函数fx=ax2+bx+c为二次函数,其图象为开口向下的抛物线,与x轴的交点是-3,0,1,0,又y=f-x的图象与fx的图象关于y轴对称,故只有B符合.7.解析∵a⊙b=ab+2a+b,∴x⊙x-2=xx-2+2x+x-2=x2+x-2,原不等式化为x2+x-2<0-2<x<1.答案B8. 解析∵方程2x2-3x+a=0的两根为m,1,∴错误!∴m=错误!.答案错误!9.解析由于ax>b的解集为1,+∞,故有a>0且错误!=1.又错误!>0ax+bx-2=ax+1x-2>0x+1x-2>0,即x<-1或x>2.答案-∞,-1∪2,+∞10.解析方程9x+4+a3x+4=0化为:4+a=-错误!=-错误!≤-4,当且仅当3x=2时取“=”,∴a≤-8.答案-∞,-811.解析原不等式化为ax2+a-2x-2≥0x+1ax-2≥0.①若-2<a<0,错误!<-1,则错误!≤x≤-1;②若a=-2,则x=-1;③若a<-2,则-1≤x≤错误!.综上所述,当-2<a<0时,不等式解集为错误!;当a=-2时,不等式解集为{x|x=-1};当a<-2时,不等式解集为错误!.12.解析1要使mx2-mx-1<0,x∈R恒成立.若m=0,-1<0,显然成立;若m≠0,则应错误!-4<m<0.综上得,-4<m≤0.2∵x∈1,3,fx<-m+5恒成立,即mx2-mx-1<-m+5恒成立;即mx2-x+1<6恒成立,而x2-x+1>0,∴m<错误!.∵错误!=错误!,∴当x∈1,3时,错误!min=错误!,∴m的取值范围是m<错误!.。
一元二次不等式的解法练习题(1)1. 不等式−2x 2+x +3≤0的解集是( )A. B.{x|x ≤−1或x ≥}C.{x|x ≤−或x ≥1}D.2. 不等式x 2−7x <0的解集是( ) A.{x|x <−7或x >0} B.{x|x <0或x >7} C.{x|−7<x <0}D.{x|0<x <7}3. 不等式x 2+2x −3≥0的解集是( ) A.{x|x ≥1} B.{x|x ≤−3} C.{x|−3≤x ≤1} D.{x|x ≤−3或x ≥1}4. 不等式x 2−4x −5>0的解集为( )A.{x|x ≥5或x ≤−1}B.{x|x >5或x <−1}C.{x|−1≤x ≤5}D.{x|−1<x <5}5. 不等式2x 2−x −1>0的解集是( ) A.(−12,1)B.(1,+∞)C.(−∞,1)∪(2,+∞)D.(−∞,−12)∪(1,+∞)6. 不等式组{x 2−2x −3<0log 2x <0 的解集为( )A.(−1, 0)B.(−1, 1)C.(0, 1)D.(1, 3)7. 已知集合A ={x ∈N|−2<x <4},B ={x|12≤2x ≤4},则A ∩B =( ) A.{x|−1≤x ≤2} B.{−1, 0, 1, 2} C.{1, 2} D.{0, 1, 2}8. 下列四个不等式中,解集为⌀的是()A.−x2+x+1≤0B.2x2−3x+4<0C.x2+6x+9≤0D.9. 已知函数f(x)=3x2−6x−1,则()A.函数f(x)有两个不同的零点B.函数f(x)在(−1, +∞)上单调递增C.当a>1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=3D.当0<a<1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=1310. 已知集合A={−1,0,2}, B={2,a2},若B⊆A,则实数a的值为________.11. 不等式|x−3|<2的解集为________.12. 不等式3x2−6x−5>4的解集为________.13. 已知不等式kx2−2x+6k<0(k≠0)若不等式的解集为{x|x<−3或x>−2},求实数k的值________.14. 不等式9−x2>0的解集是________.15. 已知集合A={x|x2−3x−10≤0}.(Ⅰ)若B={x|m−6≤x≤2m−1},A⊆B,求实数m的取值范围;(Ⅱ)若B={x|m+1≤x≤2m−1},B⊆A,求实数m的取值范围.16. 已知函数f(x)=ax2+bx−a+2.(1)若关于x的不等式f(x)>0的解集是(−1,3),求实数a的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.17. 某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(利润和投资单(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元投资金,并将全部投入A,B两种产品的生产,怎样分配这18万元,才能使该企业获得最大利润?其最大利润约为多少万元?参考答案与试题解析一元二次不等式的解法练习题(1)一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】一元二次不等式的应用【解析】将不等式变形为(x+1)(2x−3)≥0,由一元二次不等式的解法得出答案.【解答】不等式−2x2+x+3≤0,即2x2−x−3≥0,即(x+1)(2x−3)≥0,解得x≤−1或,故不等式−2x2+x+3≤0的解集是{x|x≤−1或x≥}.2.【答案】D【考点】一元二次不等式的应用【解析】不等式化为x(x−7)<0,求出解集即可.【解答】不等式x2−7x<0可化为x(x−7)<0,解得0<x<7,所以不等式的解集是{x|0<x<7}.3.【答案】D【考点】一元二次不等式的解法【解析】将不等式左边因式分解可得:(x+3)(x−1)≥0,从而可解不等式.【解答】解:由题意,不等式可化为:(x+3)(x−1)≥0,∴x≤−3或x≥1.故选D.4.【答案】B【考点】直接解一元二次不等式即可. 【解答】解:∵ x 2−4x −5>0, ∴ (x −5)(x +1)>0, 解得,x <−1或x >5. 故选B . 5.【答案】 D【考点】一元二次不等式的解法 【解析】 此题暂无解析 【解答】 此题暂无解答 6.【答案】 C【考点】其他不等式的解法 【解析】由题意可得,{−1<x <30<x <1 ,解不等式可求.【解答】由题意可得,{−1<x <30<x <1 ,即可得,0<x <1. 7. 【答案】 D【考点】 交集及其运算 【解析】化简集合A 、B ,根据交集的定义写出A ∩B . 【解答】集合A ={x ∈N|−2<x <4}={0, 1, 2, 3}, B ={x|12≤2x ≤4}={x|−1≤x ≤2},则A ∩B ={0, 1, 2}.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 8.【答案】 B,D【考点】此题暂无解析【解答】此题暂无解答9.【答案】A,C,D【考点】二次函数的图象二次函数的性质【解析】结合二次函数的零点及单调性及复合函数的单调性与最值的关系分别检验各选项即可判断.【解答】因为二次函数对应的一元二次方程的判别式△=(−6)2−4×3×(−1)=48>0,所以函数f(x)有两个不同的零点,A正确;因为二次函数f(x)图象的对称轴为x=1,且图象开口向上,所以f(x)在(1, +∞)上单调递增,B不正确;令t=a x,则f(a x)=g(t)=3t2−6t−1=3(t−1)2−4.当a>1时,1a ≤t≤a,故g(t)在[1a,a]上先减后增,又a+1a2>1,故最大值为g(a)=3a2−6a−1=8,解得a=3(负值舍去).同理当0<a<1时,a≤t≤1a ,g(t)在[a,1a]上的最大值为g(1a)=3a2−6a−1=8,解得a=13(负值舍去).三、填空题(本题共计 5 小题,每题 5 分,共计25分)10.【答案】【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:已知A={−1,0,2}, B={2,a2},若B⊆A,则a2=0,解得:a=0.故答案为:0.11.【答案】(1, 5)【考点】由题意利用绝对值不等式的基本性质,求得不等式|x−3|<2的解集.【解答】不等式|x−3|<2,即−2<x−3<2,求得1<x<5,12.【答案】{x|x>3或x<−1}【考点】一元二次不等式的解法【解析】先化简不等式,然后根据十字相乘法求出不等式的解集.【解答】解:由题意得,不等式化简为x2−2x−3>0,所以(x−3)(x+1)>0,解得x>3或x<−1,所以不等式的解集为{x|x>3或x<−1}.故答案为:{x|x>3或x<−1}.13.【答案】−2 5【考点】一元二次不等式的解法【解析】(1)由题设条件,根据二次函数与方程的关系,得:k<0,且−3,−2为关于x的方程k x2−2x+6k=0的两个实数根,再由韦达定理能求出k的值.【解答】解:∵不等式kx2−2x+6k<0(k≠0)的解集为{x|x<−3或x>−2},∴−3和−2是方程kx2−2x+6k=0的两个根,∴−3+(−2)=2k,∴k=−25,故答案为:−25.14.【答案】{x|−3<x<3}【考点】一元二次不等式的解法【解析】此题暂无解析【解答】解:不等式9−x2>0变形为x2<9,所以解集为{x|−3<x <3}. 故答案为:{x|−3<x <3}.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 ) 15.【答案】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 【考点】集合的包含关系判断及应用 【解析】先求出集合A ,再利用集合A 与集合B 的包含关系,列出不等式组,即可求出m 的取值范围,注意对空集的讨论. 【解答】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5 ,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 16.【答案】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.【考点】一元二次不等式的解法 【解析】左侧图片未给出解析 左侧图片未给出解析【解答】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ f (x )=ax 2+2x −a +2=(x +1)(ax −a +2)>0, ∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.17.f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以当t=4时,y max=172=8.5,所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元. 【考点】二次函数在闭区间上的最值函数模型的选择与应用【解析】此题暂无解析【解答】解:(1)根据题意可设A,B两种产品的利润与投资的函数关系式分别为:f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.试卷第11页,总11页。
一元二次不等式基础题50道加解析一元二次不等式是一种常见的数学问题,涉及到一元二次方程的不等式关系。
解一元二次不等式的方法主要有图像法、代入法和配方法等。
下面将给出50道关于一元二次不等式的基础题目及解析,帮助读者巩固和加深对一元二次不等式的理解和应用。
一、图像法1.解不等式x^2-4x+3>0解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。
然后画出函数y=x^2-4x+3的图像,可知该图像开口向上,且在x=1和x=3两点处与x轴相交。
根据图像的性质,可知不等式x^2-4x+3>0的解集为x∈(-∞,1)∪(3,+∞)。
2.解不等式2x^2-5x+2<0解析:首先求出方程2x^2-5x+2=0的根,可以通过求解二次方程或配方法得到x=0.5和x=2。
然后画出函数y=2x^2-5x+2的图像,可知该图像开口向上,且在x=0.5和x=2两点处与x轴相交。
根据图像的性质,可知不等式2x^2-5x+2<0的解集为x∈(0.5,2)。
二、代入法3.求解不等式x^2-6x+8>0解析:将不等式中的x^2-6x+8替换为一个符号t,得到t>0。
然后求解t>0的解集,可以得到t∈(-∞,∞)。
最后将t的解集转换回x 的解集,即x^2-6x+8>0的解集为x∈(-∞,∞)。
4.求解不等式x^2+5x+6≤0解析:将不等式中的x^2+5x+6替换为一个符号t,得到t≤0。
然后求解t≤0的解集,可以得到t∈(-∞,0]。
最后将t的解集转换回x 的解集,即x^2+5x+6≤0的解集为x∈[-3,-2]。
三、配方法5.求解不等式x^2-4x+3≥0解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。
然后将不等式x^2-4x+3≥0转换为(x-1)(x-3)≥0的形式。
根据配方法,可知x-1和x-3的符号相同,且不等式的解集为x∈(-∞,1]∪[3,+∞)。
、249y x x =-+ (2、不等式11023x x æöæö-->ç÷ç÷èøèø的解集为的解集为 ( ) A 、11|32x x ìü<<íýîþ B 、1|2x x ìü>íýîþ C 、1|3x x ìü<íýîþ D 、11|32x x x ìü<>íýîþ或 2、在下列不等式中,解集为f 的是的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+-> 3、函数()2223log 3y x x x =--++的定义域为的定义域为 ( )A 、()(),13,-¥-È+¥B 、()3,1--C 、(][),13,-¥-È+¥D 、(][)3,13,--È+¥ 4、若2230x x -£,则函数()21f x x x =++ ( ) A 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值、无最小值,也无最大值 3.2 一元二次不等式及其解法练习及其解法练习(一)、一元二次、一元二次不等式的解法不等式的解法1、求解下列不等式、求解下列不等式(1)、23710x x -£(2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列、求下列函数的定义函数的定义域(1))221218y x x =-+-3、已知、已知集合集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B È(二)、检测题、检测题一、选择题一、选择题 1、有、有最小值最小值34,无,无最大值最大值 B5、若不等式210x mx ++>的解集为R ,则m 的取值范围是(的取值范围是( )A .RB .()2,2-C .()(),22,-¥-+¥D .[]2,2- 6、不等式()221200x ax a a --<<的解集是(的解集是( ) A .()3,4a a - B .()4,3a a - C .()3,4- D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ìü-<<íýîþ,则a b -=( )A .14-B .14C .10-D .10 二、填空题二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为的解集为 10、利用()()00x a x a x b x b -<Û--<-,可以求得不等式12x x->的解集为的解集为 。
22222222一、十字相乘法练习:
1、x +5x+6=(x+2)(x+3)
2、x -5x+6=(x-2)(x-3)
3、x +7x+12=(x+3)(x+4)
4、x -7x+6=(x-1)(x-6)
5、x -x-12=(x-4)(x+3)
6、x +x-12=(x+4)(x-3)
7、x +7x+12=(x+4)(x+3) 8、x -8x+12=222222(x-2)(x-6) 9、x -4x-12=(x+2)(x-6) 10、3x +5x-12=(3x-4)(x+3) 11、3x +16x -12=(3x-2)(x+6)
12、3x -37x+12=(3x-1)(x-12) 13、2x +15x +7=(2x+1)(x+7)
14、2x -7x-15=(2x+3)(x-5) 22 15、2x +11x+12=(2x+3)(x+4)
16、2x +2x-12=2(x-2)(x+3)
二、一元二次不等式 22解一元二次不等式时
化为一般格式:ax +bx+c>0(a>0)或ax +bx+c<0(a>0);
65045033200440(21)(5)(3)0x x x x m x x +-<-+<-+<+->-++->2222222练习:
1、解下列不等式:
10(1)3x -7x>10;x<-1或x>
(2)-2x ;R 3
(3)x ;空集 (4)10x ;0.8<x<2.5(5)-x ;空集 (6)x x+m +m<0;m<x<m+1
(7) ;-5<x<3 (8)(5-x)(3-x)<0x--40x x+3
2(11)0x 4x x >-<+;x<3或x>5
(9)(5+2x)(3-x)<0;x<-2.5或x>3 (10);x<-3或>4 ;x<-4或>2
2x 230
000x (1)0.
111ax a a a a a x a a a a --<><=+--<>-<-=-222、(1)解关于的不等式x 时,不等式解为:-a<x<3a
时,不等式解为:3a<x<-a
时,不等式解为:空集
(2)解关于的不等式x 时,不等式解为:-1<x<a
时,不等式解为:a<x<-1
时,不等式解为:空集
230ax bx c ++>22、(1)若不等式的解集是{x -3<x<4},求不等式bx +2ax-c-3b<0的解;-3<x<5
(2)已知一元二次不等式ax +bx+2>0的解集为{x|-2<x<1},求a 、b的值.a=b=-2
x a 0;........a 0.x a a D
≤≤≤≤≤224、(1)若不等式ax +ax-5<0,对一切实数都成立,那么的取值范围是( )
A.a<0;
B.-20a<0;
C.-20a
D.-20<选 (2)对于任意实数,不等式ax +2ax-(a+2)<0恒成立,则的取值范围是
______________________________-1<0
(3)对任意x k k 2实数,不等式x +x+k>0恒成立,则的取值范围是___________>0.25。