盾构施工风险控制
- 格式:pdf
- 大小:100.84 KB
- 文档页数:10
盾构法施工安全技术与风险控制一、风险分析(1)在吊装作业前,钢丝绳死弯、吊钩连接松动以及限位器发生失灵状况且未及时检测维修,可能造成吊装作业中钢丝绳断裂、吊钩脱落等后果,从而造成起重伤害。
(2)始发或接收盾构工作井端头地层未加固且未及时察觉,可能造成盾构机械在接收过程中因地基承载力不足而压垮工作井,造成地基坍塌。
(3)施工前掘进参数选择错误、开挖面失稳、隧道塌陷以及地表下沉等状况,可能造成坍塌等事故。
(4)通过浅覆土地层时,因开挖深度过小可能使上方地层承载力过小而坍塌;通过小净距、小半径曲线、大坡度地段时,易因开挖半径和开挖量选择过大或过小或洞壁支护不当而造成通道渗水、冒顶片帮、坍塌等事故。
(5)施工过程中,盾构机械的刀具、刀盘、主轴承等重要部件失效失灵,可能因刀具、刀盘碎裂而飞出伤人,主轴承断裂而造成机械伤害。
(6)施工人员在端口带压时更换刀片,可能在拆卸刀片时,因刀片飞出而造成机械伤害。
(7)施工运输指挥不当,信号和制动失灵,货车汽车超速、超载及机械故障等,可能会导致货车侧翻、机械损伤甚至导致车祸发生,造成车辆伤害。
(8)未配备或极少配备消防器材或消防器材失效,可能导致在意外火情发生时无法及时处理,从而酿成火灾、人体被灼烫等事故。
(9)盾构施工前,未对地层、地下管线、地上地下的建筑物、构筑物以及障碍物进行详细而周密地调查,可能导致在施工过程中不慎破坏地上地下的建筑物、构筑物以及地下管线等设施而造成坍塌,以及破坏地基稳定性,使隧道出现冒顶片帮等问题。
若管道为输水管道,还会导致隧道渗水,造成透水事故。
(11)施工单位未建立健全完善的安全生产保障体系及规章制度,未对施工人员进行安全教育和培训,盾构作业人员未进行专业技术培训考核或者未合格且颁发相应操作证后就上岗的,这会使施工风险大大增加,特别是盾构工作中因操作人员的错误操作,可能会造成机械伤害。
(12)盾构施工各工序作业前未编制安全作业规程和作业指导书,关键工序未编制专项安全技术措施或编制后未经监理单位审批后实施,可能导致施工过程中安全监管不严,工作人员疏忽大意,造成机械伤害、物体打击等各种伤害。
盾构机施工过程中的风险评估与控制策略盾构机施工是一种在地下施工中常用的方法,它可以避免对地表环境和交通的干扰,但同时也存在一些风险。
为了确保盾构机施工的安全和顺利进行,必须对施工过程中的风险进行评估并采取相应的控制策略。
首先,盾构机施工过程中存在的主要风险包括地质灾害、施工设备故障、人员安全和环境污染。
地质灾害包括地层不稳定、地下水涌入、地下空洞等,可能导致盾构机卡滞或崩塌。
施工设备故障包括盾构机的故障、刀盘断裂、供电故障等,可能导致施工进度延误和人员伤亡。
人员安全方面,盾构机施工过程中工人接触到的高温、高压、高湿等环境条件可能对其安全造成威胁。
环境污染主要包括土壤污染、水源污染和尾气排放,对周边环境和居民健康造成潜在风险。
为了评估和控制这些风险,需要采取一系列措施。
首先,在施工前应进行详细的地质勘察和工程调查,了解地下情况,评估地层稳定性和地下水情况,以便合理选择盾构机的类型和参数,避免地质灾害的发生。
其次,在盾构机施工过程中,应定期进行设备检查和维护,确保设备正常运行,降低设备故障的风险。
同时,应对盾构机操作人员进行培训,提高其操作技能和安全意识,减少人为失误导致的事故发生。
在人员安全方面,应配备必要的个人防护装备,如头盔、防护眼镜、防护鞋等,提供通风设备和防滑措施,确保施工环境的安全性。
此外,应制定详细的安全操作规程和应急预案,以应对突发事件,并配备消防器材和急救设备,及时处理可能出现的安全问题。
为降低环境污染风险,盾构机施工应严格遵守环境保护法律法规,依法进行尾气排放和噪音控制,采取有效措施减少土壤和水源的污染。
同时,在施工过程中应重视与周边居民的沟通,尊重他们的权益,适当减小施工对周边社区的影响。
取得一致要求下的相关的部门的支持与配合至关重要。
政府应加强监管,制定相关法规和标准,鼓励企业加强自身管理,保证施工过程中的安全,推动盾构机施工的可持续发展。
总之,盾构机施工过程中的风险评估与控制策略非常重要,通过合理的地质勘察、设备维护、人员培训以及环境保护措施,可以降低施工过程中的风险,确保施工的安全和顺利进行。
盾构始发风险分析控制方案及应急预案盾构是一种用于地下隧道建设的机械设备,因其在工程建设中具有高效、安全等优点,被广泛应用于城市道路、铁路、地铁等建设项目中。
而盾构始发阶段是整个盾构施工过程中最为危险的一个阶段,如果不合理地进行风险分析和控制,将会对施工进程及周边环境造成巨大影响。
本文将探讨盾构始发风险分析控制方案及应急预案。
一、盾构始发风险分析1.环境影响盾构始发阶段过程中,需要进行大量土方开挖和地下水的引流处理工作,这些工作将会对周边环境造成影响。
首先,土方开挖会造成土壤松散,进而导致地面沉降和建筑物的损坏。
其次,地下水的引流可能会导致地面下降和地基沉降等问题。
因此,在盾构始发阶段需要进行严格的环境影响评估,并采取合理措施减少对周边环境的影响。
2.设备故障盾构始发阶段需要使用各种机械设备,如掘进机、泥水分离机、泥浆循环系统等。
这些设备在使用过程中可能会出现故障或机械損壞,导致施工进程受阻或安全事故发生。
为了尽可能的降低设备故障的风险,盾构始发阶段需要对设备进行质量检验和认真的维护保养工作。
3.安全事故盾构始发阶段是整个施工过程中最容易发生安全事故的阶段。
常见的安全隐患包括土石坍塌、瓦斯爆炸、火灾等。
为了确保施工过程的安全,盾构始发阶段需要对可能产生的安全隐患进行认真的安全评估,并采取有效的防范措施。
二、盾构始发风险控制方案1.环境保护措施为了减少盾构始发施工对周边环境的影响,需要采取以下措施:(1)进行环境影响评估在盾构始发阶段前,应进行详细的环境影响评估工作,确定施工对周边环境的影响范围和程度。
(2)加强土方开挖处置对于土方开挖而产生的土方和石方应进行分类处理和妥善处置,避免对土质的破坏。
(3)加强地下水管理盾构始发阶段需要对地下水进行大量的引流处理工作,需要严格遵守环保规定,防止对水源产生污染。
2.设备质量保证盾构始发阶段设备故障率较高,因此需要保证设备的质量和性能。
具体措施包括:(1)严格质量控制在设备选型和采购阶段,需要严格按照质量标准进行选择和审核,确保设备的质量符合要求。
盾构施工掘进作业风险控制专项措施
盾构施工的掘进作业风险控制专项措施,包括对地质环境、施工技术、安全保护、调控措施等四个方面。
1、地质环境
在盾构施工掘进前,要进行深度地质调查和测量,确定掘进方向与当地地质构造特点有关,以规避重大危险。
此外,还要预判压力场的变化,以控制孔洞的侧漏。
2、施工技术
必须使用满足现场条件的正确的施工技术,选择适当的施工参数,并根据掘进进度的变化灵活调整。
3、安全保护
必须根据临时性施工场所的特点,建立完善的安全防护措施,去完成掘进作业,以减少耸起土体中产生的积水,防止地面沉降、下沉及滑坡等灾害发生。
4、调控措施
在盾构施工掘进作业过程中,要根据掘进速度和掘进方式,进行针对性的调控措施,例如采用钢带加固等方法,支护围岩,控制围岩应力,以防止出现突发情况。
以上就是盾构施工掘进作业风险控制专项措施,要求施工质量满足设计要求,保证施工安全,确保施工工程质量。
通过对措施的执行,使得盾构施工的掘进作业的安全性得到保障。
盾构施工风险掌握近年来,国内地铁区间隧道大量承受盾构法施工,盾构技术有了长足进步,但盾构施工事故还是时有发生。
在盾构施工中地质是根底,设备是关键,人是根本.避开事故的核心是对风险进展辨识,实行有效措施,阻挡或降低风险的发生。
一、盾构进出洞风险掌握盾构在工作井内始开掘进必需凿出预留洞口的钢筋混凝土后,才能将盾构推入洞口,盾构刀盘转动切削洞口外土体.由于凿出预留洞口的钢筋混凝土需要较长时间,洞口土体暴漏时间过长会引起土体坍塌进入工作井,影响盾构始发;如遇含水饱和的砂性土,极易引起大量水涌入工作机,造成严峻的工程事故,延误工期和造成巨大的经济损失。
尤其是大直径盾构由于埋设大和洞口面积大,盾构始发的风险更大。
需实行以下措施:①从设计上加强端头加固措施,如在端头洞门增加排素混凝土桩,端头加固选用效果较好如三轴搅拌桩的施工方案。
②对于富水地层,必需承受降水措施。
③对端头加固加固效果进展检测,确保端头加固的整体性和抗渗性满足设计要求.加固体与井壁密封性不能消灭缺陷点。
二、小曲线半径地段盾构施工风险掌握小半径曲线上推动时,土体对盾构和区间的约束力差,盾构轴线较难掌握。
同时由于曲线半径过小,使得掘进时盾构机向曲线外侧的偏移量增大,对管片拼装造成肯定影响。
施工中严格掌握油缸的分区推力,适时调整盾构姿势,严格掌握盾尾间隙。
小半径曲线盾构掘进时,要实行以下措施:①盾构测量盾构在小半径曲线段推动时,增加隧道测量的频率,确保盾构测量数据的准确性。
通过测量数据来反响盾构机的推动和纠偏.在施工时实施跟踪测量,确保盾构机良好的姿势。
由于隧道转弯曲率半径小,隧道内的通视条件相对较差,需屡次设置的测量点和后视点。
在设置的测量点后,严格加以复测,确保测量点的准确性,防止造成误测.同时,由于盾构机转弯的侧向分力较大,易造成已成环隧道的水平位移,所以必需定期复测后视点,保证成型隧道位置的准确性。
②盾尾间隙掌握小曲率半径段内的管片拼装至关重要,合理的盾尾间隙有利于管片拼装和盾构进展纠偏。
盾构隧道施工中的风险管理与安全控制盾构隧道施工是一项复杂而具有挑战性的工程,涉及到许多潜在的风险和安全隐患。
因此,进行有效的风险管理和安全控制是确保施工质量和工人安全的关键。
本文将介绍盾构隧道施工中的一些常见风险,并提供一些建议用于风险管理和安全控制的措施。
一、盾构隧道施工中的风险1. 地质风险:隧道施工过程中,地质条件常常难以预测,例如地下水位、岩层变化等。
这些地质风险可能导致隧道坍塌、水浸等意外情况,严重影响施工进度和工人安全。
2. 机械故障:盾构机是隧道施工的关键设备,机械故障可能导致施工停工、延误或甚至事故。
盾构机的维护和检修至关重要,定期进行维修保养和性能检测,确保其正常运行。
3. 突泥突水:地下水源丰富的地区,隧道施工中常常面临突泥突水的风险。
施工过程中,必须加强水文勘探和监测,在施工过程中采取相应的防水和排水措施。
4. 各种事故风险:隧道施工中还存在火灾、爆破、坍塌等各种事故的风险。
施工前必须进行详细的风险评估,制定相应的应急救援计划,并加强现场安全教育和培训,提高工人的安全意识。
二、风险管理和安全控制措施1. 严格遵守相关法规和标准:施工单位必须严格遵守国家和地方的法规和标准,包括相关的安全生产法规、施工规范等。
2. 预防性控制:在隧道施工前,进行详细的工程地质勘探和风险评估,制定详尽的施工方案和安全管理计划。
合理安排施工时间,避开恶劣气候条件,以预防意外情况的发生。
3. 严格的质量管理:加强材料的选用和质量监控,遵循施工规范和质量检验标准,确保使用的材料符合要求,减少质量问题带来的风险。
4. 安全培训和管理:组织全体工人进行安全培训,并建立完善的安全管理制度。
对工人进行定期的安全教育,提高他们的安全意识和应急处理能力。
5. 定期检查和维护:盾构机和其他施工设备需要定期进行检查和维护,确保其性能正常。
每天对隧道施工现场进行巡视,及时发现和处理安全隐患。
6. 建立应急救援机制:制定详细的应急救援计划,包括事故报告和应急处理流程。
盾构施工安全风险评估与对策盾构施工是一种复杂而危险的工程,涉及到的风险因素较多。
为了保障施工人员的安全,减少事故的发生,需要进行全面的安全风险评估,同时采取相应的对策。
1.地质风险评估盾构施工的地质风险主要包括地下水位高、地质构造复杂等因素。
在施工前需要进行地质勘探,对地下情况进行评估。
针对高地下水位,可以采取降低地下水位的措施,如井下泵水、建设拦水墙等。
对于地质构造复杂的地区,需要加强地质勘察力度,规避潜在的地质风险。
2.气体风险评估在盾构施工中,由于长时间密闭施工,会产生大量可燃有毒气体。
施工前需要进行气体风险评估,确定施工中可能产生的气体类型和浓度。
根据评估结果,采取相应的通风措施和个人防护装备,确保施工人员的安全。
同时,制定好逃生和救援的预案,提前做好应急准备。
3.土体坍塌风险评估盾构施工需要控制土体的稳定性,避免土体的坍塌。
在施工前需要进行土体坍塌风险评估,确定土体的稳定性指标。
根据评估结果,采取相应的预防措施,如加固地基、设置边坡支护措施等。
同时,对施工过程中可能遇到的土体坍塌风险,要及时采取补救措施,保障施工人员的安全。
4.机械故障风险评估盾构施工需要大量使用机械设备,机械故障可能导致事故的发生。
在施工前需要对机械设备进行全面的安全检查和维护,并制定详细的机械故障风险评估。
同时,加强对机械操作人员的培训,确保其熟悉机械设备的操作和维修。
对于可能导致事故的机械故障,要及时进行修理或更换,确保施工的连续进行。
5.施工人员安全意识培养施工人员的安全意识是减少事故发生的重要因素。
需要通过培训和教育,提高施工人员对安全问题的认识和警惕性。
建立健全的安全管理制度和强制性安全规程,加强对施工人员的安全教育和培训。
同时,建立良好的安全激励机制,激发施工人员的安全积极性。
综上所述,盾构施工安全风险评估与对策包括地质风险评估、气体风险评估、土体坍塌风险评估、机械故障风险评估和施工人员安全意识培养等方面。
盾构施工风险控制近年来,国内地铁区间隧道大量采用盾构法施工,盾构技术有了长足进步,但盾构施工事故还是时有发生。
在盾构施工中地质是基础,设备是关键,人是根本。
避免事故的核心是对风险进行辨识,采取有效措施,阻止或降低风险的发生。
一、盾构进出洞风险控制盾构在工作井内始发掘进必须凿出预留洞口的钢筋混凝土后,才能将盾构推入洞口,盾构刀盘转动切削洞口外土体。
由于凿出预留洞口的钢筋混凝土需要较长时间,洞口土体暴漏时间过长会引起土体坍塌进入工作井,影响盾构始发;如遇含水饱和的砂性土,极易引起大量水涌入工作机,造成严重的工程事故,延误工期和造成巨大的经济损失。
尤其是大直径盾构由于埋设大和洞口面积大,盾构始发的风险更大。
需采取以下措施:①从设计上加强端头加固措施,如在端头洞门增加排素混凝土桩,端头加固选用效果较好如三轴搅拌桩的施工方案。
②对于富水地层,必须采用降水措施。
③对端头加固加固效果进行检测,确保端头加固的整体性和抗渗性满足设计要求。
加固体与井壁密封性不能出现缺陷点。
二、小曲线半径地段盾构施工风险控制小半径曲线上推进时,土体对盾构和区间的约束力差,盾构轴线较难控制。
同时由于曲线半径过小,使得掘进时盾构机向曲线外侧的偏移量增大,对管片拼装造成一定影响。
施工中严格控制油缸的分区推力,适时调整盾构姿态,严格控制盾尾间隙。
小半径曲线盾构掘进时,要采取以下措施:①盾构测量盾构在小半径曲线段推进时,增加隧道测量的频率,确保盾构测量数据的准确性。
通过测量数据来反馈盾构机的推进和纠偏。
在施工时实施跟踪测量,确保盾构机良好的姿态。
由于隧道转弯曲率半径小,隧道内的通视条件相对较差,需多次设臵新的测量点和后视点。
在设臵新的测量点后,严格加以复测,确保测量点的准确性,防止造成误测。
同时,由于盾构机转弯的侧向分力较大,易造成已成环隧道的水平位移,所以必须定期复测后视点,保证成型隧道位臵的准确性。
②盾尾间隙控制小曲率半径段内的管片拼装至关重要,合理的盾尾间隙有利于管片拼装和盾构进行纠偏。
施工中,及时测量盾尾与管片间的间隙,一旦发现单边间隙偏小时,及时通过对盾构推进方向的调整,使得盾尾间隙基本相同。
在管片拼装时,根据盾尾与管片间的间隙进行合理调整,确保管片与盾尾间隙的合理,便于下环管片的拼装,也便于在下环管片推进过程中盾构能够有足够的间隙进行纠偏。
根据盾尾与管片间的间隙,合理选择楔型管片。
小曲率半径段掘进时,当无法通过盾构推进和管片拼装来调整盾尾间隙时,可考虑采用楔形管片和直线形管片互换的方式来调整盾尾间隙。
③盾构纠偏量盾构机应具有铰接功能和超挖(仿形)刀。
管片的楔型量满足小曲线半径的拟合。
在较硬的地层中必需启动超挖(仿形)刀,以适当扩大开挖断面,便于盾构机转弯。
盾构在小曲线上始发,应采用割线始发方式,做好割线起止点及长度设计。
推进时不急于接近曲线,一般应在盾构机全部进入土体后再实施曲线掘进。
要勤测勤纠,而每次的纠偏量尽量小,确保楔形块的环面始终处于曲率半径的径向竖直面内。
除了采用楔型管片,为控制管片的位移量,管片纠偏在适当时候可采用软木楔子,从而达到有效地控制轴线和地层变形的目的。
针对每环的纠偏量,通过计算得出盾构机左右千斤顶的行程差,通过利用盾构机千斤顶的行程差来控制其纠偏量。
推进油缸油压的调整不宜过快,否则可能造成管片局部破损甚至开裂。
④盾构同步注浆由于在曲线段推进时地层损失量增加及纠偏次数的增加,导致了对土体的扰动的增加,因此在曲线段推进时严格控制浆液的质量及注浆量和注浆压力。
在施工过程中采用推进和注浆同步的方式,注浆未达到要求时盾构暂停推进,以防止土体变形。
根据施工中的变形监测情况,随时调整注浆参数,从而有效地控制轴线。
⑤土体损失及辅助措施由于设计轴线为小于半径350m的圆滑曲线,而盾构是一条直线,实际掘进轴线为一段段折线,且曲线外侧出土量大。
这样必然造成曲线外侧土体的损失,并存在施工空隙。
因此在曲线段推进时提高曲线段外侧的压浆量,以填补施工空隙。
必要时,采取二次注浆的措施,以加固隧道外侧土体,实现盾构沿设计轴线顺利推进。
⑥管片拼装认真做好管片选型及排版,应细化到拼装点位,使盾尾间隙较均匀,防止破坏盾尾密封。
为控制盾构推进轴线,管片拼装严格采取“居中拼装”。
若管片无法居中拼装,且曲线管片无法满足纠偏时,采用软木楔子进行调整,使管片处于较理想状态,确保管片拼装质量及推进轴线控制在要求范围内三、小净距隧道或相交重叠盾构施工风险控制在建一条隧道与已建两条隧道小净距或相交重叠,需要对先建线路进行保护,对先建区间隧道控制沉降,减少影响,左右线盾构区间采取措施如下:①必须对在软土地层小净距或相交重叠隧道施工相互影响的程度,预先进行评估和计算分析。
②对小净距隧道有条件的情况预先对两隧道隔离桩隔离,软土地层中应采用钢桁架对先行隧道管片做好纵向、径向加固,对可能塑化的夹土体应注浆加固并达到设计强度。
后行隧道应至少在先行隧道完成一个月后施工。
③上下重叠小净距隧道宜先完成下行隧道。
特别加强后行盾构在趋近先行隧道掘进时的监控量测,确保先行隧道的安全。
④盾构通过前对设备进行全面检查、维修,尽量不停机通过,盾构通过区域时,保持盾构机连续掘进,减少盾构机停顿时间;适当缩短浆液胶凝时间,保证注浆质量。
⑤严格控制盾构掘进参数,主要控制出土量、盾构推进压力。
盾构通过后及时同步注浆,并控制注浆压力。
⑥盾构通过后进行洞内注浆,加固范围周边3m。
注浆材料采用水泥浆液,注浆参数(浆液配合比、注浆压力、注浆顺序、注浆时间和注浆量)须经现场试验效果确定。
⑦提高监控量测管理级别,采取动态信息化施工,监控数据及时分析整理,用于指导施工。
四、下穿和邻近建(构)筑物地段盾构施工风险控制应根据盾构下穿得建(构)筑物、地下管线的基础结构形式、与隧道的位臵关系,分别采取地层加固、桩基托换等措施。
处于主动坍塌线范围内的建(构)筑物及地下管线作为邻近施工处理,必须采用加固、隔离桩隔离等措施。
①施工过程控制建立完善的监测系统,在隧道及对应的地面建筑物埋设观测点,进行系统、全面的跟踪量测,实行信息化施工。
根据建(构)筑物的结构型式及与隧道的关系,制定地表建筑物最大沉降和沉降差的警界值。
在曲线段,为减少盾构轴线与隧道轴线偏角过大,造成因超挖及地层损失过大而引起的地面变形,曲线段适当降低掘进速度,及时纠偏,加大盾尾同步注浆和洞内二次注浆量。
控制掘进参数:降低掘进速度,使盾构慢速通过,同时调整掘进参数,保持土压平衡,以此确保开挖掌子面的稳定;尽量减少对地层的扰动和开挖过程中地层的损失,严格控制出土量,及时进行纠偏、加大注浆量等工作。
提高工作面碴土的止水性。
通过向土仓注入膨润土或泡沫剂,改善碴土的流动性和渗透系数,防止螺旋输送机喷涌。
同步注浆及二次注浆。
掘进时采取同步注浆和二次补充注浆,充填环内间隙,使管片衬砌尽早支撑地层,控制地层沉陷。
在衬砌环脱出盾尾的同时及时注浆,填充隧道和地层间的建筑空隙,减小地面变形。
在盾构后约10环处再向衬砌背面进行二次注浆,以弥补同步注浆的不足。
提高盾尾的密封性能。
通过采用多道盾尾刷防止泥土从盾尾进入隧道,向盾尾注入油脂,加强盾尾的防水性能。
通过对盾构掘进时地面变形曲线进行实测反馈,不断调整、优化掘进参数,以验证选择施工参数的合理性,保持盾构开挖面的稳定。
②地面预注浆加固盾构到达前对具备施工条件的建筑物地基进行地面注浆预加固处理。
加固方案采用袖阀管,注浆处理以水泥浆为主。
特殊情况下,距离隧道较近的采用水泥-水玻璃双液浆进行地层加固,并对于临近警界值的建筑物进行跟踪注浆。
③地面补偿注浆盾构下穿建(构)筑物、始发到达及检修后重启动时,容易出现比较正常掘进段更多的超挖量,地层损失后易出现比较大的数量级地层沉降,这也是成都市地层特殊性,为保证砂卵石地层的密实度、降低施工风险,将地面补偿注浆作为以上措施的补充措施。
地面补偿注浆采取通过地面在地层特定位臵预埋注浆管,注浆材料以水泥浆为主,注浆参数经现场确定,在注浆施工过程中根据监测数据反馈信息进行调整。
④洞内注浆加固需对地面建筑物地基作预加固处理,如果地面实施条件或地面加固实施效果不理想情况下,采用洞内加固地层的措施。
将盾构管片邻接块和标准块的注浆孔由1个增加为3个,盾构通过后,利用注浆孔设注浆管,对盾构隧道洞周边3m范围地层内立即进行注浆加固。
注浆管用Φ42×3.5mm钢花管,长度 3.5m。
注浆材料用水泥-水玻璃浆液;注浆参数现场确定,在注浆施工过程中根据监测数据反馈信息进行优化调整。
⑤加强监控量测盾构下穿建(构)筑物及地下管线,要进行系统全面的监控量测,实施信息化施工。
根据监测反馈信息,调整、优化各项施工参数,以确保盾构施工安全和建(构)筑物、地下管线的正常使用,必要时采取应急措施。
五、穿越水下地段盾构施工风险控制穿越水下地段的处理方式和采取的措施:①深入探明地质、水文、水下地形、堤岸结构、周围构筑物等情况。
分析影响、制定措施。
②进入水下地段施工前必须对设备作全面检修,保证顺利掘进,同时必须配备足够的排水设备与设施,备足盾构机配件,确保盾构机平稳推进,不能在河流下停机。
③盾构机通过时,严格控制掘进参数。
加强盾构机姿态控制,应对盾构密封系统做全面检查和处理。
④掘进时适当减少出土量,保持较高的泥水或土压力,确保开挖面稳定。
在足量注浆的前提下适当减小注浆压力,防止击穿覆土。
⑤在管片上增设注浆孔,根据地质及掘进情况,对隧道周边3m 范围内进行注浆加固,二次注浆材料用水泥-水玻璃浆液,注浆参数现场试验确定。
⑥盾构区间下穿河流、河堰施工时,都要加强对隧道的监控量测,根据量测结果,适当进行洞内补充注浆。
⑦发生掘进面与水体连通时要首先关闭螺旋机闸门,抛填土袋压住漏点后试掘进;或采用不出土挤压推进通过漏水段等措施处理。
六、不良地质条件(可能存在的溶洞、上软下硬岩层、孤石、地质断层等)盾构施工风险控制①通过补充性地质勘察,进一步准确掌握不良地质条件位臵、埋深等必要参数,预先制定措施。
②对于溶洞、孔洞、地质断层等不良地质,从设计上考虑进行填充技术处理。
③盾构机应配备地质雷达探测系统以及超前注浆系统,以便实时监测前方土体情况,便于提前处理不良地质。
④盾构应配备硬岩切削刀具,根据地质不均匀地层特性配臵刀具。
仅底部初露硬岩可将刀盘边缘区换装滚刀,大部为硬岩或变化频繁时应安装全盘滚刀。
应以较小的贯入量、转速、推力谨慎掘进,加大刀具检查频率,通过上软下硬地层时,严格控制出土量、土仓压力,确保同步注浆量,盾构应快速通过。
⑤根据盾构机显示的参数波动、变化及掘进经验判断是否遇到孤石等,发现异常应保持压力,及时停机检查、分析确认。
经常检查刀具,保证刀具处于良好状态,遇孤石可采用滚刀缓慢磨削掘进。
遇孤石采用开仓人工破除,软弱土层中采用带压开仓作业。