(试题)北师七年级期末水平测试(1)
- 格式:doc
- 大小:105.50 KB
- 文档页数:5
北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。
√2 是一个无理数。
2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。
3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。
4. 决算表中列出了一个公司在一年中的所有收入和支出。
决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。
5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。
6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。
7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。
8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。
2023-2024学年北师大版七年级数学下册期末试题一、单选题1.小华抛一枚硬币,连续3次正面朝上,第四次()A.一定正面朝上B.一定反面朝上C.可能正面(也可能反面)朝上2.下列四个图案中,不是轴对称图形的是()A.B.C.D.3.如图,下面图象表示小红从家里出发去散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,请根据图象,确定下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回C.从家里出发,一直散步(没有停留),然后回家了D.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了4.若等腰三角形的一个内角是50︒,则这个三角形最大的内角的度数是()A.65︒B.80︒C.50︒D.65︒或80︒5.以7和3及另一边组成的边长都是整数的三角形共有( )A .2个B .3个C .4个D .5个6.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是( )A .抛一枚质地均匀的硬币,出现正面的概率B .从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率C .掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率D .从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率7.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是( )A .ASAB .SAS 或AASC .HLD .SSS8.下列运算中,正确的是( )A .326326x x x ⋅=B .224()-=x y x yC .236(2)6x x =D .54122x x x ÷= 9.下列说法正确的个数( )①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形. A .1个 B .2个 C .3个 D .4个10.广东省和计划生育委员会6月6日通报,广东新增一例输入性寨卡病毒病例,截至目前,广东省今年共报告13例寨卡病毒病例,寨卡病毒是一种通过蚊虫叮咬进行传播的虫蝶病毒,典型的症状包括急性起病的地热、斑丘疹、关节疼痛(主要累及手、足小关节),其他症状包括肌痛、头痛、眼眶痛及无力,易导致新生儿小头症,其直径为20纳米(1米=1000000000纳米),用科学记数法表示为( )A .7210⨯米B .8210⨯米C .7210-⨯米D .8210-⨯米二、填空题11.如图,Rt ABC △中,90ACB ∠=︒,50A ∠=︒,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB '∠=.12.如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°,则∠2=°.13.(1)已知正n 边形的一个外角是45︒,则n =;(2)如图,在ABC V 中,10BC =,AB 的垂直平分线交BC 于D ,AC 的垂直平分线交BC 与E ,则ADE V 的周长等于;(3)如图所示,在ABC V 中,已知点D ,E ,F 分别为BC ,AD ,BE 的中点.且28cm ABC S =V ,则图中CEF △的面积=;(4)ABC V 中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为厘米/秒.14.若多项式225x mx ++是一个完全平方式,则m = .三、单选题15.下列计算中,()(1)()b x y bx by -=-;(2)()b xy bxby =;(3)x y x y b b b -=-;(4)443216(6)=;(5)212122n n n x y xy ---=A .只有(1)与(2)正确B .只有(1)与(3)正确C .只有(1)与(4)正确D .只有(2)与(3)正确四、填空题16.计算:(4×105)×(5×104)=. 17.将图1中阴影部分的小长方形变换到图2的位置,你能根据两个图形的面积关系得到的数学公式是.18.有下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④在同一平面中,两条直线不相交就平行.其中正确的结论是(填序号).19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC V 和正CDE V ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ;以下四个结论:①AD BE =;②PQ AE ∥;③100AOE ∠=︒;④PA QE PD QB +=+;其中正确的的结论是(填序号).20.已知ABC DEF ≌△△,ABC V 的三边长分别为4、m 、n ,DEF V 的三边长分别为5、p 、q .若ABC V 的三边长均为整数,则m n p q +++的最大值为.五、解答题21.计算:()130411*******π-⎛⎫⎛⎫+⋅-- ⎪ ⎪⎝⎭⎝⎭. 22.已知:如图,AB AC =,D 是AB 上一点,DE BC ⊥于点E ,ED 的延长线交CA 的延长线于点F .求证:ADF △是等腰三角形.23.如图,已知ABC V 是等边三角形,D 为边AC 的中点,,AE EC BD EC ⊥=.(1)求证:≌BDC CEA V V .(2)请判断ADE V 是什么三角形,并说明理由.24.先化简,再求值:()()()2()2x y x y x y y x y +-+-+-,其中x =1,y =−1.25.如图,在四边形ABCD 中,=AB BC ,BF 是ABC ∠的平分线,//AF DC ,连接AC CF ,,求证:CA 是DCF ∠的平分线.。
北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。
数学期末测试题(一)北师大版七年级上册题号一二三四总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共8小题,共16分。
在每小题列出的选项中,选出符合题目的一项)1. 下列说法:锐角的补角一定是钝角;一个角的补角一定大于这个角;如果两个角是同一个角的余角,那么它们相等;锐角和钝角互补.其中,正确的说法有( )A. 个B. 个C. 个D. 个2. 纳米是一种长度单位,纳米米.已知某种植物的花粉的直径约为纳米,那么用科学记数法表示该种花粉的直径为( )A. B. C. D.3. 如果,,那么下列不等式成立的是( )A. B. C. D.4. 下列调查中,适合用全面调查的是( )A. 了解万只节能灯的使用寿命B. 了解某班名学生的视力情况C. 了解某条河流的水质情况D. 了解全国居民对“垃圾分类”有关内容的认识程度5. 下列运算正确的是( )A. B. C. D.6. 如图.直线,直线分别与直线、交于点、,则的度数为( )A.B.C.D.7. 如图,将边长为的正方形纸片,剪去一个边长为的小正方形纸片.再沿着图中的虚线剪开,把剪成的两部分和拼成如图的平行四边形,这两个图能解释下列哪个等式( )A.B.C.D.8. 在一次数学活动课上,王老师将共八个整数依次写在八张不透明的卡片上每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下他先像洗扑克牌一样打乱这些卡片的顺序.然后把甲、乙、丙、丁四位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:;乙:;丙:;丁:则拿到数字的同学是( )A. 甲B. 乙C. 丙D. 丁第II卷(非选择题)二、填空题(本大题共8小题,共16分)9. 今年高考第一天月日日平区最高气温是,最低气温是,请用不等式表示这一天气温的变化范围:____________.10. 分解因式:______ .11. 如果是二元一次方程的解,那么的值是______.12. 计算:______.13. 下列命题是真命题的有______填写相应序号.对顶角相等;两个锐角的和是钝角;两直线平行,同旁内角互补;一个正数与一个负数的和是负数.14. 在居家学习期间,某中学要求学生积极参加体育锻炼,坚持参加“仰卧起坐”、“跳绳”等项目,小雨连续记录了自己天一分钟“仰卧起坐”的个数:、、、、则这组数据的平均数为______.15. 已知,,则______.16. 某中学为积极开展校园足球运动,计划购买和两种品牌的足球,已知一个品牌足球价格为元,一个品牌足球价格为元.学校准备用元购买这两种足球两种足球都买,并且元全部用完.请写出一种购买方案:买______个品牌足球,买______个品牌足球.三、计算题(本大题共2小题,共9.0分)17. 计算:.18. 解方程组.四、解答题(本大题共10小题,共59.0分。
北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。
北师大版(七年级)初一上册数学期末测试题及答案一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 2.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=3.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2 B .-2C .-27D .27 4.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快5.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=6.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A.B.C.D.、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,7.甲、乙两人分别从A B甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出、两地的距离是()发后的5小时36分钟又再次相遇,则A BA.24千米B.30千米C.32千米D.36千米8.已知a,b是有理数,若表示它们的点在数轴上的位置如图所示,则|a|–|b|的值为()A.零B.非负数C.正数D.负数∠=∠的图形的个数是()9.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.410.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()A.36°B.54°C.64°D.72°-,b-的大小顺序是( )11.a,b在数轴上位置如图所示,则a,b,aA .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4二、填空题13.如图,填在下面各正方形中的四个数字之间有一定的规律,据此规律可得a b c ++=_____________.14.已知一个角的补角是它余角的10倍,则这个角的度数是_______________15.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.16.关于x 的方程2x+m=1﹣x 的解是x=﹣2,则m 的值为__.17.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______.18.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n 个正方形(实线)四条边上的整点个数共有_________个.19.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.20.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.21.整个埃及数学最特异之处,是一切分数都化为单位分数之和,即分子为1的分数.在一部记录古埃及数学的《赖因德纸草书》中,有相当的篇幅写出了“2n ”型分数分解成单位分数的结果,如:2115315=+;2117428=+;2119545=+,则221n =-________. 22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.(1)计算:()13564734-++-(2)计算:()320201342-⨯+÷-(3)x 22x 1146+--= 24.嘉琪同学准备化简()()22353326x x x x---+,算式中“□”是“+、-、×、÷”中的某一种运算符号. (1)如是“□”是“+”,请你化简()()22353326x x x x ---++;(2)当0x =时,()()22353326xx x x ---+的结果是15,请你通过计算说明“□”所代表的运算符号.25.计算: (1)11124834⎛⎫-⨯-+ ⎪⎝⎭(2)()()()322132633-+⨯---÷⨯-26.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?27.平行线问题的探索:(1)问题一:已知:如图,//,⊥AB CD EF AB 于点,O FG 交CD 于点P ,当130∠=︒时,求EFG 的度数甲、乙.丙三位同学用不同的方法添加辅助线解决问题,如图1:甲同学辅助线的做法和分析思路如下:辅助线:过点F 作//MN CD ,分析思路: a.欲求EFG 的度数,由图可知只需转化为求2∠和3∠的度数;b.//MN CD 可知,21,∠=∠又由已知1∠的度数可得2∠的度数;c .由//,//AB CD MN CD 推出//,AB MN 由此可推出34∠=∠;d.由已知,EF AB ⊥可得490,∠=︒所以可得3∠的度数;f.从而可求EFG 的度数 ①请你根据乙同学所画的图形,描述乙同学辅助线的做法.辅助线: _; ②请你根据丙同学所画的图形,且不再添加其他辅助线,求EFG 的度数.(2)问题二: 如图2,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()()0,,,,C a D b a 其中a b ,满足关系式:()2310a b a ++-+=.①a = ,b = ;②根据已知点的坐标判断AB 与CD 的位置关系是28.阅读理解:(阅读材料)在数轴上,通常用“两数的差”来表示“数轴上两点的距离”如图1中三条线段的长度可表示为:422,4(2)6,2(4)2AB CB DC =-==--==---=,⋅⋅⋅结论:数轴上任意两点表示的数为分别,()a b b a >,则这两个点间的距离为b a -(即:用较大的数去减较小的数)(理解运用)根据阅读材料完成下列各题:(1)如图2, ,A B 分别表示数1,7-,求线段AB 的长;(2)若在直线AB 上存在点C ,使得14CB AB =,求点C 对应的数值. (3),M N 两点分别从,A B 同时出发以3个单位、2个单位长度的速度沿数轴向右运动,求当点,M N 重合时,它们运动的时间;(4)在(3)的条件下,求当12MN AB =时,它们运动的时间.【参考答案】***试卷处理标记,请不要删除1.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.4.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.5.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.D解析:D【解析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.7.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h ,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h ,5小时36分钟=535(小时) 由题意可得:2×2x=(535-2)(x+2), 解得:x=18,∴A 、B 两地的距离=2×18=36(km ),故选:D .【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.8.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.9.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.11.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.12.B解析:B【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字.【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.二、填空题13.420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数2=右上角的数,右上角的数解析:420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数⨯2=右上角的数,右上角的数-1=左下角的数,右下角的数=右上角的数⨯左下角的数+左上角的数,∴当左下角的数=19时,19120b =+=,20210a =÷=,201910390c =⨯+=,∴1020390420a b c ++=++=.故答案是:420.【点睛】本题考查找规律,解题的关键是观察并总结规律.14.【解析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.15.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h 对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019 【解析】【分析】根据题意和图形,可以写出前几次操作后h 对应的值,从而可以发现变化特点,从而可以写出h 2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.16.7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.解析:7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.17.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 18.4n .【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n 个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=,第2个正方形的整点个数为8=解析:4n .【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n 个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=41⨯,第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n 个正方形的整点个数为4n ,故答案为:4n .【点睛】此题考查图形类规律的探究,根据图形求出前几个正方形四条边上整点的个数得到个数的变化规律是解题的关键.19.-25.【解析】【分析】由x =1时,代数式ax+b+1的值是﹣3,求出a+b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.20.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.21.【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】∵=,=,=,∴,故答案为:.【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的 解析:11(21)n n n +- 【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】 ∵2115315=+=1111(51)5(51)22++⨯+, 2117428=+=1111(71)7(71)22++⨯+, 2119545=+=1111(91)9(91)22++⨯+, ∴1111(211)(21)(211)22221n n n n +=-+-⨯-+=-11(21)n n n +-, 故答案为:11(21)n n n +-. 【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的关键. 22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC 与△A1BB1底相等(AB =A1B ),高为1:2(BB1=2B 解析:【解析】【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证S△A2B2C2=7S△A1B1C1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)-30;(2)-3.5;(3)-4【解析】【分析】(1)根据加法结合律和交换律即可得到结果;(2)根据含乘方的有理数的混合运算即可得到结果;(3)根据解一元一次方程的步骤即可得到结果.【详解】解:(1)原式=13+47-(56+34)=60-90=-30;(2)原式=-1×3+4÷(-8)=-3-0.5=-3.5;(3)x22x11 46+--=()()3222112x x+--=364212x x+-+=4x-=4x=-【点睛】本题主要考查的是含乘方的有理数的混合运算以及解一元一次方程,掌握以上知识点是解题的关键.24.(1)-11x-21;(2)减号【解析】【分析】(1)先用乘法分配律,再开括号合并同类项即可;(2)将x=0代入代数式化简即可得出结果.【详解】解:(1)原式=2235336181121x x x x x -----=--;(2)当x=0时,()330615--⨯=, ∴-3-3×(0-6)=15,∴□所代表的的运算符号是减号.【点睛】本题主要考查的是整式的化简求值,掌握整式的化简求值是解题的关键.25.(1) 1-;(2)7-【解析】【分析】(1)根据乘法分配律可以算得答案;(2)根据有理数的混合运算法则计算.【详解】解:(1)原式=()()1112424243861834⎛⎫-⨯+-⨯-+-⨯=-+-=- ⎪⎝⎭; (2)原式=()()138********-+⨯---⨯=--+=-.【点睛】本题考查有理数的运算,熟练掌握有理数的混合运算顺序、运算法则及运算律是解题关键.26.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x , 则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n •n=20;当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.27.(1)①过点P 作//PN EF ,交AB 于点N ;②见详解120EFG ︒∠=;(2)①-3,-4;②//AB CD【解析】【分析】(1)①过点P 作//PN EF ,交AB 于点N. ②根据平行线的性质可得结论;(2)①根据绝对值和平方的非负性求得a,b 的值;②纵坐标相等的两点所在的直线平行于x 轴.【详解】(1)①如图,过点P 作//PN EF ,交AB 于点N ;故答案为:过点P 作//PN EF ,交AB 于点N.②如图,过点O 作//OD FG ,交CD 于点N.130ONP ︒∴∠=∠=//AB CD30BON ONP ︒∴∠=∠=EF AB ⊥90EOB ︒∴∠=9030120EON EOB BON ︒︒︒∴∠=∠+∠=+=//OD FG120EFG EON ︒∴∠=∠=(2)①∵a b ,满足关系式:()2310a b a ++-+= ∴3=0a +,()21=0b a -+,解得3,4a b =-=-故答案为:-3,-4. ②//AB CD证明:∵(0,);(,)C a D b a∴CD x ⊥轴∵点A 为x 轴负半轴上的一点,点B 为x 轴负正轴上的一点∴//AB CD【点睛】本题考查了平行线的性质,绝对值和平方的非负性,解题的关键在于利用这些性质判断或求解.28.(1) 线段AB 的长为8;(2)14CB AB =时,点对应的数值为5或9;(3)运动时间为8秒时,,M N 重合;(4)运动时间为4或12小时,12MN AB =. 【解析】【分析】(1) 由题意,直接观察数轴和定义代入即可求出线段AB 的长;(2)根据题意设点C 对应的数值为x ,分当点C 在点B 左侧时以及当点C 在点B 右侧时列方程求解即可;(3)根据题意设运动时间为t 秒时,M N 重合用含t 的代数式表示出M 、N 进行分析;(4)由题意设运动时间为t 秒时,12MN AB =,分当点M 在点N 左侧时以及当点M 在点N右侧时进行分析求解.【详解】 解:(1)由题意得,线段AB 的长为:7(1)8--=,答:线段AB 的长为8.(2)设点C 对应的数值为x(ⅰ)当点C 在点B 左侧时,7CB x =- 因为14CB AB = 所以1784x -=⨯ 解得5x =(ⅱ)当点C 在点B 右侧时7CB x =- 因为14CB AB = 所以17=84x -⨯ 解得=9x 答:14CB AB =时,点对应的数值为5或9. (3)设运动时间为t 秒时,,M N 重合M 点对应数值表示为13t -+,N 点对应数值表示为72t +由题意得1372t t -+=+解得8t =答:运动时间为8秒时,,M N 重合.(4)设运动时间为t 秒时,12MN AB =, (ⅰ)当点M 在点N 左侧时,由(3)有172(13)82t t +--+=⨯ 解得:4t =(ⅱ)当点M 在点N 右侧时 113(72)82t t -+-+=⨯ 12t =答:运动时间为4或12小时,12MN AB.【点睛】本题考查一元一次方程的实际运用,利用数形结合的思想和数轴上求两点之间距离的方法解决问题.。
北师大版(2024年新教材)七年级上册数学期末达标测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10103.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣96.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=07.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.17.(6分)先化简,再求值:,其中.18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣【答案】A2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×1010【答案】B3.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.【答案】C4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣9【答案】D6.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=0【答案】C7.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩【答案】D8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【答案】B9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7【答案】D二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.【答案】见试题解答内容12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.【答案】19.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.【答案】7.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.【答案】120°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.【答案】.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.【答案】(1)25;(2)﹣5.17.(6分)先化简,再求值:,其中.【答案】见试题解答内容18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【答案】见试题解答内容19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.【答案】(1)抽样调查,60;(2)18°;(3)305.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.【答案】(1)40°;(2)45°.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)买卡合算,小张能节省400元;(2)这台冰箱的进价是2480元.22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.【答案】(1)67.5°;(2)①∠MCN的度数不改变,∠MCN的度数为67.5°.理由见解析;②t=15或25.。
2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。
期末测试卷时间:90分钟 满分:120分考试范围:上册全部内容题序一二三评卷人总分得分一、选择题(本大题共10小题,每小题3分,共30分)1.我国是最早使用负数的国家,东汉初,我国著名的数学著作《九章算术》明确提出了“正负术”.如果盈利100元记作+100元,那么亏损200元记作( )A.-200元B.200元C.300元D.-300元2.为了解甲、乙、丙、丁四所学校学生对“122交通安全专题”相关知识的掌握情况,小明计划进行抽样调查,以下方案中,最合理的是( )A.抽取甲校七年级学生进行调查B.在四个学校随机抽取200名老师进行调查C.在乙校随机抽取200名学生进行调查D.在四个学校各随机抽取200名学生进行调查3.袁隆平院士是世界上在杂交水稻研究方面的顶尖科学家,他研究出来的高产量杂交水稻让世界上近20亿人免于挨饿,20亿用科学记数法可表示为( )A.20×108B.2×109C.2×108D.0.2×10104.若代数式3x+2的值与2互为相反数,则x的值为( )A.2B.-2C.0D.-4 35.如图,图中的几何体是由5个相同的小立方块搭成的,则从上面观察这个几何体,得到的图形是( )6.七年级(1)班一次数学考试成绩的频数直方图如图所示,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2D.及格(大于或等于60分)的有12人7.已知6y-x=-5,则(x+2y)-2(x-2y)的值为( )A.-5B.5C.3D.28.如图,将一副三角板按照如图所示的位置放置,其中两个直角三角板的一个顶点重合,则∠CAE与∠DAB的大小关系是( )A.∠CAE>∠DABB.∠CAE=∠DABC.∠CAE<∠DABD.无法确定9.某市出租车的起步价是5元(3千米及3千米以内为起步价),以后每千米收费1.6元,不足1千米按1千米收费.小明乘出租车到达目的地时计价器显示为11.4元,则该出租车行驶的路程可能为( ) A.5.5千米 B.6.9千米C.7.5千米D.8.1千米10.如图所示的图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第1个图形中一共有5个黑色圆点,第2个图形中一共有14个黑色圆点,第3个图形中一共有27个黑色圆点……按此规律排列下去,第6个图形中黑色圆点的个数为( )A.65B.78C.90D.91二、填空题(本大题共6小题,每小题3分,共18分)11.六棱柱有 个侧面.12.某家用电器商城销售一款每台进价为a元的空调,标价比进价提高了30%,因商城销售方向调整,决定打九折降价销售,则每台空调的实际售价为 元.13.把某班所有学生上学方式的调查结果绘制成如图所示的扇形统计图,已知骑车上学的学生有26人,乘公交车上学所对应的扇形圆心角的度数是144°,则乘公交车上学的学生人数为 .14.一架飞机的无风速度为a km/h,若风速为25 km/h,则该飞机顺风飞行5小时的路程比逆风飞行4小时的路程多 km .15.如图,∠AOB 是平角,OC 是射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线,若∠COE=28°,则∠AOD 的度数为 .16.已知一组数a 1,a 2,a 3,…,a n ,其中a 1=1,对任意的正整数n ,a n+1a n +a n+1-a n =0,通过计算a 2,a 3,a 4的值,可以猜想a n = .三、解答题(本大题共9小题,共72分)17.(6分)计算:-34×|-19|+-152÷(-1)202418.(6分)化简:5a 2-[4ab-2(a 2-3b 2)+3(ab-4b 2)].19.(6分)解方程:5x -76+1=3x -14.20.(6分)如图,已知点C ,D 在线段AB 上,点D 是线段AB 的中点,AC=13AB ,CD=2.求线段AB 的长.21.(8分)如图,点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;(2)如图2,若∠COE=∠DOB,求∠AOC的度数.22.(8分)如图,这是一个用硬纸板制作的长方体包装盒的展开图,已知长方体的底面形状是正方形,高为12厘米.(1)制作一个这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板的价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)23.(10分)为了了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m= ,n= ;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.24.(10分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如下表所示:类别成本价/(元/箱)销售价/(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完这500箱矿泉水,该商场共获得利润多少元?25.(12分)如图,线段AB=24,动点P从A出发,以2个单位长度/秒的速度沿射线AB运动,M为AP的中点.(1)点P出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM-BP为定值.(3)若点P在AB的延长线上运动,N为BP的中点,给出下列两个结论:①MN的长度不变;②MN+PN的值不变.请选出正确的结论,并求其值.参考答案一、选择题12345678910A DB D B D AC B C1.A 【解析】盈利100元记作+100元,那么亏损200元记作-200元.2.D 【解析】为了解甲、乙、丙、丁四所学校学生对“122交通安全专题”相关知识的掌握情况,在四个学校各随机抽取200名学生进行调查最具有广泛性和代表性.3.B 【解析】20亿=2000000000=2×109..4.D 【解析】列方程得3x+2+2=0,解得x=-435.B6.D 【解析】由频数直方图可得,得分在70~80分的人数最多;该班的总人数为4+12+14+8+2=40;人数最少的得分段的频数为2;及格(大于或等于60分)的有12+14+8+2=36(人),故选项D错误.7.A 【解析】(x+2y)-2(x-2y)=x+2y-2x+4y=6y-x.因为6y-x=-5,所以原式=-5.8.C 【解析】因为∠CAE=60°-∠EAB,∠BAD=90°-∠EAB,所以∠CAE<∠DAB.要点回顾 比较角的大小的方法有:(1)估测法:当角的大小相差较大时,用观察或估测法很容易比较大小.(2)度量法:用量角器分别量出角的度数,然后比较它们的大小.(3)叠合法:把两个角的一边共顶点重合,另一边放同侧进行比较.(4)推理法:本题可采用这种方法,因为∠EAD=90°,∠CAB=60°,所以∠EAD>∠CAB,所以∠EAD-∠BAE>∠CAB-∠BAE,所以∠DAB>∠CAE.9.B 【解析】设该出租车行驶的路程为x千米,根据题意列方程得5+1.6(x-3)=11.4,解得x=7.由于不足1千米按1千米收费,故路程可能为6.9千米.10.C 【解析】第1个图形中的黑色圆点的个数=3+1×2=5;第2个图形中的黑色圆点的个数=3+5+2×3=14;第3个图形中的黑色圆点的个数=3+5+7+3×4=27……可得,第n个图形中的黑色圆点的个数=3+5+…+(2n+1)+n(n+1),当n=6时,3+5+7+9+11+13+6×7=90.二、填空题11.六12.1.17a 【解析】根据题意得90%×(1+30%)a=1.17a.13.20 【解析】全班总人数是26÷52%=50,其中乘公交车上学的学生人数为50×144°360°=20.14.(a+225) 【解析】两个路程的差为5(a+25)-4(a-25)=5a+125-4a+100=(a+225) km .15.62° 【解析】 因为OE 平分∠BOC ,所以∠BOC=2∠COE=56°,所以∠AOC=180°-∠BOC=124°.因为OD 平分∠AOC ,所以∠AOD=∠COD=12∠AOC=62°.16.1n 【解析】因为a n+1a n +a n+1-a n =0,a 1=1,所以a 2·a 1+a 2-a 1=0,即a 2+a 2-1=0,解得a 2=12.当n=2时,a 3·a 2+a 3-a 2=0,即12a 3+a 3-12=0,解得a 3=13;当n=3时,a 4·a 3+a 4-a 3=0,即13a 4+a 4-13=0,解得a 4=14……由此可以猜想a n =1n .三、解答题17.解:原式=-81×19+125÷1=-9+125=-82425................................................................................................(6分)18.解:原式=5a 2-(4ab-2a 2+6b 2+3ab-12b 2)...........................................................................................(3分)=5a 2-4ab+2a 2-6b 2-3ab+12b 2 ..................................................................................................................(4分)=7a 2-7ab+6b 2. ............................................................................................................................................(6分)19.解:去分母,得2(5x-7)+12=3(3x-1),..................................................................................................(2分)去括号,得10x-14+12=9x-3,移项,得10x-9x=14-12-3,合并同类项,得x=-1..................................................................................................................................(6分)20.解:因为D 是线段AB 的中点,所以AD=12AB. .............................................................................(2分)因为AC=13AB ,CD=2,所以CD=AD-AC=12AB-13AB=16AB=2,..........................................................(5分)所以AB=12. ...............................................................................................................................................(6分)21.解:(1)因为∠AOC=40°,∠AOC+∠BOC=180°,所以∠BOC=180°-∠AOC=180°-40°=140°,因为OE 平分∠BOC ,所以∠COE=12∠BOC=12×140°=70°,因为∠COD 是直角,所以∠COE+∠DOE=90°,所以∠DOE=90°-∠COE=90°-70°=20°;................................................................................................(4分)(2)因为OE平分∠BOC,所以∠COE=∠BOE,因为∠COE=∠BOD,所以∠COE=∠BOE=∠DOB,因为∠COD=90°,×90°=30°,所以∠COE=∠BOE=13所以∠AOC=180°-30°-30°=120°............................................................................................................(8分) 22.解:(1)由题意得2×(12×6+12×6+6×6)=360(平方厘米),答:制作一个这样的包装盒需要360平方厘米的硬纸板...............................................................(4分) (2)360÷10000×5×10=1.8(元).答:制作10个这样的包装盒需花费1.8元钱....................................................................................(8分) 23.解:(1)200 30........................................................................................................................................(2分)×100%=30%,所以n=30.提示:m=10÷5%=200,n%=60200(2)参加“综合与实践”活动天数为3天的学生人数为200×15%=30.........................................(4分)补全的条形图如图所示:..........................................................................................................................(6分)(3)2000×(1-5%-15%)=1600....................................................................................................................(9分)答:估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为1600.(10分)24.解:(1)设购进甲种矿泉水x箱,则购进乙种矿泉水(500-x)箱,根据题意,列方程得24x+33(500-x)=13800,解得x=300.500-300=200(箱).答:该商场购进甲种矿泉水300箱,乙种矿泉水200箱..................................................................(5分) (2)由题意,得300×(36-24)+200×(48-33)=6600(元).答:该商场共获得利润6600元............................................................................................................(10分) 25.解:(1)设点P出发x秒后,PB=2AM.当点P在点B左边时,PA=2x,PB=24-2x,AM=x,由题意得24-2x=2x,解得x=6;当点P在点B右边时,PA=2x,PB=2x-24,AM=x,由题意得2x-24=2x,方程无解.综上所述,点P出发6秒后,PB=2AM..................................................................................................(4分) (2)当点P在线段AB上运动时,AM=x,BM=24-x,PB=24-2x,则2BM-BP=2(24-x)-(24-2x)=24,显然,2BM-BP为定值24............................................................(8分) (3)①正确.PB=x-12,理由:因为PA=2x,AM=PM=x,PB=2x-24,PN=12所以MN=PM-PN=x-(x-12)=12(定值),所以①正确. .......................................................................................................................................................................(12分)。
北师七年级数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 480立方厘米C. 720立方厘米D. 960立方厘米5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 40厘米D. 44厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 任何一个三角形的内角和都是180度。
()3. 0.3333是一个无限循环小数。
()4. 任何两个奇数的乘积都是奇数。
()5. 任何两个偶数的和都是偶数。
()三、填空题(每题1分,共5分)1. 1的相反数是_______。
2. 两个质数的最小公倍数是_______。
3. 如果一个数的平方是64,那么这个数是_______。
4. 一个等边三角形的每个内角都是_______度。
5. 2的立方是_______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述因式分解的定义。
3. 请简述等差数列的定义。
4. 请简述比例的基本性质。
5. 请简述平行线的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求这个三角形的周长。
3. 如果一个数的平方是49,那么这个数的立方是多少?4. 一个等差数列的前三项分别是2、5、8,求这个数列的第四项。
5. 如果两个数的比例是3:5,其中一个数是15,求另一个数。
北师七年级第一学期期末水平测试(1)
(满分120分,时间90分钟)
一、填一填,要相信自己的能力!(每小题3分,共30分)
1.甲地的海拔高度是-126米,乙地的海拔高度是-390米,则甲地比乙地高出 米.
2.如果m 、n 互为相反数,则6-+n m = .
3.一件商品打八折比打九折少花6元,则这件商品的原价是 元.
4.下表示某月的日历,在日历上任意圈出一个竖列上相邻的3个数,如果被圈出的三个数之
5.如果线段AB=6cm ,BC=3cm ,且A 、B 、C 在同一直线上,那么A 、C 两点间的距离是_________厘米.
6.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件: 。
7.如图1所示,把长方形的一角折叠,得到折痕EF ,已知∠EFB=30°,则∠BFC= .
8.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图2所示,根据图中给出的信息,这200名学生中对该食堂的服务质量表示很满意的有 人.
图1
图2
9.有若干张卡片,上面写有数字,且后一张卡片比前一张的数大8,有一只小狗叼走了相邻的三张卡片,且它们之和为48,则这三张卡片上的数分别是________.
10.某市按以下规定收取水费,若每月用水不超过5立方米,按每立方米0.8元收费;如果超过5立方米,超过部分按每立方米1.5元收费.已知7月份某用户的水费平均每立方米1.15元,那么7月份该用户应交水费 元. 二、选一选,看完四个选项后再做决定呀!(每小题3分,共30分) 1.如图3所示,是某物体的三视图,则该物体是( ). A.圆柱 B.圆锥 C.圆台 D.球
A
C
B
F
E A 很满意
B 满意
C 说不清
D 不满意
D
C 9%B 38%
A 46%
主视图
左视图
俯视图
图3
2.将0.38×55×107的结果用科学记数法表示,其正确的是( ) A .7
109.20⨯ B .9
1009.2⨯ C .81009.2⨯
D .11
1009.2⨯
3.给出以下四个结论:
(1)圆柱体的上下两个圆一样大. (2)圆柱、圆锥的底面都是圆. (3)圆柱是由两个面围成的.
(4)长方体的面不可能是正方形. 其中正确的结论个数为:( )
A 、1个
B 、2个
C 、3个
D 、4个. 4.下列是同类项的一组是( )
A. –a 2b 与2ab
B. xyz 与8xy
C. 3mn 2与4m n 2
D. 2
3
a 与a 5.若要反映某种商品价格的变化情况,应该选择的统计图是( ). A.条形统计图 B.扇形统计图 C.折线统计图 D.三种都可以 6.下列事件是不可能事件的是( ). A.某人买了一张彩票中了大奖. B.两个偶数之和是奇数.
C.连续掷五次硬币,结果都是正面朝上.
D.小明的数学连续三次考试都是100分.
7.如图4所示的四张图中,经过折叠可以围成一个棱柱的是( )
A
B
C
D
图4
8. 在2
2
2
3
)3(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于( ) A.6 B.8 C.5- D.5 9.点E 在线段CD 上,下面的等式:①CE=DE ;②DE=
2
1CD ;③CD=2CE ;④CD=2
1DE.
其中能表示E 是CD 中点的有( ).
A.1个
B.2个
C. 3个
D. 4个
10.如图5所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为( ).
A.160°
B.110°
C.130°
D.140°
三、做一做,要注意认真审题呀!(共60分) 1.(8分)(1)15-(-18)-(-8)×(-6)
(2)4
5)23(3
12
÷
-
⨯-
.
2.(10分)解方程:(1)13)21(32=--x x (2)
23
122
5=+-+x x 图5
3.(10分)如图6所示,AB ∥CD ,E 是AD 上一点.
(1)过E 做CD 的平行线段,交BC 于F . (2)EF 与AB 的位置关系是什么?为什么? 4.(10分)某汽车行驶时,油箱中余油量Q (千克) 与行驶时间t (小时)之间的关系如下表所示: 图6
⑴写出用时间t 表示余油量Q 的代数式; ⑵当t=3.5时,求余油量Q 的值;
⑶根据所列代数式回答,汽车行驶之前,油箱中有多少千克汽油? ⑷油箱中原有汽油可以供汽车行驶多少小时?
5.(10分)某班对班上60名学生上学的方式做了一次调查,调查结果如下:骑自行车上学的同学有30人,坐公交车上学的同学有18人,步行上学的同学有12人,请画出扇形统计图表示这个班同学选择各种上学方式的人数占总人数的百分比.
6.(12分)某天,一水果个体户用90元钱从水果批发市场批了苹果和香蕉共80kg 到菜市场去卖,苹果和香蕉这天的批发价和零售价如下表所示:
问:他当天卖完这些苹果和香蕉能赚多少钱?
O A
B
C
D
参考答案
一、填空题
1.答案:264米。
提示:(-126)-(-390)=-126+390=264(米).
2.答案:6.提示:因为m 、n 互为相反数,所以m+n=0.因此6-+n m =.6660=-=-
3.答案:60.提示:设商品的原价为x 元,则有0.9x-0.8x=6,解得,x=60.
4.答案:29.提示:设这三个数分别是x-7,x,x+7,根据题意得(x-7)+x+(x+7)=66,解得x=22,因此x+7=29.
5.答案:3cm 或9cm .
6.此题答案不惟一,如:出现奇数,出现偶数,出现3,出现5等等.
7.答案:120°.提示:因为∠EFB=30°,所以∠EFA=30°,因此
∠BFC=180°-30°-30°=120°. 8.答案:92.提示:200×46℅=92(人)
9.答案:8、16、24.提示:设三张卡片上的数分别是x-8,x,x+8,根据题意得(x-8)+x+(x+8)=48.解得x=16.
10. 答案:11.5.提示:因为某用户的水费平均每立方米1.15元,所以该户用水已超过5立方米.设该户用水x 立方米,根据题意得0.8×5+1.5(x-5)=1.15x ,解得x=10.此时1.15×10=11.5(元). 二、选择题
1.答案:C.提示:从左视图和主视图来看,此物体应是上小下大,从俯视图来看,上下底面都是圆形,所以应为圆台.
2.答案:C .
3.答案:B.提示:只有(1)、(2)是正确的.
4.答案:C.提示:A 项中的字母a 和b 的指数都不相同,所以不是同类项;B 项所含字母不同,所以不是同类项;D 项中字母a 的指数不同,因此不是同类项;只有C 项符合同类项的条件.
5.答案:C.提示:只有折线统计图可以反映变化趋势.
6.答案:B.提示:两个偶数之和一定是偶数,不可能是奇数.
7.答案:选C .
8.答案:D.提示:9)3(,42,1)1(,1)1(2
2
2
3
=--=-=--=-,因此9+(-4)=5. 9.答案:C.
分析:①、②、③正确,只有④是错误的.
10.答案:C.提示:∠AOC=∠AOB+∠BOC ,∠BOD=∠BOC+∠COD ,
而∠AOD=∠AOB+∠BOC+∠COD ,
即∠AOD=(∠AOB+2∠BOC+∠COD )-∠BOC=∠AOC+∠BOD-∠BOC
=80°+80°-30°=130°.故正确答案为C 项. 三、解答题
1.(1)原式=15+18-48=-30.(2)原式=
.5
35
44
93
1=
⨯
⨯
2.解:(1)去括号,得13632=+-x x ,移项,合并同类项得,8x=16,因此x=2.
(2)去分母,得3(x+5)-2(2x+1)=12,去括号,得3x+15-4x-2=12,移项,合并同类项,得-x=-1,因此x=1.
3.(1)如图所示。
(2)既然EF ∥CD ,而AB 与CD 平行,根据平行线性质可得EF ∥AB .
4.解:⑴Q=40-5t.
⑵当t=3.5时,Q=40-5×3.5=22.5.
⑶当t=0时,Q=40.
所以,汽车行驶之前油箱中有40千克汽油. ⑷由题意可知,汽车行驶每小时耗油5千克, 所以,油箱中有40千克汽油可以供汽车行驶8小时. 5.解:30÷60×100﹪=50﹪,50﹪×360°=180°; 18÷60×100﹪=30﹪,30﹪×360°=108°; 12÷60×100﹪=20﹪,20﹪×360°=72°. 画图如下:
步行:20%
坐公交车:30%
骑自行车:50%
6.解:设他批了苹果x 千克,则批了香蕉(80-x )千克,根据题意得 x +1.2(80-x)=90
解得x=30.因此80-x=50.
30×(1.2-1)+50×(1.6-1.2)=26(元)。
答:他当天卖完这些苹果和香蕉能赚26元。