上海市华师大二附中2018学年高一下学期期中数学试卷 含解析
- 格式:doc
- 大小:488.11 KB
- 文档页数:12
2016-2017学年上海市华师大二附中高一(下)期中数学试卷一.填空题1.(3分)弧度数为3的角的终边落在第象限.2.(3分)=.3.(3分)若函数f(x)=asinx+3cosx的最大值为5,则常数a=.4.(3分)已知{a n}为等差数列,S n为其前n项和,若a1=8,a4+a6=0,则S8=.5.(3分)在△ABC中,,,则=.6.(3分)函数的图象可由函数的图象至少向右平移个单位长度得到.7.(3分)方程3sinx=1+cos2x的解集为.8.(3分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.9.(3分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.10.(3分)在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是.二.选择题11.(3分)已知,,,则β=()A.B.C.D.12.(3分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin(x+)13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(3分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5三.简答题15.在△ABC中,a2+c2=b2+ac.(1)求∠B 的大小;(2)求cosA+cosC的最大值.16.已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.17.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.18.已知方程;(1)若,求的值;(2)若方程有实数解,求实数a的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求α+β的最大值.2016-2017学年上海市华师大二附中高一(下)期中数学试卷参考答案与试题解析一.填空题1.(3分)弧度数为3的角的终边落在第二象限.【解答】解:因为<3<π,所以3弧度的角终边在第二象限.故答案为:二2.(3分)=﹣.【解答】解:=cos=﹣cos=﹣,故答案为:.3.(3分)若函数f(x)=asinx+3cosx的最大值为5,则常数a=±4.【解答】解:函数f(x)=asinx+3cosx=sin(x+θ),其中tanθ=.∵sin(x+θ)的最大值为1.∴函数f(x)的最大值为,即=5可得:a=±4.故答案为:±4.4.(3分)已知{a n}为等差数列,S n为其前n项和,若a1=8,a4+a6=0,则S8=8.【解答】解:设等差数列{a n}的公差为d,∵a1=8,a4+a6=0,∴2×8+8d=0,解得d=﹣2.则S8=8×8﹣2×=8.故答案为:8.5.(3分)在△ABC中,,,则=.【解答】解:∵,,∴由正弦定理,可得:=,解得:sinC=,C为锐角,可得C=,∴由A+B+C=π,可得:B=,∴===.故答案为:.6.(3分)函数的图象可由函数的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.7.(3分)方程3sinx=1+cos2x的解集为.【解答】解:方程3sinx=1+cos2x,即3sinx=1+1﹣2sin2x,即2sin2x+3sinx﹣2=0,求得sinx=﹣2(舍去),或sinx=,∴x∈,故答案为:.8.(3分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.9.(3分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1.故答案为:4.10.(3分)在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是12.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=3sinBsinC,可得sinBcosC+cosBsinC=3sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=3tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=3tanBtanC,可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,﹣=(﹣)2﹣,由t>1得,﹣≤﹣<0,因此tanAtanBtanC的最小值为12.故答案为:12.二.选择题11.(3分)已知,,,则β=()A.B.C.D.【解答】解:∵,,∴α﹣β∈(﹣,),cos(α﹣β)==,又∵,可得:cos=,∴sinβ=﹣sin[(α﹣β)﹣α]=﹣sin(α﹣β)cosα+cos(α﹣β)sinα=﹣(﹣)×+=,∴.故选:C.12.(3分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.(3分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.三.简答题15.在△ABC中,a2+c2=b2+ac.(1)求∠B 的大小;(2)求cosA+cosC的最大值.【解答】解:(1)∵a2+c2=b2+ac,可得:a2+c2﹣b2=ac.∴cosB===,∵B∈(0,π),∴B=.(2)由(1)得:C=﹣A,∴cosA+cosC=cosA+cos(﹣A)=cosA﹣cosA+sinA=sinA.∵A∈(0,),∴故当A=时,sinA取最大值1,即cosA+cosC的最大值为1.16.已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.﹣b n=1.∴b n+1∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.17.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.【解答】解:(1)由tanx有意义得x≠+kπ,k∈Z.∴f(x)的定义域是,f(x)=4tanxcosxcos(x﹣)﹣=4sinxcos(x﹣)﹣=2sinxcosx+2sin2x ﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣).∴f(x)的最小正周期T==π.(2)令﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z.令+2kπ≤2x﹣≤+2kπ,解得+kπ≤x≤+kπ,k∈Z.[﹣+kπ,+kπ]∩[﹣,]=[﹣,],[+kπ,+kπ]∩[﹣,]=[﹣,﹣],∴f(x)在上单调递增,在上单调递减,∴f(x)的最小值为f(﹣)=﹣2,又f(﹣)=﹣1,f()=1,∴f(x)的最大值为f()=1.18.已知方程;(1)若,求的值;(2)若方程有实数解,求实数a的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求α+β的最大值.【解答】解:(1)当时,arctan+arctan(2﹣x)=,∴,解得x=﹣1或x=2,∴当x=﹣1时,=arccos(﹣)=π﹣arccos=;当x=2时,arccos=arccos1=0,(2)∵,∴tana==当x=4时,tana=0,当x≠4时,tana=,∵4﹣x +≥2或4﹣x +≤﹣2,∴0<tana ≤或≤tana<0,综上,≤tana ≤,∴a ∈.(3)由(2)知=tana在[5,15]上有两解α,β,即tana•x2+(1﹣2tana)x+2tana﹣4=0在[5,15]有两解α,β,∴α+β==2﹣,∴△=(1﹣2tana)2﹣8tana(tana﹣2)=﹣4tan2a+12tana+1>0,解得<tana <且tana≠0.①若tana>0,则对称轴=1﹣<1,方程在[5,15]上不可能有两解,不符合题意,舍去;②若tana<0,令5<1﹣<15,解得﹣<tana <﹣,又,解得tana ≤﹣,综上,<tana ≤﹣,∴当tana=﹣时,α+β取得最大值2+17=19.第11页(共11页)。
2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷试题数:18.满分:01.(填空题.3分)在等比数列{a n }中.已知a 2=4.a 6=16.则a 4=___ .2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ .4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ .7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ .8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ .9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ .11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n13.(单选题.3分)设S k =1k+1 + 1k+2 + 1k+3 +…+ 12k.则S k+1为( )A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k +12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+114.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 9015.(问答题.0分)已知关于x 的方程sin 2x+cosx+m=0.x∈[0.2π). (1)当m=1时.解此方程(2)试确定m 的取值范围.使此方程有解.16.(问答题.0分)在公差为d 的等差数列{a n }中.已知a 1=10.且a 1.2a 2+2.5a 3成等比数列. (Ⅰ)求d.a n ;(Ⅱ)若d <0.求|a 1|+|a 2|+|a 3|+…+|a n |.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金; (2)第几年起.新增盈利累计总额超过累计技术改造金.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷参考答案与试题解析试题数:18.满分:01.(填空题.3分)在等比数列{a n}中.已知a2=4.a6=16.则a4=___ .【正确答案】:[1]8【解析】:由等比数列通项公式得a2a6=a42 .由此能求出a4.【解答】:解:∵在等比数列{a n}中.a2=4.a6=16.∴ a2a6=a42 =4×16=64.且a4>0.解得a4=8.故答案为:8.【点评】:本题考查等比数列的第4项的求法.考查等比数列的性质等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .【正确答案】:[1]π+arcsin 13【解析】:先将x∈[π. 32π ].化为π-x∈[- π2,0 ].再利用诱导公式sin(π-x)=sinx.求出π-x=arcsin(- 13)=-arcsin 13.然后计算得解.【解答】:解:因为x∈[π. 32π ].所以π-x∈[- π2,0 ].由sinx=- 13.sin(π-x)=sinx.所以sin(π-x)=- 13.即π-x=arcsin(- 13)=-arcsin 13.所以x=π+arcsin 13.故答案为:π+arcsin 13 .【点评】:本题考查了解三角方程.及正弦的主值区间.属简单题3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ . 【正确答案】:[1] {4,n =14n −1,n ≥2【解析】:根据数列的递推公式即可求出通项公式.【解答】:解:当n=1时.a 1=S 1=2×12+1+1=4.当n≥2时.a n =S n -S n-1=2n 2+n+1-[2(n-1)2+n-1+1]=4n-1. 当n=1时.a 1=3≠4. 故a n = {4,n =14n −1,n ≥2 .故答案为: {4,n =14n −1,n ≥2 .【点评】:本题考查了数列的递推公式.属于基础题4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .【正确答案】:[1] 2661【解析】:由等差数列的性质和求和公式可得 a 9b 9= S17T 17.代值计算可得.【解答】:解:由等差数列的性质和求和公式可得 a 9b 9= 2a 92b 9 = a 1+a 17b 1+b 17 = S 17T 17 = 3×17+17×17+3 = 2661. 故答案为: 2661【点评】:本题考查等差数列的性质和求和公式.属基础题. 5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .【正确答案】:[1]2【解析】:求出数列通项公式的表达式.求出数列的和.然后求解数列的极限即可.【解答】:解: 11+2+3+⋯+n = 2n (n+1) =2( 1n −1n+1 ).∴ lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )= lim n→∞2(1- 12+12−13+13−14 +… +1n −1n+1 )=lim n→∞(2- 2n+1 )=2.故答案为:2.【点评】:本题考查数列的和.数列的极限的求法.考查计算能力.6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ . 【正确答案】:[1]√5+12【解析】:根据题意.这个数为a.则整数部分aq.则小数部分为a-aq.结合等比数列的性质可得a 2q 2=a (a-aq ).即q 2+q-1=0.解可得q 的值.又由aq 为正整数且aq 2<1.设aq 这个正整数为m.则有a= mq =m× √5+12且m (√5+12 )×( √5−12)2<1.解可得m 的值.变形可得a 的值.即可得答案.【解答】:解:小数部分、整数部分及这个正实数依次成等比数列. 不妨设这个数为a.则整数部分aq.则小数部分为a-aq.则q >0. 则有a 2q 2=a (a-aq ). 即q 2+q-1=0. 解得q=√5−12 .q= −1−√52(舍去). 又由aq 为正整数.设aq 这个正整数为m.则a= mq =m× √5+12. 又由aq 2<1.即m ( √5+12 )×( √5−12)2<1. 解可得m <√5+12.又由m 为整数.则m=1.则a= mq=m× √5+12 = m q = √5+12. 故答案为: √5+12.【点评】:本题考查等比数列的性质.涉及等比中项的计算.注意分析q 的范围.属于基础题. 7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ . 【正确答案】:[1] 1955【解析】:由0.3 4• 5• =0.3+0.045+0.0045+….可得等号右边的数从0.045起为公比为0.01的无穷等比数列.运用无穷递缩等比数列的求和公式.计算可得所求值.【解答】:解:0.3 4• 5• =0.3+0.045+0.0045+… =0.3+ 0.0451−0.01 =0.3+ 45990 = 342990 = 1955 . 故答案为: 1955.【点评】:本题考查循环小数化为分数的方法.考查无穷递缩等比数列的求和公式的运用.考查运算能力.属于基础题.8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ . 【正确答案】:[1](-1.0)∪(0. 18 ]【解析】:由题意 a 11−q =12 .|q|<1.从而q=1-2a 1.进而a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+18.利用-1<q <1.能求出a 2的取值范围.【解答】:解:∵无穷等比数列{a n }的各项和为 12 .∴ a 11−q =12 .|q|<1.∴q=1-2a 1.a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+ 18 . ∵-1<q <1.a 2的取值范围是(-1.0)∪(0. 18]. 故答案为:(-1.0)∪(0. 18 ].【点评】:本题考查等比数列的第二项的取值范围的求法.考查等比数列的性质等基础知识.考查运算求解能力.是基础题.9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .【正确答案】:[1] 3π4【解析】:先将两方程变形为:-θ- π4 =sinθ.-θ- π4 =arcsinθ.由y=sinθ.y=arcsinθ互为反函数.其图象关于直线y=x 对称.则方程组 {y =xy =−x −π4.由对称性及中点坐标公式可得.解的横坐标为θ1+θ22.得解.【解答】:解:由x-cosx= π4 .可化为: π4 -x=sin (x- π2 ). x+arcsin (x- π2 )= π4 .可化为: π4 -x=arcsin (x- π2 ). 设θ=x - π2.则有:-θ- π4=sinθ.-θ- π4=arcsinθ. 由y=sinθ.y=arcsinθ.互为反函数. 其图象关于直线y=x 对称. 联立 {y =x y =−x −π4 .得:x=- π8 .即θ1+θ2=- π4 . 所以x 1- π2 +x 2- π2 =- π4 . 则x 1+x 2= 3π4 . 故答案为: 3π4 .【点评】:本题考查了函数与其反函数图象关于直线y=x 对称的性质.属中档题 10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ . 【正确答案】:[1]若sp+tm=kn.s+t=k.则有b p s b m t =b n k .(s.t.k.p.m.n∈N*) 【解析】:利用类比推理可得【解答】:解:利用类比推理可得.对于等比数列{b n }.若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*). 故答案为:若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*)【点评】:本题考查了类比推理的问题.属于基础题.11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【正确答案】:C【解析】:由举例1.-1.1可得“a 、b 、c 成等比数列”不能推出“b= √ac “.由等比中项概念可得:当a 、b 、c 是非零实数.“b= √ac “.可推出“a 、b 、c 成等比数列”.故“a 、b 、c 成等比数列”是“b= √ac “的必要不充分条件.【解答】:解:当“a 、b 、c 成等比数列”时.不妨取“1.-1.1“.则不满足“b= √ac “. 即“a 、b 、c 成等比数列”不能推出“b= √ac “. 当a 、b 、c 是非零实数.“b= √ac ”.由等比中项概念可得:“a 、b 、c 成等比数列”即“a 、b 、c 成等比数列”是“b= √ac ”的必要不充分条件. 故选:C .【点评】:本题考查了等比数列的性质及充分.必要条件.属简单但易错题. 12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n【正确答案】:C【解析】:此题可采用排除法法.可取a n =(-1)n .排除A ;取a n = 1n.排除B ;取a n =b n =n.排除D 得到答案.【解答】:解:取a n =(-1)n .排除A ; 取a n = 1n .排除B ; 取a n =b n =n.排除D . 故选:C .【点评】:考查学生认识极限及运算的能力.以及学会采用排除法做选择题. 13.(单选题.3分)设S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .则S k+1为( ) A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k + 12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+1【正确答案】:C【解析】:先利用S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .表示出S k+1.再进行整理即可得到结论.【解答】:解:因为S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .所以s k+1= 1(k+1)+1 + 1(k+1)+2 +…+ 12(k+1)−2 + 12(k+1)−1 + 12(k+1) =1k+1 +1k+2 +…+ 12k + 12k+1 + 12k+2 - 1k+1=s k +12k+1 - 12k+2. 故选:C .【点评】:本题主要考查数列递推关系式.属于易错题.易错点在与整理过程中.不能清楚哪些项有.哪些项没有.14.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 90 【正确答案】:B【解析】:由y=arcsinx 的值域为[- π2 . π2 ].考虑数列{a n }的周期为360.一个周期内的和.即可得到所求最小值和最大值.【解答】:解:由y=arcsinx 的值域为[- π2 . π2 ]. 当n 取1到90的自然数可得: S 90=π180 + 2π180 +…+ 90π180; 当n 取91到180的自然数可得: a 91+a 92+…+a 180= 89π180 + 88π180 +…+ π180 +0; 当n 取181到270的自然数可得:a 181+a 182+…+a 270=-( π180 + 2π180 +…+ 90π180 ); 当n 取271到360的自然数可得:a 271+a 272+…+a 360=-( 89π180 + 88π180 +…+ π180 +0). 由{a n }的周期为360.可得S 360=0.且S180>0.且为最大值;而S1800=S360×5=0.S2016=S216>0.S1980=S180>0.则故排除A.C.D.故选:B.【点评】:本题考查反正弦函数值的求法.以及数列的求和.考查分类讨论思想方法.以及运算能力和推理能力.属于中档题.15.(问答题.0分)已知关于x的方程sin2x+cosx+m=0.x∈[0.2π).(1)当m=1时.解此方程(2)试确定m的取值范围.使此方程有解.【正确答案】:【解析】:(1)由sin2x+cos2x=1.则sin2x+cosx+m=0可化为:cos2x-cosx-1-m=0.将m=1代入解一元二次方程可得解.(2)分离m与cosx.用值域法可得解.即1+m=cos2x-cosx.再用配方法求cos2x-cosx的值域即可得解.【解答】:解:(1)sin2x+cosx+m=0.所以cos2x-cosx-1-m=0.当m=1时.方程为:cos2x-cosx-2=0.所以cosx=-1或cosx=2.又cosx∈[-1.1].所以cosx=-1.又x∈[0.2π).所以x=π.故方程的解集为:{π}(2)由(1)得.cos2x-cosx-1-m=0有解.即1+m=cos2x-cosx有解.又1+m=cos2x-cosx=(cosx- 12)2- 14.又cosx∈[-1.1].所以(cosx- 12)2- 14∈[- 14,2 ].即1+m∈[- 14,2 ].即m∈[ −54,1 ].故答案为:[ −54,1 ]【点评】:本题考查了三角函数的运算及二次函数的值域.与方程有解问题.属中档题16.(问答题.0分)在公差为d的等差数列{a n}中.已知a1=10.且a1.2a2+2.5a3成等比数列.(Ⅰ)求d.a n;(Ⅱ)若d<0.求|a1|+|a2|+|a3|+…+|a n|.【正确答案】:【解析】:(Ⅰ)直接由已知条件a1=10.且a1.2a2+2.5a3成等比数列列式求出公差.则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论.得到等差数列{a n}的前11项大于等于0.后面的项小于0.所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】:解:(Ⅰ)由题意得5a3•a1=(2a2+2)2 .即5(a1+2d)•a1=(2a1+2d+2)2 .整理得d2-3d-4=0.解得d=-1或d=4.当d=-1时.a n=a1+(n-1)d=10-(n-1)=-n+11.当d=4时.a n=a1+(n-1)d=10+4(n-1)=4n+6.所以a n=-n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n.因为d<0.由(Ⅰ)得d=-1.a n=-n+11.则当n≤11时. |a1|+|a2|+|a3|+⋯+|a n|=S n=−12n2+212n.当n≥12时.|a1|+|a2|+|a3|+…+|a n|=-S n+2S11= 12n2−21n2+110.综上所述.|a1|+|a2|+|a3|+…+|a n|= {−12n2+212n,n≤1112n2−212n+110,n≥12.【点评】:本题考查了等差数列、等比数列的基本概念.考查了等差数列的通项公式.求和公式.考查了分类讨论的数学思想方法和学生的运算能力.是中档题.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金;(2)第几年起.新增盈利累计总额超过累计技术改造金.【正确答案】:【解析】:(1)计算n=1.2.3.4.5.6.7即可得到所求结论;(2)考虑1到5年不符题意;n >5时.可得1500+2000[n-5-0.6(1−0.6n−5)1−0.6 ]>1000n.结合n的特殊值.计算可得结论.【解答】:解:(1)新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5 (万元). 可得a 1=0.a 2=150.a 3=300.a 4=450.a 5=600.a 6=2000×(1-0.6)=800.a 7=2000×(1-0.36)=1280>1000.则第7年起.当年新增盈利超过当年的技术改造金;(2)由n=5时.a 1+a 2+…+a 5=1500<5000.可得所求n 超过5.可得1500+2000[n-5- 0.6(1−0.6n−5)1−0.6 ]>1000n.化简可得n+3•0.6n-5>11.5.由于3•0.6n-5随着n 的增大而减小.当n=11时.11+3•0.66<11.5.当n=12时.12+3•0.67>11.5.则第12年起.新增盈利累计总额超过累计技术改造金.【点评】:本题考查数列在实际问题中的运用.考查化简运算能力和推理能力.属于中档题.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.【正确答案】:【解析】:(1)由题意可得数列为等差数列.即可得到所求通项公式;(2)由条件可得a n+1+1=2(a n+1).由等比数列的定义和通项公式、求和公式.计算可得所求;(3)由条件可得a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.结合首项成立.以及二次函数的最值.计算可得所求范围.【解答】:解:(1)λ=0.μ=1.a1=3.可得a n+1=a n+1.即有a n=3+n-1=n+2;(2)若λ=0.μ=2.a1=1.可得a n+1=2a n+1.即有a n+1+1=2(a n+1).可得a n+1=2n.即a n=2n-1.前n项和为S n=(2+4+…+2n)-n= 2(1−2n)1−2-n=2n+1-2-n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立. 可得a n+1=a n2+μa n+1.即有a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.由a1=-1.可得1-(1+μ)+1>0.即有μ<1;又(a n+ 1+μ2)2+1- (1+μ)24≥1- (1+μ)24.可得1- (1+μ)24>0.可得-3<μ<1.综上可得μ的范围是(-3.1).【点评】:本题考查数列的递推式的运用.以及等差数列和等比数列的定义、通项公式和求和公式的运用.考查运算能力和推理能力.属于中档题.。
上海市华师大二附中2014-20 15学年高一下学期期中数学试卷一、填空题(每小题3分,共36分)1.(3分)扇形的半径为1cm,圆心角为2弧度,则扇形的面积为cm2.2.(3分)已知角α的终边过点P(﹣5,12),则cosα=.3.(3分)已知,则sin2α=.4.(3分)已知α是锐角,则=.5.(3分)化简:=.6.(3分)若α是第三象限角,且,则=.7.(3分)在△ABC中,若b=1,,,则S△ABC=.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.9.(3分)定义,则函数(x∈R)的值域为.10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.11.(3分)已知函数f(x)=2x2﹣ax+1,存在,使得f(sinϕ)=f(cosϕ),则实数a的取值范围是.12.(3分)设函数(x∈)的最大值为M,最小值为m,则M+m=.二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C. f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)三、解答题(本大题共48分)17.(6分)若,求的值.18.(8分)设△AB C的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=解答:解:由,得sin=sinα=﹣,则sinα=2sin cos==﹣,解得tan=﹣或﹣,由α是第三象限角,所以,则,所以tan=﹣,故答案为:﹣.点评:本题考查两角和与差的正弦函数、倍角公式,考查学生灵活运用公式解决问题的能力.7.(3分)在△ABC中,若b=1,,,则S△ABC=.考点:正弦定理的应用.专题:解三角形.分析:由正弦定理求出sinB的值,可得B的值,再由三角形的内角和公式求出A的值,再由S△ABC=,运算求得结果.解答:解:由于在△ABC中,若b=1,,,由正弦定理可得=,∴sinB=.再由大边对大角可得 B=<A,∴A=π﹣B﹣C=.∴则S△ABC==,故答案为.点评:本题主要考查正弦定理的应用,三角形的内角和公式,大边对大角,属于中档题.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:依题意,利用正弦定理可求得AD,BD,再利用余弦定理即可求得AB.解答:解:作图如下:∵CD=200m,∠ADC=105°,∠ACD=30°,∠BDC=15°,∠BCD=120°,∴∠CAD=∠CBD=45°,∠BDA=90°;∴在△ACD中,由正弦定理=,即=,∴AD=100;在△BCD中,同理可求BD=100.在直角三角形BDA中,由勾股定理得AB===.故A,B间的距离为200m.故答案为200.点评:本题考查正弦定理与余弦定理,求得AD,BD是关键,考查作图与运算能力,属于中档题.9.(3分)定义,则函数(x∈R)的值域为.考点:二阶行列式的定义;正弦函数的定义域和值域.专题:新定义;三角函数的图像与性质.分析:利用新定义,展开f(x)利用同角三角函数化为一个角的一个三角函数的二次函数的形式,根据余弦函数的值域求解即可.解答:解:由题意=sin2x+4cosx=﹣cos2x+4cosx+1=﹣(cosx﹣2)2+5∈.故答案为:.点评:本题是基础题,考查三角函数的化简求值,新定义的应用,考查计算能力.10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.考点:余弦函数的图象;正切函数的图象.专题:三角函数的图像与性质.分析:先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx的值,从而得到答案.解答:解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=.线段P1P2的长为故答案为.点评:考查三角函数的图象、数形结合思想.11.(3分)已知函数f(x)=2x2﹣ax+1,存在,使得f(sinϕ)=f(cosϕ),则实数a的取值范围是.考点:函数与方程的综合运用.专题:函数的性质及应用.分析:利用条件化简可得2(sinφ+cosφ)=a,利用辅助角公式及角的范围,即可求实数a的取值范围.解答:解:根据题意:2sin2φ﹣asinφ+1=2cos2φ﹣acosφ+1,即:2(sin2φ﹣cos2φ)=a(sinφ﹣cosφ)即:2(sinφ+cosφ)(sinφ﹣cosφ)=a(sinφ﹣cosφ),因为:φ∈(),所以sinφ﹣cosφ≠0故:2(sinφ+cosφ)=a,即:a=2sin()由φ∈()得:∈(π/2,3π/4),也就是:sin()∈(,1)所以:a=2sin()∈(2,2)故答案为:点评:本题考查三角函数的化简,考查函数与方程的综合运用,考查辅助角公式的运用,考查学生的计算能力,属于中档题.12.(3分)设函数(x∈)的最大值为M,最小值为m,则M+m=4.考点:函数最值的应用.专题:函数的性质及应用.分析:将函数化简,构造新函数g(x)=(x∈),判断其为奇函数,可得g (x)max+g(x)min=0,从而可得结论.解答:解:=2+令g(x)=(x∈),则g(﹣x)=﹣g(x),∴函数g(x)是奇函数∴g(x)max+g(x)min=0∴M+m=4+g(x)max+g(x)min=4故答案为:4点评:本题考查函数的最值,考查函数的奇偶性,考查学生分析解决问题的能力,属于中档题.二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与考点:终边相同的角.专题:计算题.分析:把数学符号语言转化为文字语言,结合终边相同的角的表示方法,做出判断.解答:解:由于表示的整数倍,而kπ±=(2k±1)表示的奇数倍,故这两个角不是终边相同的角,故A不满足条件.(2k+1)π表示π的奇数倍,(4k±1)π也表示π的奇数倍,故(2k+1)π与(4k±1)π(k∈Z)是终边相同的角,故B满足条件.kπ+=(k+)π表示π的(k+)倍,而2kπ±=(2k±)π表示π的(2k±)倍,故两个角不是终边相同的角,故C不满足条件.由于表示整数倍,而kπ+=(3k+1)表示非3的整数倍,故这两个角不是终边相同的角,故D不满足条件.故选:B.点评:本题考查终边相同的角的表示方法,把数学符号语言转化为文字语言,以及式子所表示的意义.14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定考点:三角形的形状判断.专题:计算题.分析:先将条件等价于cos(A+B)>0,从而可知C为钝角,故可判断.解答:解:由题意,∵cosAcosB>sinAsinB∴cos(A+B)>0∴cosC<0∴C为钝角故选A.点评:本题以三角函数为载体,考查三角形的形状判断,关键是利用和角的余弦公式,求得C为钝角.15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx考点:指数函数与对数函数的关系.分析:依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足,B不满足其中任何一个等式解答:解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=log2x是对数函数满足f(xy)=f(x)+f(y),排除Cf(x)=tanx满足,排除D.故选B点评:本题主要考查指数函数和对数函数以及正切函数的性质.16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C. f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据偶函数的性质和条件判断出在上是增函数,再由f(2﹣x)=f(x)和偶函数的定义得f(x)=f(x+2),求出函数的周期,再判断出在上是增函数,根据α和β的范围以及余弦函数的单调性,判断出对应余弦值的大小和范围,再由函数f(x)的单调性进行判断.解答:解:∵偶函数f(x)在上是减函数,∴f(x)在上是增函数,又∵偶函数f(x)满足f(2﹣x)=f(x),∴f(x)=f(x﹣2),即f(x+2)=f(x),函数的周期T=2,∴f(x)在上是增函数,∵α,β是钝角三角形的两个锐角,且α<β,∴根据余弦函数在(0,π)上递减得,0<cosβ<cosα<1,则f(cosα)>f(cosβ).故选C.点评:本题以余弦函数为载体,考查了余弦函数的单调性、抽象函数的周期性和奇偶性的应用,即根据周期函数的性质和奇偶性对应的关系式,将自变量进行转化,转化到已知范围内求解,考查了转化思想.三、解答题(本大题共48分)17.(6分)若,求的值.考点:两角和与差的正切函数.专题:三角函数的求值.分析:利用,可求tanA的值,再利用和角的正切公式,即可得到结论.解答:解:∵,∴tanA=﹣∴===∴=2.点评:本题考查和角的正切公式,考查学生的计算能力,属于基础题.18.(8分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.考点:余弦定理;两角和与差的余弦函数.专题:计算题.分析:(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长;(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC 的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A 为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.解答:解:(I)∵c2=a2+b2﹣2abcosC=1+4﹣4×=4,∴c=2,∴△ABC的周长为a+b+c=1+2+2=5.(II)∵cosC=,∴sinC===.∴sinA===.∵a<c,∴A<C,故A为锐角.则cosA==,∴cos(A﹣C)=cosAcosC+sinAsinC=×+×=.点评:本题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查学生的基本运算能力,是一道基础题.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.考点:三角函数的周期性及其求法;两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(1)利用二倍角的正弦与余弦及三角函数间的关系可将f(x)=2sinxcosx+2cos2x ﹣1化为:f(x)=2sin(2x+),从而可求函数f(x)的最小正周期及在上的单调递增区间;(2)由(1)知,f(x0)=2sin(2x0+)=,可求得sin(2x0+)=,继而可求得cos (2x0+)=﹣,而2x0=(2x0+)﹣,利用两角差的余弦即可求得cos2x0.解答:解:(1)由数f(x)=2sinxcosx+2cos2x﹣1,得f(x)=sin2x+cos2x=2sin(2x+),所以函数f(x)的最小正周期为π;∵2kπ﹣<2x+<2kπ+,k∈Z∴x∈(kπ﹣,kπ+),k∈Z又x∈,f(x)=2sin(2x+)在上的单调递增区间为(0,);(2)由(1)知,f(x0)=2sin(2x0+),∵f(x0)=,∴sin(2x0+)=,由x0∈,得2x0+∈.从而cos(2x0+)=﹣=﹣∴cos2x0=cos=cos(2x0+)cos+sin(2x0+)sin=.点评:本题考查二倍角的正弦与余弦及三角函数间的关系,考查正弦函数的单调性及周期性,考查两角差的余弦,属于中档题.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.考点:任意角的三角函数的定义;基本不等式;圆方程的综合应用.专题:综合题.分析:(1)作出图形,结合图形由,能求出.(2)由,r=1,得=.由此能求出点B(x B,y B)的坐标;(3)法一:,由此能求出x B﹣y B的最小值.法二:由α为钝角,知x B<0,y B>0,x B2+y B2=1,x B﹣y B=﹣(﹣x B+y B),(﹣x B+y B)2≤2(x B2+y B2)=2,由此能求出x B﹣y B的最小值.解答:解:(1)如图,∵,∴.(2)由,又r=1,得=.由钝角α,知,∴.(3)法一:,又,,∴x B﹣y B的最小值为.法二:α为钝角,∴x B<0,y B>0,x B2+y B2=1,x B﹣y B=﹣(﹣x B+y B),(﹣x B+y B)2≤2(x B2+y B2)=2,∴,∴x B﹣y B的最小值为.点评:本题考查三角函数的性质和应用,综合性强,是2015届高考的常见题型.解题时要认真审题,仔细解答,注意三角函数恒等变换的灵活运用.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=于是,当0<a<1时,函数上是单调增函数.(3)∵x∈A=[a,b)(A⊆D,a是底数)∴0<a<1,a<b≤1.∴由(2)知,函数上是增函数,即,解得.若b<1,则f(x)在A上的函数值组成的集合为,不满足函数值组成的集合是[1,+∞)的要求,∴必有b=1.因此,所求实数a、b的值是.点评:本题从恒等式出发得到m,另外复合函数的单调性的判断关键在于分离出单个函数,属于中档题.。
2018-2018学年上海市华师大二附中高一(下)期中数学试卷一、填空题(4*10=40分)1.求值arctan(cot)=.2.函数f(x)=的定义域是.3.若tanθ=﹣3,则sinθ(sinθ﹣2cosθ)=.4.若x∈(0,2π),则使=sinx﹣cosx成立的x的取值范围是.5.若arcsinx﹣arccosx=,则x=.6.函数f(x)=log cos1(sinx)的单调递增区间是.7.若0<θ<,则cosθ,cos(sinθ),sin(cosθ)的大小顺序为.8.若关于x的函数y=sinωx在[﹣,]上的最大值为1,则ω的取值范围是.9.已知,且,则cos(x+2y)=.10.设函数f(x)=,关于f(x)的性质,下列说法正确的是.①定义域是{x|x≠kπ+,k∈Z};②值域是R;③最小正周期是π;④f(x)是奇函数;⑤f(x)在定义域上单调递增.二、选择题(4*4=16分)11.为了得到y=3sin(2x+)的图象,只需将y=3cos2x的图象()A.向左平移B.向右平移C.向右平移D.向左平移12.α,β∈(,π),且tanα<cotβ,则必有()A.α<β B.α>β C.α+β<D.α+β>13.下列函数中以π为周期,在(0,)上单调递减的是()A.y=(cot1)tanx B.y=|sinx|C.y=﹣cos2x D.y=﹣tan|x|14.下列命题中错误的是()A.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立B.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立C.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立D.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立三、解答题(8+10+12+14=44分)15.已知α,β∈(0,π),并且sin(5π﹣α)=cos(π+β),cos(﹣α)=﹣cos(π+β),求α,β的值.16.若关于x的方程sinx+cosx+a=0在(0,2π)内有两个不同的实数根α,β,求实数a的取值范围及相应的α+β的值.17.已知函数y=.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;(2)求函数y=f(t)的值域.18.用a,b,c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.(1)R=2,a=2,B=45°,求AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a,b,R,其中b≤a,问a,b,R满足怎样的关系时,以a,b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a,b,R表示c.2018-2018学年上海市华师大二附中高一(下)期中数学试卷参考答案与试题解析一、填空题(4*10=40分)1.求值arctan(cot)=.【考点】反三角函数的运用.【分析】利用特殊角的三角函数,反正切函数的定义和性质,求得arctan(cot)的值.【解答】解:arctan(cot)=arctan()=,故答案为:.2.函数f(x)=的定义域是{x|x=2kπ,k∈z} .【考点】函数的定义域及其求法.【分析】根据二次根式的性质得到cosx=1,解出即可.【解答】解:由题意得:cosx﹣1≥0,cosx≥1,∴cosx=1,∴x=2kπ,k∈Z,故答案为:{x|x=2kπ,k∈z}.3.若tanθ=﹣3,则sinθ(sinθ﹣2cosθ)=.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanθ=﹣3,∴sinθ(sinθ﹣2cosθ)====,故答案为:.4.若x∈(0,2π),则使=sinx﹣cosx成立的x的取值范围是[].【考点】三角函数的化简求值.【分析】把根式内部的代数式化为完全平方式的形式,由已知等式可得sinx≥cosx,再由已知x的范围求得x的具体范围.【解答】解:∵===sinx﹣cosx,∴sinx≥cosx,又x∈(0,2π),∴x∈[].故答案为:∈[].5.若arcsinx﹣arccosx=,则x=.【考点】反三角函数的运用.【分析】由题意可得arcsinx与arccosx=均为锐角,x>0,求得cos(arcsinx﹣arccosx)的值,可得x的值.【解答】解:∵arcsinx∈(﹣,),arccosx∈(0,π),arcsinx﹣arccosx=,∴arcsinx与arccosx 均为锐角,x>0.又cos(arcsinx﹣arccosx)=cos=,即cos(arcsinx)?cos(arccosx)+sin(arcsinx)sin(arccosx)=?x+x?=,∴?x=,∴x2(1﹣x2)=,∴x2=,或x2=,∴x=,或x=.经检验,x=不满足条件,故舍去.故答案为:.6.函数f(x)=log cos1(sinx)的单调递增区间是[)(k∈Z).【考点】复合函数的单调性.【分析】由0<cos1<1,得外函数y=log cos1t在定义域内单调递减,再求出内函数t=sinx的减区间,取使t大于0的部分得答案.【解答】解:令t=sinx,∵0<cos1<1,∴外函数y=log cos1t在定义域内单调递减,又sinx>0,∴当x∈[)(k∈Z)时,内函数t=sinx大于0且单调递减,∴函数f(x)=log cos1(sinx)的单调递增区间是[)(k∈Z),故答案为:[)(k∈Z).7.若0<θ<,则cosθ,cos(sinθ),sin(cosθ)的大小顺序为cos(sinθ)>cosθ>sin(cosθ);.【考点】三角函数线.【分析】观察知道,利用x>0时,sinx<x,结合余弦函数的单调性解答.【解答】解:因为sinx<x,所以0<θ<,sinθ<θ,所以cos(sinθ)>cosθ,令x=cosθ,所以cosθ>sin(cosθ),故答案为:cos(sinθ)>cosθ>sin(cosθ);8.若关于x的函数y=sinωx在[﹣,]上的最大值为1,则ω的取值范围是{ω|ω≥1或ω≤﹣}.【考点】正弦函数的图象.【分析】利用正弦函数的图象特征,正弦函数的最大值,分类讨论求得ω的取值范围.【解答】解:∵关于x的函数y=sinωx在[﹣,]上的最大值为1,∴当ω>0时,由ω?≥,ω≥1,当ω<0时,由ω?(﹣)≥,求得ω≤﹣,故答案为:{ω|ω≥1或ω≤﹣}.9.已知,且,则cos(x+2y)=1.【考点】三角函数的恒等变换及化简求值;两角和与差的余弦函数.【分析】设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=﹣2a,进而根据函数的奇偶性,求得f(x)=﹣f(2y)=f(﹣2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.【解答】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=﹣2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=﹣f(2y)=f(﹣2y).∴x=﹣2y,即x+2y=0.。
2014-2015学年上海市华师大二附中高一(下)期中数学试卷一、填空题(每小题3分,共36分)1.(3分)扇形的半径为1cm,圆心角为2弧度,则扇形的面积为cm2.2.(3分)已知角α的终边过点P(﹣5,12),则cosα=.3.(3分)已知,则sin2α=.4.(3分)已知α是锐角,则=.5.(3分)化简:=.6.(3分)若α是第三象限角,且,则=.7.(3分)在△ABC中,若b=1,c=,∠C=,则S△ABC=.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.9.(3分)定义,则函数(x∈R)的值域为.10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.2(cosϕ),则实数a的取值范围是.12.(3分)设函数(x∈[﹣π,π])的最大值为M,最小值为m,则M+m=.二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx 16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在[﹣3,﹣2]上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(s inα)>f(cosβ)B.f(cosα)<f(cosβ)C.f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)三、解答题(本大题共48分)17.(6分)若,求的值.18.(8分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y 轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.2014-2015学年上海市华师大二附中高一(下)期中数学试卷参考答案与试题解析一、填空题(每小题3分,共36分)1.(3分)扇形的半径为1cm,圆心角为2弧度,则扇形的面积为1cm2.【解答】解:∵扇形的半径为1cm,圆心角为2弧度,∴扇形的面积S===1cm2,故答案为:12.(3分)已知角α的终边过点P(﹣5,12),则cosα=.【解答】解:角α的终边上的点P(﹣5,12)到原点的距离为r=13,由任意角的三角函数的定义得cosα==﹣.故答案为﹣.3.(3分)已知,则sin2α=﹣.【解答】解:由sin(π﹣α)=得,sinα=,因为,所以cosα=﹣=﹣=﹣,所以sin2α=2sinαcosα=2×=﹣,故答案为:﹣.=﹣2.【解答】解:=log cosα(1+)=log cosα()=log cosα()=﹣2故答案为:﹣2.5.(3分)化简:=﹣1.【解答】解:由题意=故答案为﹣16.(3分)若α是第三象限角,且,则=.【解答】解:由,得sin[(α+β)﹣β]=sinα=﹣,则sinα=2sin cos==﹣,解得tan=﹣或﹣,由α是第三象限角,所以,则,所以tan=﹣,故答案为:﹣.7.(3分)在△ABC中,若b=1,c=,∠C=,则S△ABC=.【解答】解:由于在△ABC中,若b=1,,,由正弦定理可得=,∴sinB=.再由大边对大角可得B=<A,∴A=π﹣B﹣C=.==,∴则S△ABC故答案为.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.【解答】解:作图如下:∵CD=200m,∠ADC=105°,∠ACD=30°,∠BDC=15°,∠BCD=120°,∴∠CAD=∠CBD=45°,∠BDA=90°;∴在△ACD中,由正弦定理=,即=,∴AD=100;在△BCD中,同理可求BD=100.在直角三角形BDA中,由勾股定理得AB===.故A,B间的距离为200m.故答案为200.9.(3分)定义,则函数(x∈R)的值域为[﹣4,4] .【解答】解:由题意=sin2x+4cosx=﹣cos2x+4cosx+1=﹣(cosx﹣2)2+5∈[﹣4,4].故答案为:[﹣4,4].10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.【解答】解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,即6cosx=,化为6sin2x+5sinx﹣6=0,解得sinx=.线段P1P2的长为故答案为.11.(3分)已知函数f(x)=2x2﹣ax+1,存在,使得f(sinϕ)=f(cosϕ),则实数a的取值范围是.【解答】解:根据题意:2sin2φ﹣asinφ+1=2cos2φ﹣acosφ+1,即:2(sin2φ﹣cos2φ)=a(sinφ﹣cosφ)即:2(sinφ+cosφ)(sinφ﹣cosφ)=a(sinφ﹣cosφ),因为:φ∈(),所以sinφ﹣cosφ≠0故:2(sinφ+cosφ)=a,即:a=2sin()由φ∈()得:∈(π/2,3π/4),也就是:sin()∈(,1)所以:a=2sin()∈(2,2)故答案为:12.(3分)设函数(x∈[﹣π,π])的最大值为M,最小值为m,则M+m=4.【解答】解:=2+令g(x)=(x∈[﹣π,π]),则g(﹣x)=﹣g(x),∴函数g(x)是奇函数∴g(x)max+g(x)min=0∴M+m=4+g(x)max+g(x)min=4故答案为:4二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与【解答】解:由于表示的整数倍,而kπ±=(2k±1)表示的奇数倍,故这两个角不是终边相同的角,故A不满足条件.(2k+1)π 表示π的奇数倍,(4k±1)π 也表示π的奇数倍,故(2k+1)π与(4k ±1)π(k∈Z)是终边相同的角,故B满足条件.kπ+=(k+)π表示π的(k+)倍,而2kπ±=(2k±)π表示π的(2k±)倍,故两个角不是终边相同的角,故C不满足条件.由于表示整数倍,而kπ+=(3k+1)表示非3的整数倍,故这两个角不是终边相同的角,故D不满足条件.故选:B.14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定【解答】解:由题意,∵cosAcosB>sinAsinB∴cos(A+B)>0∴cosC<0∴C为钝角故选:A.15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx 【解答】解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=log2x是对数函数满足f(xy)=f(x)+f(y),排除Cf(x)=tanx满足,排除D.故选:B.16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在[﹣3,﹣2]上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C.f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)【解答】解:∵偶函数f(x)在[﹣3,﹣2]上是减函数,∴f(x)在[2,3]上是增函数,又∵偶函数f(x)满足f(2﹣x)=f(x),∴f(x)=f(x﹣2),即f(x+2)=f(x),函数的周期T=2,∴f(x)在[0,1]上是增函数,∵α,β是钝角三角形的两个锐角,且α<β,∴根据余弦函数在(0,π)上递减得,0<cosβ<cosα<1,则f(cosα)>f(co sβ),故选:C.三、解答题(本大题共48分)17.(6分)若,求的值.【解答】解:∵,∴tanA=﹣∴===∴=2.18.(8分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.【解答】解:(I)∵c2=a2+b2﹣2abcosC=1+4﹣4×=4,∴c=2,∴△ABC的周长为a+b+c=1+2+2=5.(II)∵cosC=,∴sinC===.∴sinA===.∵a<c,∴A<C,故A为锐角.则cosA==,∴cos(A﹣C)=cosAcosC+sinAsinC=×+×=.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.【解答】解:(1)由数f(x)=2sinxcosx+2cos2x﹣1,得f(x)=sin2x+cos2x=2sin(2x+),所以函数f(x)的最小正周期为π;∵2kπ﹣<2x+<2kπ+,k∈Z∴x∈(kπ﹣,kπ+),k∈Z又x∈[0,],f(x)=2sin(2x+)在[0,]上的单调递增区间为(0,);(2)由(1)知,f(x0)=2sin(2x0+),∵f(x0)=,∴sin(2x0+)=,由x0∈[,],得2x0+∈[,].从而cos(2x 0+)=﹣=﹣∴cos2x0=cos[(2x0+)﹣]=cos(2x0+)cos+sin(2x0+)sin=.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y 轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.【解答】解:(1)如图,∵,∴.(2)由,又r=1,得=.由钝角α,知,∴.(3)法一:,又,,∴x B﹣y B的最小值为.法二:α为钝角,∴x B<0,y B>0,x B2+y B2=1,x B﹣y B=﹣(﹣x B+y B),(﹣x B+y B)2≤2(x B2+y B2)=2,∴,∴x B﹣y B的最小值为.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.【解答】解(1)∵y=f(x)是奇函数,∴对任意x∈D,有f(x)+f(﹣x)=0,即.化简此式,得(m2﹣1)x2﹣(2m﹣1)2+1=0.又此方程有无穷多解(D是区间),必有,解得m=1.∴.(2)当0<a<1时,函数上是单调增函数.理由:令.易知1+x在D=(﹣1,1)上是随x增大而增大,在D=(﹣1,1)上是随x 增大而减小,故在D=(﹣1,1)上是随x增大而减小于是,当0<a<1时,函数上是单调增函数.(3)∵x∈A=[a,b)(A⊆D,a是底数)∴0<a<1,a<b≤1.∴由(2)知,函数上是增函数,即,解得.若b<1,则f(x)在A上的函数值组成的集合为,不满足函数值组成的集合是[1,+∞)的要求,∴必有b=1.因此,所求实数a、b的值是.附赠模型一:手拉手模型—全等等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)导角核心图形模型总结:核心图形如右图,核心条件如下:①OA=OB,OC=OD;②∠AOB=∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图 △OCD ∽△OAB ⇔△OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA 非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB =90°时,除△OCD ∽△OAB ⇔△OAC ∽△OBD 之外还会隐藏OCD OAOBOC OD AC BD ∠===tan ,满足BD ⊥AC ,若连接AD 、BC ,则必有 2222CD AB BC AD +=+;BD AC S ABCD ⨯=21(对角线互相垂直四边形)。
华师大二附中2021届高一第二学期期末数学考试试卷一、填空题1.函数1arcsin ,22y x x ⎛⎫⎡⎤=∈-- ⎪⎢⎥ ⎪⎣⎦⎝⎭的值域是______.2.数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a =_____.3.()cos f x x x =+的值域是______.4.“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).5.已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S =;6.已知ABC ∆的三边分别是,,a b c ,且面积2224a b c S +-=,则角C =__________.7.已知数列{}n a 中,其中199199a =,11()a n n a a -=,那么99100log a =________8.等比数列{}n a 中首项12a =,公比()*+13,++720,,n n m q a a a n m N n m =+⋅⋅⋅=∈<,则n m +=______.9.在△ABC 中,222sin sin 2018sin A C B +=,则2(tan tan )tan tan tan tan A C B A B C +=++________.10.已知数列{}n a 的通项公式为22lg 1,1,2,3,,3n n a n S n n ⎛⎫=+=⋅⋅⋅ ⎪+⎝⎭是数列的前n 项和,则lim n n S →∞=______.二、选择题11.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A. B.C. D.12.已知函数()222cos sin 2f x x x =-+,则A.()f x 的最小正周期为π,最大值为3B.()f x 的最小正周期为π,最大值为4C.()f x 的最小正周期为2π,最大值为3D.()f x 的最小正周期为2π,最大值为413.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A.在区间35[,]44ππ上单调递增 B.在区间3[,]4ππ上单调递减C.在区间53[,]42ππ上单调递增 D.在区间3[,2]2ππ上单调递减14.已知函数215cos 36k y x ππ+⎛⎫=- ⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[],3a a +上要使函数值54出现的次数不少于4次且不多于8次,则k 值为()A.2或3B.4或3C.5或6D.8或7三、解答题15.在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.16.已知()1221*,,0n n n n n n u a a b a b ab b n N a b ---=+++⋅⋅⋅++∈>.(1)当a b =时,求数列{}n u 前n 项和n S ;(用a 和n 表示);(2)求1lim nn n u u →∞-.17.已知方程arctan arctan(2)2xx a +-=;(1)若4a π=,求arccos 2x的值;(2)若方程有实数解,求实数a 的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求αβ+的最大值.18.(1)证明:()3cos 34cos 3cos x x x =-;(2)证明:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()111112,,,n n n n n n n f x x a x a x a a a ---=++⋅⋅⋅++⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)利用(2)的结论判断()*cos 16,7m m m N π≤≤∈是否为有理数?华师大二附中2021届高一第二学期期末数学考试试卷一、填空题1.函数1arcsin ,22y x x ⎛⎫⎡⎤=∈-- ⎪⎢⎥ ⎪⎣⎦⎝⎭的值域是______.【答案】,36ππ⎡⎤--⎢⎥⎣⎦【解析】【分析】根据arcsin y x =的单调性,结合x 的范围,得到答案.【详解】函数arcsin y x =是单调递增函数,所以32x =-时,arcsin 23y π⎛⎫=-=- ⎪ ⎪⎝⎭,12x =-时,1arcsin 26y π⎛⎫=-=- ⎪⎝⎭,所以函数的值域为:,36y ππ⎡⎤∈--⎢⎥⎣⎦.故答案为:,36ππ⎡⎤--⎢⎥⎣⎦【点睛】本题考查反三角函数的单调性,根据函数的单调性求值域,属于简单题.2.数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a =_____.【答案】()()3122n n n ⎧=⎪⎨≥⎪⎩【解析】【分析】根据n a 和n S 之间的关系,应用公式()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩得出结果【详解】当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦;∴()()3122n n a n n ⎧=⎪=⎨≥⎪⎩故答案为()()3122n nn ⎧=⎪⎨≥⎪⎩【点睛】本题考查了n a 和n S 之间的关系式,注意当1n =和2n ≥时要分开讨论,题中的数列非等差数列.本题属于基础题3.()cos f x x x =+的值域是______.【答案】[]22-,【解析】【分析】对()f x 进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】()cos f x x x=+12sin cos 22x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭,因为[]sin 1,16x π⎛⎫+∈- ⎪⎝⎭所以()f x 的值域为[]22-,.故答案为:[]22-,【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.4.“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).【答案】必要非充分【解析】【分析】通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【详解】因为数列1234,,,a a a a 依次成等差数列,所以根据等差数列下标公式,可得1423a a a a +=+,当121a a ==,342a a ==时,满足1423a a a a +=+,但不能得到数列1234,,,a a a a 依次成等差数列所以综上,“1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.5.已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S =;【答案】60【解析】【详解】若数列{a n }为等差数列则S m ,S 2m -S m ,S 3m -S 2m 仍然成等差数列.所以S 10,S 20-S 10,S 30-S 20仍然成等差数列.因为在等差数列{a n }中有S 10=10,S 20=30,()302201030S ⨯=+-所以S 30=60.故答案为60.6.已知ABC ∆的三边分别是,,a b c ,且面积2224a b c S +-=,则角C =__________.【答案】045【解析】试题分析:由2224a b c S +-=,可得2221sin 24a b c ab C +-=,整理得222sin cos 2a b c C C ab+-==,即tan 1C =,所以045C =.考点:余弦定理;三角形的面积公式.7.已知数列{}n a 中,其中199199a =,11()a n n a a -=,那么99100log a =________【答案】1【解析】【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由11()a n n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==,则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,∴19999991001log (99)199a =⋅=.故答案为1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.8.等比数列{}n a 中首项12a =,公比()*+13,++720,,n n m q a a a n m N n m =+⋅⋅⋅=∈<,则n m +=______.【答案】9【解析】【分析】根据等比数列求和公式,将+1++720n n m a a a +⋅⋅⋅=进行转化,然后得到关于n 和m 的等式,结合*,,n m N n m ∈<,讨论出n 和m 的值,得到答案.【详解】因为等比数列{}n a 中首项12a =,公比3q =,所以1,,,n n m a a a +⋅⋅⋅成首项为123n n a -=⨯,公比为3的等比数列,共1n m -+项,所以()11+12313++27013n m n n n m a a a --+⨯-+⋅⋅⋅==-整理得11720313n m n -+--=因为*,,n m N n m∈<所以可得,等式右边为整数,故等式左边也需要为整数,则13n -应是720的约数,所以可得133,9,27n -=,所以1,2,3n =,当1n =时,得3721m =,此时*m N ∉当2n =时,得13241m -=,此时*m N ∉当3n =时,得2381m -=,此时6m =,所以9m n +=,故答案为:9.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.9.在△ABC 中,222sin sin 2018sin A C B +=,则2(tan tan )tan tan tan tan A C BA B C +=++________.【答案】22017【解析】【详解】因为222sin sin 2018sin A C B+=所以2222018a c b +=⋅注意到:tan tan tan tan tan tan A B C A B C++=⋅⋅故()2tan tan tan tan tan tan A C B A B C+++()2tan tan tan 11tan tan tan tan tan tan A C B B A B C A C +⎛⎫==+ ⎪⋅⋅⎝⎭22222222sin 1222sin sin cos 20182017B b ac b A C B ac a c b b b ⎛⎫=⋅=== ⎪⋅+--⎝⎭.故答案为2201710.已知数列{}n a 的通项公式为22lg 1,1,2,3,,3n n a n S n n ⎛⎫=+=⋅⋅⋅ ⎪+⎝⎭是数列的前n 项和,则lim n n S →∞=______.【答案】lg 3【解析】【分析】对数列{}n a 的通项公式22lg 13n a n n ⎛⎫=+ ⎪+⎝⎭进行整理,再求其前n 项和,利用对数运算规则,可得到n S ,从而求出lim n n S →∞,得到答案.【详解】222232lg 1lg 33n n n a n n n n ++⎛⎫=+= ⎪++⎝⎭()()()12lg 3n n n n ++=+所以123n nS a a a a =+++⋅⋅⋅+()()()12233445lg lg lg lg 1425363n n n n ++⨯⨯⨯=+++⋅⋅⋅+⨯⨯⨯+()13131lg lg 331n n n n⎛⎫+ ⎪+⎝⎭==++所以131lg lg 331lim lim n n n S n n→∞→∞⎛⎫+ ⎪⎝⎭==+.故答案为:lg 3.【点睛】本题考查对数运算公式,由数列的通项求前n 项和,数列的极限,属于中档题.二、选择题11.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A.B.C.D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以1(2,)n n a n n N -+=≥∈,又1a f =,则7781a a q f ===故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n N ≠∈)或1n n aq a -=(*0,2,q n n N ≠≥∈),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n N ≥∈),则数列{}n a 是等比数列.12.已知函数()222cos sin 2f x x x =-+,则A.()f x 的最小正周期为π,最大值为3B.()f x 的最小正周期为π,最大值为4C.()f x 的最小正周期为2π,最大值为3D.()f x 的最小正周期为2π,最大值为4【答案】B 【解析】【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.【详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+,所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B.【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.13.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A.在区间35[,]44ππ上单调递增 B.在区间3[,]4ππ上单调递减C.在区间53[,42ππ上单调递增 D.在区间3[,2]2ππ上单调递减【答案】A 【解析】【分析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.【详解】由函数图象平移变换的性质可知:将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令1k =可得一个单调递增区间为:35,44ππ⎡⎤⎢⎥⎣⎦.函数的单调递减区间满足:()322222k x k k Z ππππ+≤≤+∈,即()344k x k k Z ππππ+≤≤+∈,令1k =可得一个单调递减区间为:57,44ππ⎡⎤⎢⎥⎣⎦,本题选择A 选项.【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.14.已知函数215cos 36k y x ππ+⎛⎫=-⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[],3a a +上要使函数值54出现的次数不少于4次且不多于8次,则k 值为()A.2或3 B.4或3C.5或6D.8或7【答案】A 【解析】【分析】根据题意先表示出函数的周期,然后根据函数值54出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于k 的不等式,从而得到k 的范围,结合k ∈N ,得到答案.【详解】函数215cos 36k y x ππ+⎛⎫=-⎪⎝⎭,所以可得2621213T k k ππ==++,因为在区间[],3a a +上,函数值54出现的次数不少于4次且不多于8次,所以5215cos 436k x ππ+⎛⎫=- ⎪⎝⎭得121cos 436k x ππ+⎛⎫=- ⎪⎝⎭即21cos 36k y x ππ+⎛⎫=-⎪⎝⎭与14y =的图像在区间[],3a a +上的交点个数大于等于4,小于等于8,而21cos 36k y x ππ+⎛⎫=-⎪⎝⎭与14y =的图像在一个周期T 内有2个,所以2343T T ≤⎧⎨≥⎩,即6232164321k k ⎧⨯≤⎪⎪+⎨⎪⨯≥⎪+⎩解得3722k ≤≤,又因k ∈N ,所以得2k =或者3k =,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.三、解答题15.在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】(1)∠A =π3(2)AC边上的高为2【解析】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B7=.由正弦定理得sin sin a b A B =⇒7sin A 437sin A=2.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A=112727⎛⎫⨯-+⨯⎪⎝⎭=14.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7142⨯=,∴AC边上的高为2.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.16.已知()1221*,,0nn n n n n u a ab a b ab b n N a b ---=+++⋅⋅⋅++∈>.(1)当a b =时,求数列{}n u 前n 项和n S ;(用a 和n 表示);(2)求1limnn n u u →∞-.【答案】(1)1a =时,()3,12n n n S a +=≠时,()()()21221221n n n n a n a a a S a +++-+-+=-;(2)1,lim,n n n a a bu b a b u →∞-≥⎧=⎨<⎩;【解析】【分析】(1)当a b =时,求出()1nn u n a =+,再利用错位相减法,求出{}n u 的前n 项和n S ;(2)求出1nn u u -的表达式,对a ,b 的大小进行分类讨论,从而求出数列的极限.【详解】(1)当a b =时,可得()1nn u n a =+,当1a =时,得到1n u n =+,所以()32n n n S +=,当1a ≠时,所以()2312341n n n S a a a nan a -=+++⋅⋅⋅+++,两边同乘a 得()23412341nn n aS a a a na n a+=+++⋅⋅⋅+++上式减去下式得()()231121nn n a S a a a a n a+-=+++⋅⋅⋅+-+()()()11111n n n a a a S a n a a+--=+-+-,所以()()()121111n n n a a a n a S aa +--+=+--()()()21221221n n n a n a a a a +++-+-+=-所以综上所述,1a =时,()32n n n S +=;1a ≠时,()()()21221221n n nn a n a a aS a +++-+-+=-.(2)由(1)可知当a b =时,()1nn u n a=+则()111lim lim n nn n n n n a u u na -→∞→∞-+=()1lim n a n a n →∞+==;当a b ¹时,11nn n nn u a ab ab b --=++⋅⋅⋅++21nnb b b a a a a ⎡⎤⎛⎫⎛⎫=+++⋅⋅⋅+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()111111n n n n b aa ab b a ba+++⎛⎫- ⎪⎝⎭==---则111n n n n nn u a b u a b ++--=-若0a b >>,111limlim lim 1nn n n n n nn n n n b a b u a b a a u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭若0b a >>,111limlim lim 1nn n n n n nn n n n b a b u a b ab u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭所以综上所述1,lim ,n n n a a bu b a b u →∞-≥⎧=⎨<⎩.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.17.已知方程arctanarctan(2)2xx a +-=;(1)若4a π=,求arccos 2x 的值;(2)若方程有实数解,求实数a 的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求αβ+的最大值.【答案】(1)π或3π;(2)[arctan;(3)19;【解析】试题分析:(1) 4a π=时,由已知得到()22121212xxx x x +-=⇒=---或;(2)方程有实数解即a 在()arctan arctan 22xx +-的值域上,(3)根据二次函数的性质列不等式组得出tana 的范围,利用根与系数的关系得出α+β的最值.试题解析:(1)()()2π2arctan arctan 212122412xxx x x x x +-+-=⇒=⇒=---或,arccos =2x π或3π;(2)()()222arctan arctan 2tan tan ,4,2261012xxx t x a a a t x x x t t +-+-=⇒=⇒==---+-tan a ∴∈arctan a ⎡∴∈⎢⎣(3)因为方程在区间[]5,15上有两个相异的解α、β,所以[]411,1,441119x αβαβ-∈--∴-+-≥-∴+≤18.(1)证明:()3cos 34cos 3cos x x x =-;(2)证明:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()111112,,,n n n n n n n f x x a x a x a a a ---=++⋅⋅⋅++⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)利用(2)的结论判断()*cos16,7m m m N π≤≤∈是否为有理数?【答案】(1)见解析;(2)见解析;(3)不是【解析】【分析】(1)()()cos 3cos 2x x x =+,利用两角和的正弦和二倍角公式,进行证明;(2)对n 分奇偶,即21n k =+和2n k =两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将cos7m π表示出来,然后判断其每一项都为无理数,从而得到答案.【详解】(1)()()cos 3cos 2cos 2cos sin 2sin x x x x x x x=+=-()222cos 1cos 2sin cos x x x x =--()322cos cos 21cos cos x x x x =---34cos 3cos x x=-所以原式得证.(2)n 为奇数时,3n =时,()()2323123cos 3cos 2cos cos cos x f x x a x a x a ==+++,其中30a =,成立21n k =-时,()()21cos 21cos k k x f x --=222122*********cos cos cos cos k k k k k k x a x a x a x a ------=+++⋅⋅⋅++,其中210k a -=,成立21n k =+时,()()21cos 21cos k k x f x ++=221221122212cos cos cos cos k k k k k k x a x a x a x a +-+=+++⋅⋅⋅++,其中210k a +=,成立,则当23n k =+时,()()()()cos 23cos 212cos 21cos 2sin 21sin 2k x k x x k x x k x +=++=+-+⎡⎤⎣⎦()()()1cos 21cos 2cos 21cos 232k x x k x k x =+---+⎡⎤⎣⎦所以得到()()()cos 232cos 21cos 2cos 21k x k x x k x+=+--2212212122212221222312222122cos cos cos cos 2cos 12cos cos cos cos k k k k k k k k k k k k x a x a x a x a x x a x a x a x a +-+------⎡⎤⎡⎤=+++⋅⋅⋅++-⎣⎦⎣⎦⎡⎤-+++⋅⋅⋅++⎣⎦()()2223222121122212cos 4cos 42cos 2cos k k k k k k k x a x a x a a x +++++-=++-+⋅⋅⋅-+因为1,,n a a ⋅⋅⋅均为整数,所以()21122214,42,,2k k k a a a a +--⋅⋅⋅-+也均为整数,故原式成立;n 为偶数时,2n =时,()212212cos 2cos 2cos cos x f x x a x a -==++,其中()22211a =-=-,22n k =-时,()()22cos 22cos k k x f x --=232223*********cos cos cos cos k k k k k k x a x a x a x a ------=+++⋅⋅⋅++,其中()()221222111k k k a---=-=-=-,成立,2n k =时,()2cos 2cos k kx f x =2122122122122cos cos cos cos k k k k k k x a x a x a x a ----=+++⋅⋅⋅++,其中()()222111k kka=-=-=,成立,则当22n k =+时,()()cos 22cos 22cos 2cos 2sin 2sin 2k x kx x kx x kx x +=+=-()()()1cos 21cos 2cos 21cos 232k x k x k x =+---+⎡⎤⎣⎦所以得到()()cos 232cos 2cos 2cos 22k x kx x k x+=--21221222122122322232412232222cos cos cos cos 2cos 12cos cos cos cos k k k k k k k k k k k k x a x a x a x a x x a x a x a x a ----------⎡⎤⎡⎤=+++⋅⋅⋅++-⎣⎦⎣⎦⎡⎤-+++⋅⋅⋅++⎣⎦()()2122212121221232222cos 4cos 42cos 2cos 2k k k k k k k k k x a x a x a a x a a +++----=++-+⋅⋅⋅-+--其中22221k k a a ---=-,因为1,,n a a ⋅⋅⋅均为整数,所以()211221234,42,,2k k k a a a a ----⋅⋅⋅-+也均为整数,故原式成立;综上可得:对任何正整数n ,存在多项式函数()n f x ,使得()()cos cos n nx f x =对所有实数x 均成立,其中()11112n n n n n n f x x a x a x a ---=++⋅⋅⋅++,1,,n a a ⋅⋅⋅均为整数,当n 为奇数时,0n a =,当n 为偶数时,()21nn a =-;(3)由(2)可得()*cos16,7m m m N π≤≤∈cos cos 77m m f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭11112cos cos cos 777m m m m m a a a πππ---=++⋅⋅⋅++*16,m m N ≤≤∈其中1122,,m m a a a -⋅⋅⋅均为有理数,因为cos7π为无理数,所以1cos,cos cos 777m m πππ-⋅⋅⋅均为无理数,故11112coscos cos 777m m m m m a a a πππ---++⋅⋅⋅++为无理数,所以()*cos 16,7m m m N π≤≤∈不是有理数.【点睛】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.。
2014-2015学年上海市华师大二附中高一(下)期中数学模拟试卷一、填空题:(每题4分)1.(4分)若且,则α的终边所在的象限为第象限.2.(4分)一个扇形的面积是1cm2,它的周长为4cm,则其中心角弧度数为.3.(4分)化简:sin(x+)+2sin(x﹣)﹣cos(﹣x).4.(4分)若角α的顶点在坐标原点,始边与x轴的正半轴重合,终边与射线3x+4y=0(x≤0)重合,则=.5.(4分)函数的值域为.6.(4分)若α∈(0,2π),则适合的角α的集合是.7.(4分)已知△ABC的外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB (其中a,b是角A,B的对边),那么∠C的大小为.8.(4分)定义运算.例如,1*2=1,则函数f(x)=2sinx*cosx在区间[0,2π]上的单调递增区间为.9.(4分)若满足条件a=4,A=30°的△ABC有且只有两个,则边c所有可能的值域构成的集合是(用区间表示).10.(4分)已知函数.当x∈[n,n+1),n≥﹣1,n∈Z时,用x和n表示的f(x)=.二、选择题:(每题4分)11.(4分)下列函数中,最小正周期为π的奇函数是()A.y=|cotx|sinx B.C.y=sin2x+cos2x D.y=tanx﹣cotx12.(4分)△ABC中,如果cosAcosB>sinAsinB,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.锐角或直角三角形13.(4分)计算得()A.B.C.D.14.(4分)已知点A(x1,y1),B(x2,y2)是函数y=sinx(﹣π<x<0)上的两个不同点,且x1<x2,则对于下列四个不等式:①;②sinx1<sinx2;③;④.其中正确不等式的个数是()A.0B.1C.2D.3三、解答题:(15题10分,16题10分,17、18题各12分).15.(10分)在△ABC中,设角A、B、C的对边分别为a、b、c,且,(1)求sinB的值;(2)若b=4,且a=c,求△ABC的面积.16.(10分)设cos(α﹣)=﹣,sin(﹣β)=,且<α<π,0<β<,求cos(α+β).17.(12分)如图,为了解某海域海底构造,在海平面内一条直线上的A、B、C 三点进行测量.已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,求∠DEF的余弦值.18.在半径为1,圆心角为的扇形中,求内接矩形面积的最大值.19.(12分)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数f(x)=+的性质,并在此基础上,作出其在[﹣π,π]的草图.2014-2015学年上海市华师大二附中高一(下)期中数学模拟试卷参考答案与试题解析一、填空题:(每题4分)1.(4分)若且,则α的终边所在的象限为第二象限.【解答】解:∵,,∴α的终边所在的象限为第二象限.故答案为:二.2.(4分)一个扇形的面积是1cm2,它的周长为4cm,则其中心角弧度数为2.【解答】解:设扇形的弧长为:l,半径为r,所以2r+l=4,S面积=lr=1,所以解得:r=1,l=2,所以扇形的圆心角的弧度数是α===2.故答案为:2.3.(4分)化简:sin(x+)+2sin(x﹣)﹣cos(﹣x).【解答】解:sin(x+)+2sin(x﹣)﹣cos(﹣x)=﹣(﹣cosx+)=04.(4分)若角α的顶点在坐标原点,始边与x轴的正半轴重合,终边与射线3x+4y=0(x≤0)重合,则=.【解答】解:∵角α终边与射线3x+4y=0(x≤0)重合,∴取点P(﹣4,3),则r=|OP|==5,∴cosα=﹣,sinα=,∴cos2α=2cos2α﹣1=,sin2α=2sinαcosα=2×(﹣)×=﹣,∴=cos2αcos﹣sin2αsin=×﹣(﹣)×=,故答案为:5.(4分)函数的值域为(2,+∞).【解答】解:∵0<x<,∴tanx∈(0,1),故y=tanx+cotx=tanx+≥2=2,当且仅当tanx=1时“=”成立,而tanx∈(0,1),故y>2,故函数的值域是(2,+∞),故答案为:(2,+∞).6.(4分)若α∈(0,2π),则适合的角α的集合是{α|0<α<π} .【解答】解:∵==|cot﹣tan|=,适合的角α满足sinα>0,∵α∈(0,2π),∴角α的集合是{α|0<α<π}.故答案为:{α|0<α<π}.7.(4分)已知△ABC的外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB (其中a,b是角A,B的对边),那么∠C的大小为45°.【解答】解:∵△ABC的外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB ∴2R(sin2A﹣sin2C)=×2RsinAsinB﹣2RsinBsinB∴sinAsinA﹣sinCsinC=×sinAsinB﹣sinBsinB∴sinAsinA﹣sin(A+B)2=×sinAsinB﹣sinBsinB∴sinAsinA﹣sinAsinAcosBcosB﹣sinBsinBcosAcosA﹣2sinAcosAsinBcosB=×sinAsinB﹣sinBsinB∴sinAsinA(1﹣cosBcosB)﹣sinBsinBcosAcosA﹣2sinAcosAsinBcosB=×sinAsinB ﹣sinBsiinB∴sinAsinAsinBsinB+sinBsinB(1﹣cosAcosA)﹣2sinAcosAsinBcosB=×sinAsinB∴2sinAsinB(sinAsinB﹣cosAcosB﹣)=0∴2sinAsinB[﹣cos(A+B)﹣]=0∵sinA≠0,sinB≠0,∴﹣cos(A+B)﹣=0∴cos(A+B)=﹣∴A+B=135°∴C=45°故答案为:45°.8.(4分)定义运算.例如,1*2=1,则函数f(x)=2sinx*cosx在区间[0,2π]上的单调递增区间为(0,),(π,),().【解答】解:函数f(x)=2sinx*cosx=,f(x)=故由正、余弦函数的图象可知,函数f(x)在区间[0,2π]上的单调递增区间为(0,),(π,),()故答案为:(0,),(π,),().9.(4分)若满足条件a=4,A=30°的△ABC有且只有两个,则边c所有可能的值域构成的集合是(4,8)(用区间表示).【解答】解:根据题意,在△ABC中,a=4,A=30°,则有===8,则c=8sinC,若符合题意的△ABC有且只有两个,则有<sinC<1,故有4<c<8,即c的取值范围为(4,8);故答案为:(4,8).10.(4分)已知函数.当x∈[n,n+1),n≥﹣1,n∈Z时,用x和n表示的f(x)=sin[(x﹣n﹣1)]π+n+1.【解答】解:x∈[n,n+1),则x﹣n﹣1∈[﹣1,0),f(x﹣n﹣1)=sin[(x﹣n ﹣1)]π,∵x≥0,f(x﹣1)=f(x)﹣1,∴f(x)﹣n﹣1=sin[(x﹣n﹣1)]π,∴f(x)=sin[(x﹣n﹣1)]π+n+1,故答案为sin[(x﹣n﹣1)]π+n+1.二、选择题:(每题4分)11.(4分)下列函数中,最小正周期为π的奇函数是()A.y=|cotx|sinx B.C.y=sin2x+cos2x D.y=tanx﹣cotx【解答】解:根据题意,依次分析选项:对于A、y=|cotx|sinx=,其最小正周期为2π,不符合题意;对于B、y=cos(2x﹣)=sin2x,其最小正周期为=π,且为奇函数,符合题意;对于C、y=sin2x+cos2x=sin(2x+),为非奇非偶函数,不符合题意;对于D、y=tanx﹣cotx=﹣==﹣cot2x,其最小正周期为,不符合题意;故选:B.12.(4分)△ABC中,如果cosAcosB>sinAsinB,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.锐角或直角三角形【解答】解:依题意可知cosAcosB﹣sinAsinB=cos(A+B)>0,﹣cosC>O,cosC <O,∴C为钝角故选:A.13.(4分)计算得()A.B.C.D.【解答】解:=[(﹣)×]50=.故选:A.14.(4分)已知点A(x1,y1),B(x2,y2)是函数y=sinx(﹣π<x<0)上的两个不同点,且x1<x2,则对于下列四个不等式:①;②sinx1<sinx2;③;④.其中正确不等式的个数是()A.0B.1C.2D.3【解答】解:①由于表示直线OA的斜率,表示直线OB的斜率,A在第三象限时,与原点连线斜率为正,B在第四象限时,与原点所连直线斜率为负,故①不正确;②由于函数y=sinx(﹣π<x<0)的单调性不确定,故由x1<x2,不能推出①sinx1<sinx2 .故②sinx1<sinx2 ,不一定成立.③由于函数y=sinx的图象在(﹣,0)上是下凹型的,而(sinx1+sinx2)表示线段AB中点的纵坐标,故有③;成立.④由题意可得﹣<<<0,而函数y=sinx在(﹣,0)上是增函数,故有sin<sin成立,故④不正确.故③正确.故选:B.三、解答题:(15题10分,16题10分,17、18题各12分).15.(10分)在△ABC中,设角A、B、C的对边分别为a、b、c,且,(1)求sinB的值;(2)若b=4,且a=c,求△ABC的面积.【解答】解:(1)由正弦定理,得即sinBcosC+cosBsinC=3sinAcosB∴sin(B+C)=3sinAcosB∵A+B+C=180°∴sinA=3sinAcosB∵0°<A<180°∴cosB=∴sinB=(2)由余弦定理,cosB=,再由b=4,a=c,cosB=得c2=24=acsinB=c2sinB=8∴S△ABC16.(10分)设cos(α﹣)=﹣,sin(﹣β)=,且<α<π,0<β<,求cos(α+β).【解答】解:∵<α<π,0<β<,∴<α﹣<π,﹣<﹣β<.∴sin(α﹣)===,cos(﹣β)===.∴cos()=cos[(α﹣)﹣(﹣β)]=.∴cos(α+β)=2cos2﹣1=﹣.17.(12分)如图,为了解某海域海底构造,在海平面内一条直线上的A、B、C 三点进行测量.已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,求∠DEF的余弦值.【解答】解:如图作DM∥AC交BE于N,交CF于M.DF===10(m),DE===130(m),EF===150(m).在△DEF中,由余弦定理的变形公式,得cos∠DEF===.18.在半径为1,圆心角为的扇形中,求内接矩形面积的最大值.【解答】解:图一,设∠COF=x,则CF=rsinx=sinx.在△OCD中,,∴CD==,∴矩形面积S=≤=.故图一矩形面积的最大值为.图二可拆分成两个,图一角是θ,图二拆分后角是,故根据图一得出的结论,可得矩形面积的最大值为,而图二时由两个这样的图形组成,∴两个则为.故图二矩形面积的最大值为.19.(12分)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数f(x)=+的性质,并在此基础上,作出其在[﹣π,π]的草图.【解答】解:①∵∴f(x)的定义域为R;(2分)②∵,∴f(x)为偶函数;(4分)③∵f(x+π)=+=+=f(x),∴f(x)是周期为π的周期函数;(6分)④当时,f(x)=,∴当时,f(x)单调递减;当时,f(x)=,f(x)单调递增;又∵f(x)是周期为π的偶函数,∴f(x)在上单调递增,在上单调递减(k∈Z);(8分)⑤∵当时,;当时,.∴f(x)的值域为;(10分)⑥由以上性质可得:f(x)在[﹣π,π]上的图象如图所示:(12分)。
上海市华师大二附中2014-20 15学年高一下学期期中数学试卷一、填空题(每小题3分,共36分)1.(3分)扇形的半径为1cm,圆心角为2弧度,则扇形的面积为cm2.2.(3分)已知角α的终边过点P(﹣5,12),则cosα=.3.(3分)已知,则sin2α=.4.(3分)已知α是锐角,则=.5.(3分)化简:=.6.(3分)若α是第三象限角,且,则=.7.(3分)在△ABC中,若b=1,,,则S△ABC=.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.9.(3分)定义,则函数(x∈R)的值域为.10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.11.(3分)已知函数f(x)=2x2﹣ax+1,存在,使得f(sinϕ)=f(cosϕ),则实数a的取值范围是.12.(3分)设函数(x∈)的最大值为M,最小值为m,则M+m=.二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C. f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)三、解答题(本大题共48分)17.(6分)若,求的值.18.(8分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=解答:解:由,得sin=sinα=﹣,则sinα=2sin cos==﹣,解得tan=﹣或﹣,由α是第三象限角,所以,则,所以tan=﹣,故答案为:﹣.点评:本题考查两角和与差的正弦函数、倍角公式,考查学生灵活运用公式解决问题的能力.7.(3分)在△ABC中,若b=1,,,则S△ABC=.考点:正弦定理的应用.专题:解三角形.分析:由正弦定理求出sinB的值,可得B的值,再由三角形的内角和公式求出A的值,再由S△ABC=,运算求得结果.解答:解:由于在△ABC中,若b=1,,,由正弦定理可得=,∴sinB=.再由大边对大角可得 B=<A,∴A=π﹣B﹣C=.∴则S△ABC==,故答案为.点评:本题主要考查正弦定理的应用,三角形的内角和公式,大边对大角,属于中档题.8.(3分)隔河测算A,B两目标的距离,在岸边取C,D两点,测得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,则A,B间的距离m.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:依题意,利用正弦定理可求得AD,BD,再利用余弦定理即可求得AB.解答:解:作图如下:∵CD=200m,∠ADC=105°,∠ACD=30°,∠BDC=15°,∠BCD=120°,∴∠CAD=∠CBD=45°,∠BDA=90°;∴在△ACD中,由正弦定理=,即=,∴AD=100;在△BCD中,同理可求BD=100.在直角三角形BDA中,由勾股定理得AB===.故A,B间的距离为200m.故答案为200.点评:本题考查正弦定理与余弦定理,求得AD,BD是关键,考查作图与运算能力,属于中档题.9.(3分)定义,则函数(x∈R)的值域为.考点:二阶行列式的定义;正弦函数的定义域和值域.专题:新定义;三角函数的图像与性质.分析:利用新定义,展开f(x)利用同角三角函数化为一个角的一个三角函数的二次函数的形式,根据余弦函数的值域求解即可.解答:解:由题意=sin2x+4cosx=﹣cos2x+4cosx+1=﹣(cosx﹣2)2+5∈.故答案为:.点评:本题是基础题,考查三角函数的化简求值,新定义的应用,考查计算能力.10.(3分)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.考点:余弦函数的图象;正切函数的图象.专题:三角函数的图像与性质.分析:先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx的值,从而得到答案.解答:解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=.线段P1P2的长为故答案为.点评:考查三角函数的图象、数形结合思想.11.(3分)已知函数f(x)=2x2﹣ax+1,存在,使得f(sinϕ)=f(cosϕ),则实数a的取值范围是.考点:函数与方程的综合运用.专题:函数的性质及应用.分析:利用条件化简可得2(sinφ+cosφ)=a,利用辅助角公式及角的范围,即可求实数a的取值范围.解答:解:根据题意:2sin2φ﹣asinφ+1=2cos2φ﹣acosφ+1,即:2(sin2φ﹣cos2φ)=a(sinφ﹣cosφ)即:2(sinφ+cosφ)(sinφ﹣cosφ)=a(sinφ﹣cosφ),因为:φ∈(),所以sinφ﹣cosφ≠0故:2(sinφ+cosφ)=a,即:a=2sin()由φ∈()得:∈(π/2,3π/4),也就是:sin()∈(,1)所以:a=2sin()∈(2,2)故答案为:点评:本题考查三角函数的化简,考查函数与方程的综合运用,考查辅助角公式的运用,考查学生的计算能力,属于中档题.12.(3分)设函数(x∈)的最大值为M,最小值为m,则M+m=4.考点:函数最值的应用.专题:函数的性质及应用.分析:将函数化简,构造新函数g(x)=(x∈),判断其为奇函数,可得g (x)max+g(x)min=0,从而可得结论.解答:解:=2+令g(x)=(x∈),则g(﹣x)=﹣g(x),∴函数g(x)是奇函数∴g(x)max+g(x)min=0∴M+m=4+g(x)max+g(x)min=4故答案为:4点评:本题考查函数的最值,考查函数的奇偶性,考查学生分析解决问题的能力,属于中档题.二、选择题(每小题4分,共16分)13.(4分)已知k∈Z,下列各组角的集合中,终边相同的角是()A.与B.2kπ+π与4kπ±πC.与D.与考点:终边相同的角.专题:计算题.分析:把数学符号语言转化为文字语言,结合终边相同的角的表示方法,做出判断.解答:解:由于表示的整数倍,而kπ±=(2k±1)表示的奇数倍,故这两个角不是终边相同的角,故A不满足条件.(2k+1)π表示π的奇数倍,(4k±1)π也表示π的奇数倍,故(2k+1)π与(4k±1)π(k∈Z)是终边相同的角,故B满足条件.kπ+=(k+)π表示π的(k+)倍,而2kπ±=(2k±)π表示π的(2k±)倍,故两个角不是终边相同的角,故C不满足条件.由于表示整数倍,而kπ+=(3k+1)表示非3的整数倍,故这两个角不是终边相同的角,故D不满足条件.故选:B.点评:本题考查终边相同的角的表示方法,把数学符号语言转化为文字语言,以及式子所表示的意义.14.(4分)在△ABC中,若cosAcosB>sinAsinB,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.形状不确定考点:三角形的形状判断.专题:计算题.分析:先将条件等价于cos(A+B)>0,从而可知C为钝角,故可判断.解答:解:由题意,∵cosAcosB>sinAsinB∴cos(A+B)>0∴cosC<0∴C为钝角故选A.点评:本题以三角函数为载体,考查三角形的形状判断,关键是利用和角的余弦公式,求得C为钝角.15.(4分)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sinx C.f(x)=log2x D.f(x)=tanx考点:指数函数与对数函数的关系.分析:依据指、对数函数的性质可以发现A,C满足其中的一个等式,而D满足,B不满足其中任何一个等式解答:解:f(x)=3x是指数函数满足f(x+y)=f(x)f(y),排除A.f(x)=log2x是对数函数满足f(xy)=f(x)+f(y),排除Cf(x)=tanx满足,排除D.故选B点评:本题主要考查指数函数和对数函数以及正切函数的性质.16.(4分)定义在R上的偶函数f(x)满足f(2﹣x)=f(x),且在上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是()A.f(sinα)>f(cosβ)B.f(cosα)<f(cosβ)C. f(cosα)>f(cosβ)D.f(sinα)<f(cosβ)考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:根据偶函数的性质和条件判断出在上是增函数,再由f(2﹣x)=f(x)和偶函数的定义得f(x)=f(x+2),求出函数的周期,再判断出在上是增函数,根据α和β的范围以及余弦函数的单调性,判断出对应余弦值的大小和范围,再由函数f(x)的单调性进行判断.解答:解:∵偶函数f(x)在上是减函数,∴f(x)在上是增函数,又∵偶函数f(x)满足f(2﹣x)=f(x),∴f(x)=f(x﹣2),即f(x+2)=f(x),函数的周期T=2,∴f(x)在上是增函数,∵α,β是钝角三角形的两个锐角,且α<β,∴根据余弦函数在(0,π)上递减得,0<cosβ<cosα<1,则f(cosα)>f(cosβ).故选C.点评:本题以余弦函数为载体,考查了余弦函数的单调性、抽象函数的周期性和奇偶性的应用,即根据周期函数的性质和奇偶性对应的关系式,将自变量进行转化,转化到已知范围内求解,考查了转化思想.三、解答题(本大题共48分)17.(6分)若,求的值.考点:两角和与差的正切函数.专题:三角函数的求值.分析:利用,可求tanA的值,再利用和角的正切公式,即可得到结论.解答:解:∵,∴tanA=﹣∴===∴=2.点评:本题考查和角的正切公式,考查学生的计算能力,属于基础题.18.(8分)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(Ⅰ)求△ABC的周长;(Ⅱ)求cos(A﹣C)的值.考点:余弦定理;两角和与差的余弦函数.专题:计算题.分析:(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长;(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC 的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A 为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.解答:解:(I)∵c2=a2+b2﹣2abcosC=1+4﹣4×=4,∴c=2,∴△ABC的周长为a+b+c=1+2+2=5.(II)∵cosC=,∴sinC===.∴sinA===.∵a<c,∴A<C,故A为锐角.则cosA==,∴cos(A﹣C)=cosAcosC+sinAsinC=×+×=.点评:本题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查学生的基本运算能力,是一道基础题.19.(10分)已知函数f(x)=2.(1)求函数f(x)的最小正周期及在上的单调递增区间;(2)若f(x0)=,x0∈,求cos2x0的值.考点:三角函数的周期性及其求法;两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(1)利用二倍角的正弦与余弦及三角函数间的关系可将f(x)=2sinxcosx+2cos2x ﹣1化为:f(x)=2sin(2x+),从而可求函数f(x)的最小正周期及在上的单调递增区间;(2)由(1)知,f(x0)=2sin(2x0+)=,可求得sin(2x0+)=,继而可求得cos (2x0+)=﹣,而2x0=(2x0+)﹣,利用两角差的余弦即可求得cos2x0.解答:解:(1)由数f(x)=2sinxcosx+2cos2x﹣1,得f(x)=sin2x+cos2x=2sin(2x+),所以函数f(x)的最小正周期为π;∵2kπ﹣<2x+<2kπ+,k∈Z∴x∈(kπ﹣,kπ+),k∈Z又x∈,f(x)=2sin(2x+)在上的单调递增区间为(0,);(2)由(1)知,f(x0)=2sin(2x0+),∵f(x0)=,∴sin(2x0+)=,由x0∈,得2x0+∈.从而cos(2x0+)=﹣=﹣∴cos2x0=cos=cos(2x0+)cos+sin(2x0+)sin=.点评:本题考查二倍角的正弦与余弦及三角函数间的关系,考查正弦函数的单调性及周期性,考查两角差的余弦,属于中档题.20.(10分)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(x B,y B),设∠BAO=β.(1)用β表示α;(2)如果,求点B(x B,y B)的坐标;(3)求x B﹣y B的最小值.考点:任意角的三角函数的定义;基本不等式;圆方程的综合应用.专题:综合题.分析:(1)作出图形,结合图形由,能求出.(2)由,r=1,得=.由此能求出点B(x B,y B)的坐标;(3)法一:,由此能求出x B﹣y B的最小值.法二:由α为钝角,知x B<0,y B>0,x B2+y B2=1,x B﹣y B=﹣(﹣x B+y B),(﹣x B+y B)2≤2(x B2+y B2)=2,由此能求出x B﹣y B的最小值.解答:解:(1)如图,∵,∴.(2)由,又r=1,得=.由钝角α,知,∴.(3)法一:,又,,∴x B﹣y B的最小值为.法二:α为钝角,∴x B<0,y B>0,x B2+y B2=1,x B﹣y B=﹣(﹣x B+y B),(﹣x B+y B)2≤2(x B2+y B2)=2,∴,∴x B﹣y B的最小值为.点评:本题考查三角函数的性质和应用,综合性强,是2015届高考的常见题型.解题时要认真审题,仔细解答,注意三角函数恒等变换的灵活运用.21.(14分)已知函数是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).(1)求实数m的值,并写出区间D;(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;(3)当x∈A=于是,当0<a<1时,函数上是单调增函数.(3)∵x∈A=[a,b)(A⊆D,a是底数)∴0<a<1,a<b≤1.∴由(2)知,函数上是增函数,即,解得.若b<1,则f(x)在A上的函数值组成的集合为,不满足函数值组成的集合是[1,+∞)的要求,∴必有b=1.因此,所求实数a、b的值是.点评:本题从恒等式出发得到m,另外复合函数的单调性的判断关键在于分离出单个函数,属于中档题.。
华东师大二附中2015学年第二学期期中考试试卷高一数学一、填空题(4*10=40分)1.求值arctan cot 3π⎛⎫= ⎪⎝⎭_________. 2.函数()f x =____________.3.若tan 3θ=-,则()sin sin 2cos θθθ-=_____________.4.若()0,2x π∈,则使s i n c o s x x =-成立的x 的取值范围是___________.5.若arcsin arccos 6x x π-=,则x =_________. 6.函数()()cos1log sin f x x =的单调递增区间是____________.7.若02πθ<<,则()()cos ,cos sin ,sin cos θθθ的大小顺序为___________. 8.若关于x 的函数sin y x ω=在,32ππ⎡⎤-⎢⎥⎣⎦上的最大值为1,则ω的取值范围是________.9.已知,,,44x y a R ππ⎡⎤∈-∈⎢⎥⎣⎦,并有方程组33sin 2014sin 202x x a y y a ⎧+-=⎪⎨++=⎪⎩成立,则()cos 2x y +=___________.10.设函数()sin 2sin 1cos 2cos x x f x x x-=+-,关于()f x 的性质,下列说法正确的是_________. ①定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;②值域是R ;③最小正周期是π; ④()f x 是奇函数;⑤()f x 在定义域上单调递增.二、选择题(4*4=16分)11.为了得到3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像,只需将3cos 2y x =的图像( ) .A 向左平移4π .B 向右平移4π .C 向右平移8π .D 向右平移8π 12.,,2παβπ⎛⎫∈ ⎪⎝⎭,且tan cot αβ<,则必有( ) .A αβ< .B αβ> .C 32παβ+<.D 32παβ+> 13.下列函数中以π为周期,在0,2π⎛⎫ ⎪⎝⎭上单调递减的是( ) .A ()tan cot1x y = .B sin y x = .C cos 2y x =-.D t a n y x =-14.下列命题中错误的是( ).A 存在定义在[]1,1-上的函数()f x 使得对任意实数y 有等式()c o s c o s 2f y y =成立; .B 存在定义在[]1,1-上的函数()f x 使得对任意实数y 有等式()s i n s i n 2f y y =成立; .C 存在定义在[]1,1-上的函数()f x 使得对任意实数y 有等式()cos cos3f y y =成立; .D 存在定义在[]1,1-上的函数()f x 使得对任意实数y 有等式()sin sin3f y y =成立;三、解答题(8+10+12+14=44分)15.已知(),0,αβπ∈,并且()7s i n 52c o s 2παπβ⎛⎫-=+ ⎪⎝⎭,()()απβ-=+,求,αβ的值.16.若关于x 的方程sin 0x x a +=在()0,2π内有两个不同的实数根,αβ,求实数a 的取值范围及相应的αβ+的值.17.已知函数sin cos 2sin cos y θθθθ=++. (1)设变量sin cos t θθ=+,试用t 表示()y f t =,并写出t 的范围;(2)求函数()y f t =的值域.18.用,,a b c 分别表示ABC 的三个内角,,A B C 所对边的边长,R 表示ABC 的外接圆半径.(1)2,2,45R a B ===︒,求AB 的长;(2)在ABC 中,若C ∠是钝角,求证:2224a b R +<;(3)给定三个正实数,,a b R ,其中b a ≤,问,,a b R 满足怎样的关系时,以,a b 为边长,R 为外接圆半径的ABC 不存在,存在一个或存在两个(全等的三角形算作同一个)?在ABC 存在的情况下,用,,a b R 表示c .沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
2018-2018学年上海市华师大二附中高一(下)期中数学试卷一、填空题(4*10=40分)1.求值arctan(cot)=.2.函数f(x)=的定义域是.3.若tanθ=﹣3,则sinθ(sinθ﹣2cosθ)=.4.若x∈(0,2π),则使=sinx﹣cosx成立的x的取值范围是.5.若arcsinx﹣arccosx=,则x=.6.函数f(x)=log cos1(sinx)的单调递增区间是.7.若0<θ<,则cosθ,cos(sinθ),sin(cosθ)的大小顺序为.8.若关于x的函数y=sinωx在[﹣,]上的最大值为1,则ω的取值范围是.9.已知,且,则cos(x+2y)=.10.设函数f(x)=,关于f(x)的性质,下列说法正确的是.①定义域是{x|x≠kπ+,k∈Z};②值域是R;③最小正周期是π;④f(x)是奇函数;⑤f(x)在定义域上单调递增.二、选择题(4*4=16分)11.为了得到y=3sin(2x+)的图象,只需将y=3cos2x的图象()A.向左平移B.向右平移C.向右平移D.向左平移12.α,β∈(,π),且tanα<cotβ,则必有()A.α<β B.α>β C.α+β<D.α+β>13.下列函数中以π为周期,在(0,)上单调递减的是()A.y=(cot1)tanx B.y=|sinx|C.y=﹣cos2x D.y=﹣tan|x|14.下列命题中错误的是()A.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立B.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立C.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立D.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立三、解答题(8+10+12+14=44分)15.已知α,β∈(0,π),并且sin(5π﹣α)=cos(π+β),cos(﹣α)=﹣cos(π+β),求α,β的值.16.若关于x的方程sinx+cosx+a=0在(0,2π)内有两个不同的实数根α,β,求实数a的取值范围及相应的α+β的值.17.已知函数y=.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;(2)求函数y=f(t)的值域.18.用a,b,c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.(1)R=2,a=2,B=45°,求AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a,b,R,其中b≤a,问a,b,R满足怎样的关系时,以a,b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a,b,R表示c.2018-2018学年上海市华师大二附中高一(下)期中数学试卷参考答案与试题解析一、填空题(4*10=40分)1.求值arctan(cot)=.【考点】反三角函数的运用.【分析】利用特殊角的三角函数,反正切函数的定义和性质,求得arctan(cot)的值.【解答】解:arctan(cot)=arctan()=,故答案为:.2.函数f(x)=的定义域是{x|x=2kπ,k∈z} .【考点】函数的定义域及其求法.【分析】根据二次根式的性质得到cosx=1,解出即可.【解答】解:由题意得:cosx﹣1≥0,cosx≥1,∴cosx=1,∴x=2kπ,k∈Z,故答案为:{x|x=2kπ,k∈z}.3.若tanθ=﹣3,则sinθ(sinθ﹣2cosθ)=.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanθ=﹣3,∴sinθ(sinθ﹣2cosθ)====,故答案为:.4.若x∈(0,2π),则使=sinx﹣cosx成立的x的取值范围是[].【考点】三角函数的化简求值.【分析】把根式内部的代数式化为完全平方式的形式,由已知等式可得sinx≥cosx,再由已知x的范围求得x的具体范围.【解答】解:∵===sinx﹣cosx,∴sinx≥cosx,又x∈(0,2π),∴x∈[].故答案为:∈[].5.若arcsinx﹣arccosx=,则x=.【考点】反三角函数的运用.【分析】由题意可得arcsinx与arccosx=均为锐角,x>0,求得cos(arcsinx﹣arccosx)的值,可得x的值.【解答】解:∵arcsinx∈(﹣,),arccosx∈(0,π),arcsinx﹣arccosx=,∴arcsinx与arccosx 均为锐角,x>0.又cos(arcsinx﹣arccosx)=cos=,即cos(arcsinx)•cos(arccosx)+sin(arcsinx)sin(arccosx)=•x+x•=,∴•x=,∴x2(1﹣x2)=,∴x2=,或x2=,∴x=,或x=.经检验,x=不满足条件,故舍去.故答案为:.6.函数f(x)=log cos1(sinx)的单调递增区间是[)(k∈Z).【考点】复合函数的单调性.【分析】由0<cos1<1,得外函数y=log cos1t在定义域内单调递减,再求出内函数t=sinx的减区间,取使t大于0的部分得答案.【解答】解:令t=sinx,∵0<cos1<1,∴外函数y=log cos1t在定义域内单调递减,又sinx>0,∴当x∈[)(k∈Z)时,内函数t=sinx大于0且单调递减,∴函数f(x)=log cos1(sinx)的单调递增区间是[)(k∈Z),故答案为:[)(k∈Z).7.若0<θ<,则cosθ,cos(sinθ),sin(cosθ)的大小顺序为cos(sinθ)>cosθ>sin(cosθ);.【考点】三角函数线.【分析】观察知道,利用x>0时,sinx<x,结合余弦函数的单调性解答.【解答】解:因为sinx<x,所以0<θ<,sinθ<θ,所以cos(sinθ)>cosθ,令x=cosθ,所以cosθ>sin(cosθ),故答案为:cos(sinθ)>cosθ>sin(cosθ);8.若关于x的函数y=sinωx在[﹣,]上的最大值为1,则ω的取值范围是{ω|ω≥1或ω≤﹣}.【考点】正弦函数的图象.【分析】利用正弦函数的图象特征,正弦函数的最大值,分类讨论求得ω的取值范围.【解答】解:∵关于x的函数y=sinωx在[﹣,]上的最大值为1,∴当ω>0时,由ω•≥,ω≥1,当ω<0时,由ω•(﹣)≥,求得ω≤﹣,故答案为:{ω|ω≥1或ω≤﹣}.9.已知,且,则cos(x+2y)=1.【考点】三角函数的恒等变换及化简求值;两角和与差的余弦函数.【分析】设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=﹣2a,进而根据函数的奇偶性,求得f(x)=﹣f(2y)=f(﹣2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.【解答】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=﹣2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=﹣f(2y)=f(﹣2y).∴x=﹣2y,即x+2y=0.∴cos(x+2y)=1.故答案为:1.10.设函数f(x)=,关于f(x)的性质,下列说法正确的是②④.①定义域是{x|x≠kπ+,k∈Z};②值域是R;③最小正周期是π;④f(x)是奇函数;⑤f(x)在定义域上单调递增.【考点】三角函数的化简求值.【分析】利用二倍角公式化简函数解析式,根据正切函数的图象和性质逐一分析各个选项即可得解.【解答】解:f(x)===tanx(cosx),对于①,函数f(x)的定义域是{x|x≠2kπ+,x≠kπ+,x≠2kπ+,k∈Z},故错误;对于②,函数f(x)的值域是R,故正确;对于③,由于f(x+π)===tanx(其中cosx≠),故错误;对于④,由于f(﹣x)==﹣=﹣f(x),故正确;对于⑤,由正切函数的图象可知函数在整个定义域上不单调,有无数个单调增区间,故错误.故答案为:②④.二、选择题(4*4=16分)11.为了得到y=3sin(2x+)的图象,只需将y=3cos2x的图象()A.向左平移B.向右平移C.向右平移D.向左平移【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把函数y=3sin(2x+)变形为y=3sin[2(x+)]即可得到答案.【解答】解:∵y=3sin(2x+)=3sin[2(x+)].∴要得到y=3sin(2x+)的图象,只需将y=3cos2x的图象向左平移个单位.故选:D.12.α,β∈(,π),且tanα<cotβ,则必有()A.α<β B.α>β C.α+β<D.α+β>【考点】正切函数的图象.【分析】由题意可得α+β∈(π,2π),再根据tan(α+β)=>0,可得α+β∈(π,),从而得出结论.【解答】解:α,β∈(,π),且tanα<cotβ=<0,∴tanα•tanβ>1,α+β∈(π,2π),∴tan(α+β)=>0,∴α+β∈(π,),故选:C.13.下列函数中以π为周期,在(0,)上单调递减的是()A.y=(cot1)tanx B.y=|sinx|C.y=﹣cos2x D.y=﹣tan|x|【考点】正弦函数的图象.【分析】利用三角函数的周期性和单调性,逐一判断各个选项是否正确,从而得出结论.【解答】解:由于y=tanx的周期为π,0<cot1<1,故y=(cot1)tanx的周期为π,且在(0,)上单调递减,故A满足条件.由于y=|sinx|在(0,)上单调递增,故排除B.由于在(0,)上,2x∈(0,π),函数y=﹣cos2x在(0,)上单调递增,故排除C.由于函数y=﹣tan|x|不是周期函数,故排除D,故选:A.14.下列命题中错误的是()A.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立B.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立C.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立D.存在定义在[﹣1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立【考点】二倍角的余弦;二倍角的正弦.【分析】利用二倍角公式、三倍角公式,函数的定义,判断各个选项是否正确,从而得出结论.【解答】解:令x=cosy∈[﹣1,1],则对任意实数y,有等式f(cosy)=cos2y成立,即f(x)=2x2﹣1成立,故A成立.对任意实数y有等式f(cosy)=cos3y=4cos3y﹣3cosy 成立,即f(x)=4x3﹣3x成立,故B正确.令t=siny∈[﹣1,1],则对任意实数y,有等式f(siny)=sin2y=2sinycosy=2t•(±)成立,即f(x)=2•(±)成立,故B错误.则对任意实数y,有等式f(sin3y)=sin3y=3siny﹣4sin3y 成立,即f(t)=3t﹣4t3成立,故D 成立,故选:B.三、解答题(8+10+12+14=44分)15.已知α,β∈(0,π),并且sin(5π﹣α)=cos(π+β),cos(﹣α)=﹣cos(π+β),求α,β的值.【考点】三角函数的化简求值.【分析】利用诱导公式化简已知可得sinα=sinβ,cosα=cosβ,将两式平方后利用同角三角函数基本关系式解得或,结合角的范围即可得解α,β的值.【解答】解:∵由sin(5π﹣α)=cos(π+β),可得:sinα=sinβ,两边平方可得:sin2α=2sin2β,①由cos(﹣α)=﹣cos(π+β),可得:cosα=cosβ,两边平方可得:3cos2α=2cos2β,②∴①+②可得:sin2α+3cos2α=2sin2β+2cos2β=2,又∵sin2α+cos2α=1,∴解得:cos2α=,即:或,∵α,β∈(0,π),∴解得或.16.若关于x的方程sinx+cosx+a=0在(0,2π)内有两个不同的实数根α,β,求实数a的取值范围及相应的α+β的值.【考点】三角函数中的恒等变换应用.【分析】由sinx+cosx+a=0,得sinx+cosx=﹣a,画出函数y=sinx+cosx=的图象,数形结合得答案.【解答】解:由sinx+cosx+a=0,得sinx+cosx=﹣a,令y=sinx+cosx=,∵x∈(0,2π),∴x+∈(,),作出函数的图象如图:若关于x的方程sinx+cosx+a=0在(0,2π)内有两个不同的实数根α,β,则﹣2,或,即或.当a∈(﹣2,﹣)时,;当a∈(﹣,2)时,.17.已知函数y=.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的范围;(2)求函数y=f(t)的值域.【考点】三角函数中的恒等变换应用.【分析】(1)由t=sin(t+)利用正弦函数的性质可求t的范围,平方后利用同角三角函数基本关系式可求sinθcosθ=,进而即可用t表示y=f(t).(2)由y== [(t+2)+﹣4],利用基本不等式即可求其最小值,进而求得最大值即可得解函数y=f(t)的值域.【解答】解:(1)∵t=sinθ+cosθ,∴t=sinθ+cosθ=sin(θ+)∈[﹣,],∴t2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ,∴sinθcosθ=,∴y===,t∈[﹣,].(2)∵y==()= [(t+2)+﹣4],∵t∈[﹣,].∴t+2∈[2﹣,2+].∴(t+2)+=2,当且仅当(t+2)=,即t+2=时取等号.∵t+2∈[2﹣,2+].∴函数的最小值为 [2﹣4]=.当t=﹣时,f(﹣)=,t=时,f()=,∴函数的最大值为,故函数y=f(t)的值域为:[,].18.用a,b,c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.(1)R=2,a=2,B=45°,求AB的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a,b,R,其中b≤a,问a,b,R满足怎样的关系时,以a,b为边长,R为外接圆半径的△ABC不存在,存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a,b,R表示c.【考点】正弦定理.【分析】(1)由已知及正弦定理可sinA,b,利用大边对大角可得A为锐角,利用同角三角函数基本关系式可求cosA,利用三角形内角和定理,两角和的正弦函数公式可求sinC的值,利用正弦定理即可得解AB的值.(2)利用余弦定理推出a2+b2<c2,利用正弦定理推出a2+b2<4R2.(3)分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分类讨论即可.【解答】解:(1)∵R=2,a=2,B=45°,∴由正弦定理可得:,解得:sinA=,b=2,又∵a<b,可得:A<B,可得cosA==,∴sinC=sin(A+B)=sinAcosB+cosAsinB==,∴AB=c=4sinC=4×=.证明:(2)由余弦定理得cosC=,∵C为钝角,可得cosC<0,∴a2+b2<c2又∵由正弦定理得c=2RsinC<2R,∴c2<4R2,∴a2+b2<4R2.解:(3)①a>2R≥b或a≥b≥2R时,不存在;②当a=2R且b<2R时,A=90°,存在一个,c=;③当a=b<2R,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个,c=2RsinC=;④当b<a<2R,存在两个,c=.2018年9月2日。