关于泰勒公式的论文
- 格式:doc
- 大小:858.50 KB
- 文档页数:16
泰勒公式的几点应用理学院 数学082本 岑燕丹 指导老师:杨征摘要:泰勒公式是非常重要的数学工具,在各类数学问题的解决中有着广泛应用。
高等数学教材中对泰勒公式的理论部分已进行了较详细的介绍,但对于泰勒公式的应用涉及的相对较少。
所以本文主要通过实例对泰勒公式的应用进行探讨。
文中在对泰勒公式系统总结下,主要论述了一元函数泰勒公式在求极限、求极值与拐点及求近似值等的常规应用,还列举了其在判断敛散性、求行列式及解微分方程等的应用,更进一步证明了欧拉公式。
文中还将一元函数的泰勒公式推广到二元函数的泰勒公式,以便将高等数学中泰勒公式的内容系统化,便于其研究内容的进一步发展。
关键词;泰勒公式;应用;极限;行列式;微分方程;二元函数0 引言泰勒公式是数学分析中一个非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,并在微积分的各个方面都有重要的应用。
它还建立了函数的增量、自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
我们还可以使用泰勒公式来很好的解决某些问题,如求某些极限,确定无穷小的阶,证明等式和不等式,判断收敛性,判断函数的拐点以及解决中值问题等。
1 泰勒公式的引入设给定了一个函数()f x ,我们要找到一个在指定点0x x =附近与()f x 很近似的多项式。
我们的目的是希望找到一个关于()0x x -的n 次多项式()()()()2010200nn P x a a x x a x x o x x =+-+-++- (1.1)来近似表示()f x ,并使当0x x →时,其误差()()n f x P x -是较()0nx x -高阶的无穷小。
我们把()()()()000f x f x f x x x '≈+-,与一次多项式()()1010P x a a x x =+-,对照一下,可知应该取()()0010,a f x a f x '==,而01,a a 的这两个数值可以由等式()()()()100100,P x f x P x f x ''==,分别求得。
本科生毕业论文题目: 泰勒公式及其应用研究专业代码: 070101作者姓名: 范文朝学号: 2008200665单位: 2008级1班指导教师: 刘保政2012年5 月20 日精品文档原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明。
本人承担本声明的相应责任。
学位论文作者签名: 日期指导教师签名: 日期目录摘要 (Ⅰ)Abstract (Ⅱ)1.引言 (1)2.泰勒公式的形式........................................... (1)2.1 带有佩亚诺型余项的泰勒公式.............................. .. (1)2.2 具有拉格朗日余项的泰勒公式 (2)2.3 带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (2)3.泰勒公式的应用...... ....................... . (2)3.1利用泰勒公式求不定式的极限 (3)3.2利用泰勒公式估算误差 (5)3.3用泰勒公式判断级数的敛散性....................... . (9)3.3.1数项级数的敛散性判断............. .............. ........ ..93.3.2函数项级数的敛散性判断............... .............. .. (10)3.4利用泰勒公式证明中值问题.............. ............. (12)3.5利用泰勒公式证明不等式和等式............. .............. .. (13)3.5.1利用泰勒公式证明积分不等式或积分等式................ .. (13)3.5.2利用泰勒公式证明导数不等式.............. ............. (15)3.5.3利用泰勒公式证明代数不等式............... . (16)结束语 (19)参考文献 (20)致谢 (21)摘要泰勒公式是数学分析中重要的公式,它的基本思想是用多项式来逼近已知函数,而这个多项式的系数由给定函数的各阶导数确定.阐述了泰勒公式的定义及其各种形式,着重对泰勒公式在极限计算、误差估计、敛散性的判断、中值问题以及等式与不等式的证明这五个方面中的应用进行了研究论述.泰勒公式在多方面的应用可以提高我们对泰勒公式的认识,有利于把泰勒公式的研究推向更深处.关键词:泰勒公式; 不定式的极限;误差估计; 级数的敛散性;不等式证明AbstractTaylor formula is a important formula in the mathematical analysis. Its basic idea is that the known function with a polynomial approximation determines the coefficients of the polynomial by the first derivative of the given function. The definition and its various forms of the Taylor formula are elaborated. The applications of Taylor formula in five aspects are studied and discussed, such as the limit calculation, error estimation, the judgment of convergence and divergence, median problems, as well as equality and inequality proof. Taylor formula in many applications can improve our understanding of the Taylor formula , and it benefit to push the research of Taylor formula to deeper.Key words:Taylor formula; the infinitive limits; error estimates; convergence and divergence of the series; Proof of Inequality泰勒公式及其应用研究1. 引言泰勒公式是数学分析中一个非常重要的内容,几个微分中值定理中一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式的应用范文泰勒公式是一种在微积分中用来近似计算函数值的方法。
它将一个函数表示为一个无穷级数的形式,使得我们可以通过计算级数中的有限项来近似计算函数的值。
泰勒公式广泛应用于数学、物理学、工程学和计算机科学等领域,并对数值计算和数学建模等重要任务具有重要意义。
以下将介绍泰勒公式在这些领域的一些应用。
一、在数学领域的应用:1.函数近似:泰勒公式可用于近似计算一个函数在其中一点的函数值,特别是在点附近的小区间内。
这对于无法直接计算的复杂函数或含有未知变量的函数是非常有用的。
2.导数和高阶导数的计算:泰勒公式可以通过计算级数中的有限项来近似计算一个函数在其中一点的导数。
这对于无法直接计算导数或高阶导数的函数是非常有用的。
3.极限计算:泰勒公式提供了一种计算函数在一个点的极限的方法,特别是对于无法直接计算的函数或复杂函数而言。
二、在物理学领域的应用:1.运动学和动力学:泰勒公式可用于近似计算运动学和动力学中各种物理量的变化率,如速度、加速度和力。
2.波动学:泰勒公式可以近似计算波函数随时间和位置的变化,从而帮助解决波动学相关的问题,如声波、光波和电磁波等。
3.热力学:泰勒公式可用于计算物体在热力学过程中的温度、能量和熵等的变化。
三、在工程学领域的应用:1.信号处理:泰勒公式可以用于近似表示信号在时间域和频域中的变化,从而帮助处理和分析各种类型的信号。
2.控制理论:泰勒公式可用于近似表示控制系统中各种变量的变化,从而帮助设计和优化控制器,以实现稳定和可靠的系统性能。
3.电路分析:泰勒公式可用于近似计算电路中各种元件的电压、电流和功率等的变化,特别是在非线性电路和非稳态电路的分析中。
四、在计算机科学领域的应用:1.数值计算:泰勒公式可用于近似计算各种数学函数的值,从而帮助实现高效和准确的数值计算方法,如数值积分、数值微分和数值优化等。
2.图像处理:泰勒公式可以用于近似表示图像中各个像素值的变化,从而帮助实现图像增强、图像压缩和图像恢复等处理算法。
泰勒公式的应用论文泰勒公式是一个非常重要的数学工具,在物理、工程和其他科学领域都有广泛的应用。
本文将介绍一篇关于泰勒公式应用的论文,通过该论文的介绍,读者可以了解泰勒公式的具体应用以及其在该领域的重要性。
题目:《利用泰勒公式对非线性方程进行求解的数值方法研究》摘要:本文研究了一种利用泰勒公式对非线性方程进行求解的数值方法。
通过将非线性方程展开成泰勒级数的形式,可以近似地求解非线性方程,并得到更加精确的解。
本文通过对该数值方法进行理论推导和实验证明,证明了该方法的有效性和准确性。
引言:非线性方程是很多科学问题中常见的数学模型,然而求解非线性方程通常比线性方程复杂得多。
泰勒公式是一种在求解非线性方程时常用的近似方法。
通过将非线性方程进行泰勒级数展开,可以将非线性方程转化为线性方程或更简单的形式,从而得到近似的解。
方法:本文首先对泰勒公式进行了简要的介绍和推导。
然后,根据泰勒公式的展开形式,将非线性方程的各阶导数代入泰勒级数中,得到更简单的形式。
接下来,研究了如何选取适当的展开点和截断误差来提高近似解的精确性。
最后,利用MATLAB编写了求解非线性方程的数值算法,并通过多个实例进行了验证。
结果与讨论:通过对多个不同类型的非线性方程进行求解,得到了较好的结果。
与传统的数值方法相比,利用泰勒公式进行求解的方法具有更高的精确性和更快的收敛速度。
此外,通过调整展开点和增加泰勒级数的项数,还可以进一步提高解的精确度。
结论:本文研究了一种利用泰勒公式求解非线性方程的数值方法,并通过理论推导和实验证明了该方法的有效性和准确性。
该方法可以准确地求解非线性方程,并且具有更高的精确性和更快的收敛速度。
因此,该方法在实际应用中具有很大的潜力,可以应用于物理、工程和其他科学领域中。
展望:虽然本文对利用泰勒公式求解非线性方程的数值方法进行了研究和验证,但仍然有一些问题需要进一步探讨。
例如,如何选择展开点和确定截断误差的更准确方法,以及将该方法应用于更复杂的非线性方程等。
Taylor 公式的发展及其应用摘要:数学中Taylor 公式是分析和探究相关数学问题的有力工具。
本文将简要介绍Taylor 公式的概念,发展,基本内容式及其简单的应用。
关键词:Taylor 公式发展余项应用一、基本概念在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
我们在学习导数和微分概念时已经知道,如果函数f(x)在0x 可导,则有)())((')()(0000x x o x x x f x f x f -+-+=即在点0x 附近,用一次多项式))((')()(000x x x f x f x f -+=逼近函数)(x f 时,其误差为)(0x x -的高阶无穷小量。
然而在很多场合,取一次多项式逼近是不够的,往往需要用二次或高于二次的多项式去逼近,并要求误差为n x x o )(0-,其中n 为多项式的次数。
为此,我们考察任一n 次多项式n n n x x a x x a x x a a x p )(.......)()()(02020100-++-+-+=逐次求它在点0x 处的各阶导数,得到00)(a x p n =,10)('a x p n =,20!2)(''a x p n =,……()n n n a n x p !)(0=由此可见,多项式)(0x p n 的各项系数都由其在0x 的各阶到数值唯一确定。
对于一般函数f(x),设它在点0x 存在直到n 阶的导数,有这些导数构造一个n 次多项式n n n x x n x f x x x f x x x f x f T )(!)(........)(!2)('')(!1)(')(00)(200000-++-+-+=称为函数f (x )在点0x 处的Taylor 多项式,)(n x T 的各项系数!)(0)(k x fk (k=1,2……n )称为Taylor 系数。
关于泰勒公式的论文
泰勒公式是一个强大的数学工具,可以用来计算函数在其中一点的极
限或求解微分方程。
它最初由英国数学家约翰·泰勒于1715年发明,已
经被广泛使用了近300年。
从统计学、物理学和控制工程到经济学、医学
研究,泰勒公式都可以起到巨大的作用。
由于泰勒公式的重要性,关于它的研究也越来越多。
从1825年以来,论文和文章就一直在研究该公式和它的应用,以便更好地理解它背后的原理。
今天,有关泰勒公式的文献有数不清,可以用来帮助研究者们更好地
理解该公式。
首先,1825年,英国数学家兼物理学家莱斯利·卡罗尔发表了他的
论文“泰勒公式:一种新的数学理论”,该论文发表在英国物理学家詹姆斯·牛顿的《英国科学院学报》上。
这是关于泰勒公式的最早研究,主要
介绍了泰勒公式的原理,以及如何使用这一理论来解决复杂的数学问题。
随后,1945年,美国数学家蒂姆·麦克法兰发表了他的论文“基于
泰勒公式的信号分析技术”,该论文发表在《应用数学评论》上。
麦克法
兰的论文主要讨论了使用泰勒公式来进行信号分析的新技术,从而为计算
信号波形提供了一种新的方法。
此外,2024年,美国数学家胡安·德鲁伊斯·戈麦斯发表了他的论
文“泰勒公式在理论物理学中的应用”。
泰勒公式及其应用摘 要 文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足 上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1. 求极限sin 2lim sin cos x x xe x xx x x →0-1--- .分析 : 此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x , xe 分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)p a dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛). 例 1.研究广义积分4dx +∞⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()f x =112233)(1)2x x=++--22223191131911())(1())22828o o x x x x x x =+⋅-⋅++-⋅-⋅+-3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x →+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4dx +∞⎰.例2.讨论级数1n∞=∑的敛散性.注意到11ln ln(1)nn n+=+,若将其泰勒展开为1n的幂的形式,开二次方后恰与,会使判敛易进行.解:因为2341111111ln ln(1)234nn nn n n n n+=+=-+-+<,所以<所以nu=>,故该级数是正项级数.又因为3212n =>=-,所以332211)22nun n=-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的. 12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。
泰勒公式的证明分析综述目录泰勒公式的证明分析综述 (1)1.1 常见泰勒公式形式 (1)1.1.1 带佩亚诺型余项的泰勒公式 (1)1.1.2 带拉格朗日型余项的泰勒公式 (2)1.2 带佩亚诺型余项的泰勒公式的证明 (2)1.3 带拉格朗日型余项的泰勒公式的证明 (3)高等数学中有不胜枚举的数学公式, 其中泰勒公式可以称得上是, 一个不可或缺的应用尤其广泛的公式. 就目前根据以往的学习情况来看, 针对于泰勒公式的使用有两方面, 一是向量函数下在更高维空间上的运用, 另一种则是在数量函数背景下针对于泰勒公式更加宽泛的使用. 简单来说, 微分几何教材中对于泰勒公式的证明, 它通过使用空间向量直角坐标系下的基向量, 将向量函数表示出来, 并根据给定的向量函数在闭区间上是C n+1类函数, 从而得到泰勒公式. 反观本文泰勒公式, 是在数量函数前提下的, 在数学的发展过程中对它的研究生成了许多的成果. 在泰勒公式不断完善发展的过程中, 针对泰勒公式的证明, 人们采用了多种不同的方法证明, 但整体上证明思想还是殊途同归的. 下面我们就根据泰勒公式的不同余项来构造不同辅助函数从而证明不同余项型的泰勒公式(见文献[8]).1.1常见泰勒公式形式1.1.1带佩亚诺型余项的泰勒公式函数f(x)在点x0若存在直至n阶导数, 我们可以得到f(x)=T n(x)+o((x−x0)n),即f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+o((x−x0)n)形如o((x−x0)n)的余项称为佩亚诺型余项, 其中limx−x0o((x−x0)n)(x−x0)n=0.1.1.2带拉格朗日型余项的泰勒公式在闭区间[m,n]上, 若函数g(x)满足以下两个条件:(1)存在直至n阶的连续导函数:(2)开区间(m,n)上存在(n+1)阶导函数.则此时对任意取得的x, x0∈(m,n), 就会有g(x)=g(x0)+g′(x0)(x−x0)+g′′(x0)2!(x−x0)2+g′′′(x0)3!(x−x0)3+∙∙∙+g(n)(x0)n!(x−x0)n+g(n)(x0)(n+1)!(x−x0)n成立, 形如g (n)(x0)(n+1)!(x−x0)n的余项称为拉格朗日型余项(见文献[12]).以上, 我们给出了两种类型的泰勒公式, 从形式上看这两种泰勒公式结构大致相似, 但余项不同. 因此根据于这种特性, 我们可以通过带佩亚诺型余项的式子, 方便的进行有关极限内容的学习. 因为后面这个泰勒公式它的余项总是可以确定的, 即我们使用此余项下的泰勒公式, 进行近似计算或者理论分析是非常便捷的, 并且消除了公式中可能存在的误差, 提高了公式计算的精确度(见文献[1]).1.2带佩亚诺型余项的泰勒公式的证明引理1: 若有函数f(x), 则不妨设函数f(x)存在, 在某点x0的直到n阶的导数.并用其导数构造n次多项式L n(x)=f(x0)+f′(x0)1!(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n上式L n(x)就是x0处的泰勒多项式, 且系数f(k)(x0)k!(k=1,2,3,∙∙∙,)就是泰勒系数, f(x)与L n(x)在点x0函数值与n阶的导数值相等, 即有:f(k)(x0)=L n(k)(x0),k=0,1,2,3,∙∙∙,n.定理1: 若函数f在点x0有到n阶的导数, 则有f(x)=L n(x)+ o((x−x0)n),即f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+o((x−x0)n).证明可设R n(x)=f(x)−L n(x),Q n(x)=(x−x0)n,故此时只需证明lim x−x0R n(x)Q n(x)=0.由引理1可知,R n(x0)=R n′(x0)=R n′′(x0)=R n′′′(x0)∙∙∙=R n(n)(x0)=0,同时由假设知Q n(x0)=Q n′(x0)=Q n′′(x0)=Q n′′′(x0)∙∙∙=R n(n−1)(x0)=0,Q n(n)(x0)=n!.则f(n)(x0)存在, 且f在领域U(x0)上有n−1阶导函数f(x). 于是若满足x∈U°(x0)且x→x0时, 通过洛必达法则可得:lim x−x0R n(x)Q n(x)=limx−x0R n′(x)Q n′(x)=limx−x0R n′′(x)Q n′′(x)=limx−x0R n′′′(x)Q n′′′(x)=∙∙∙=limx−x0R n(n−1)(x)Q n(n−1)(x)=limx−x0f(n−1)(x)−f(n−1)(x0)−f(n)(x0)(x−x0)n(n−1)∙∙∙2(x−x0)=1n!limx−x0[f(n−1)(x)−f(n−1)(x0)(x−x0)−f(n)(x0)]=0.以上, 就是我们所证明余项下的泰勒公式.(见文献[13]).1.3带拉格朗日型余项的泰勒公式的证明定理: 对于一般函数函数f(x), 若在[a,b]上有到n阶的连续导函数, 并位于(a,b)上的存在直至(n+1)阶的导函数, 故对随机的x,x0∈[a,b], 至少有一点ϑ∈(a,b), 可得到f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+f(n+1)(ϑ)(n+1)!(x−x0)n+1.证明做辅助函数F(t)=f(x)−[f(t)+f′(t)(x−t)+∙∙∙+f(n)(t)n!(x−t)n],G(t)=(x−t)n+1.此时上面定理中的式子即为: F(x0)=f(n+1)(ϑ)(n+1)!G(x0)或 F(x0)G(x0)=f(n+1)(ϑ)(n+1)!. 不妨设x0<x,则F(t)与G(t)在[x0,x]上连续, 在(x0,x)上可导,且F′(t)=−f(n+1)(t)n!(x−t)n,G′(t)=−(n+1)(x−t)n≠0.又因F(x)=G(x)=0, 所以由柯西中值定理证得 F(x0)G(x0)= F(x0)−F(x)G(x0)−G(x)=F′(ϑ)G′(ϑ)=f(n+1)(ϑ)(n+1)!,其中ϑ∈(x0,x)包含于(a,b). 它的余项为R n(x)=f(x)−T n(x)=f(n+1)(ϑ)(n+1)!(x−x0)n+1,ϑ=x0+θ(x−x0)(0<θ<1).故, 我们完成了带拉格朗日型余项型的泰勒公式的证明.( 见文献[3]).。
泰勒公式及其应用论文)泰勒公式及其应用摘 要文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面. 这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似.当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1.求极限sin 2limsin cos x x xe x xx x x →0-1--- .分析 : 此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x ,x e 分别用泰勒展开式代替,则可简化此比式.解:由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则'''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)pa dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛).例 1.研究广义积分4dx +∞⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()f x =112233)(1)2x x=++--22223191131911())(1())22828o o x x x x x x =+⋅-⋅++-⋅-⋅+- 3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x→+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4dx +∞⎰.例2.讨论级数1n∞=∑的敛散性.注意到11ln ln(1)nn n+=+,若将其泰勒展开为1n的幂的形式,开二次方后恰与相呼应,会使判敛易进行.解:因为2341111111ln ln(1)234nn nn n n n n+=+=-+-+<,所以所以nu=>,故该级数是正项级数.又因为3212n=>==-,所以332211)22nun n=<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的.12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。
学士学位论文泰勒公式及其应用2012年5月18日毕业论文成绩评定表院(系):数学与信息学院学号:独创声明本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.此声明的法律后果由本人承担.作者签名:二〇一二年五月十八日毕业论文使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定.本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用.(保密论文在解密后遵守此规定)论文作者(签名):二〇一二年五月十八日目录1.引言 (1)2. 泰勒公式及其应用 (1)2.1预备知识 (1)3 泰勒公式的应用 (3)3.1利用泰勒公式求极限 (3)3.2利用泰勒公式求不等式 (3)3.3利用泰勒级数判断级数的敛散性 (4)3.4利用泰勒公式证明根的唯一性 (5)3.5利用泰勒公式判断函数的极值 (5)3.6利用泰勒公式求初等函数的幂级展开式 (6)3.7利用泰勒公式进行近似计算 (6)3.8利用泰勒公式判断函数的凸凹性和拐点 (7)3.9利用泰勒公式求高阶导数在某点的数 (8)参考文献 (8)致谢 (8)泰勒公式及其应用(数学与信息学院 数学与应用数学 2008级数本2班20082112010)摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用Taylor formula and it ’s application(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)Abstract:In the mathematical analysis Taylor formula is a important content. This paperdiscusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, theuniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.Keywords: Taylor ’s formula The emaining of the Piano The remaining of the LagrangianApplication1.引言泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.2. 泰勒公式及其应用2.1 预备知识定义[]12.1 若函数f 在0t 存在n 阶导数,则有()()()()()()()()()()20000001!2!!n n nn n f t f t f t f t f t t t t t t t o t t n '''=+-+-++-+-(1)这里()()0no t t -为皮亚诺余项,称(1)f 在点0t 的泰勒公式.当0t =0时,(1)式变成()()()()()()200001!2!!n nn f f f f t f t t t o t n '''=+++++称此式称为(带皮亚诺余项的)麦克劳林公式.定义2.2 若函数f 在0t 某邻域内为存在直至n+1阶的连续导数,则()()()()()()()()200000()1!2!!n nn n n f t f t f t f t f t t t t t t t R t n '''=+-+-++-+(2)这里R (n )为拉格朗日余项()()()110()()1!n n f R n t t n α++=++,其中α在t 与0t 之间,称(2)为f 在0t 的泰勒公示.当0t =0时,(2)式变成()()()()()20000()1!2!!n nn f f f f t f t t t R t n '''=+++++称此式为(带有拉格朗日余项的)麦克劳林公式.其中,常见函数的展开式:()()()()21135212224222311212!!(1)!sin (1)()3!5!21!cos (1)()2!4!2!ln 1(1)()231111n n a n n nn nnn n n n n n a a e e a a n n t t t t t o t n t t t t t o t n t t t x t o t n t t t t t++++++=++++++=-+++-++=-+-+-++=-+-+-++=+++++-定理[]12.1 (介值定理)设函数g 在闭区间],[21x x 上连续。
泰勒公式及其应用臧树霞摘要:泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具, 它的用途很广泛.本文详细介绍泰勒公式及其应用在数学领域几个应用作论述。
文章除了对泰勒公式在常用的近似计算、求极限、不等式的证明、行列式的计算、求高阶导数在某点的数值、根的唯一存在性的证明、判断函数的极值外,特别的,泰勒公式还对函数凹凸性及拐点判断的应用做详细的介绍。
关键词:泰勒公式;佩亚诺余项;拉格朗日余项Taylor’s Formula and its ApplicationZhang shu-xiaAbstract:Taylor’s formula is the mathematical analysis of the important part, it has become a research function theory method and estimated error limit of the indispensable tools such as a concentrated expression of the calculus, “approximation” of the essence, which is the value of the Calculus theorem is also of high order derivative function of an important tool for state, its use is very wide. This paper introduces the Taylor formula and its applications in mathematics for discussion on several applications. Article in addition to the common Taylor formula for approximate calculation, limit, inequality, the determinant calculation, high derivatives at come point the only numerical, root the existence of proof, judging function outside the extremum, special, Taylor formula also for function convexity and application of inflexion point judge detail.Keyword:Taylor formula, Peano remainder, Lagrange remainder一 引言1.1综述近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、近似计算、不等式证明等方面. 1.2研究现状关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如求极限,判断函数凹凸性和收敛性,求渐近线,界的估计和近似值的计算等等.虽然泰勒公式应用到各个数学领域很多,但也还有很多方面学者还很少提及,因此在这泰勒公式及其应用方面我们有研究的必要,并且有很大的空间.1.3研究意义泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示.因此泰勒公式在数学实际应用中是一种重要的应用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.1.4本论文所作的工作泰勒公式的应用一直以来都属于数学领域里重要的研究内容.本文将简略介绍一些基本的泰勒公式的应用实际方法,然后把泰勒公式应用到求极限等方面中去.1.5研究目标探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.1.6本论文解决的关键问题了解泰勒公式及其各类型余项的泰勒公式展开式,熟练掌握带有佩亚诺余项和带有拉格朗日余项的泰勒公式应用.1.7本论文的研究方法将带有佩亚诺余项和带有拉格朗日余项的泰勒公式应用到求极限等的解题应用上,得出最佳的解题方法.二 泰勒公式2.1泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数f .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()[()]n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.2泰勒公式余项的类型泰勒公式的余项分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项如佩亚诺型余项0(())n o x x -,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.定量的余项如拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+(ξ也可以写成00()x x x θ+-)、柯西余项(如在某些函数的幂级数展开时用).定量的余项一般用于函数值的计算与函数形态的研究.2.3泰勒公式的定义及常见函数的泰勒展开 (1)带有佩亚诺(Peano)型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有n 阶导数, 则对此邻域内的点x ,有()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-当00x =时, 上式称为麦克劳林(Maclaurin)公式,即()(1)21(0)(0)(0)()(0)(0)(01)2!!(1)!n n n n f f f f x f f x x x x n n θθ++'''=+++++<<+.(2)带有拉格朗日(Lagrange)型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有1n +阶导数, 则对此邻域内的点x , 有()(1)2100000000()()()()()()()()()()2!!(1)!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-++-+-+(ξ介于0x 与x 之间). 常见函数的展开式:.)!1(!!2112+++++++=n xn xx n e n x x x e σ352+12+2sin = + ...+ (1)+ ()3!5!(2+1)!n nn x x x x x o x n - .)()!2()1(!6!4!21cos 22642n nn x o n x x x x x +-++-+-= . )()1(32)1ln(132n nn x o nx x x x x +-+++-=+- . 2(1)(1)12m m m x x x-+=+m +!…+nx n n m m m !)1()1(+--()n+o x . 21=1+ + + ... + +()1n n x x x o x x. 2.4泰勒公式的证明两种余项的泰勒公式所表达的根本思想都是怎样用多项式来逼近函数,带有佩亚诺余项的泰勒公式是反映了极限性质的渐进等式,所以这个公式在求极限时很有用,对余项可以提供充分小的估计值.带有拉格朗日余项的泰勒公式有确切的表达式,当然也有像中值这样不确定的因素,但是并不妨碍定理的使用,为近似计算的误差估计提供了理论依据.定理1:(带有佩亚诺型余项的泰勒公式)若函数f 在点0x 存在直至n 阶导数,则有))(()()(0n n x x o x T x f -+=,即))(()(!)()(!2)())(()()(000)(200"00'0n n n x x o x x n x f x x x f x x x f x f x f -+-++-+-+=证明:设)()()(x T x f x R n n -=,n n x x x Q )()(0-=,现在只要证0)()(lim0=-x Q x R nn x x由n k x T x f k n k ,,2,1,0)()(0)(0)( ==,可知,0)()()(0)(0'0====x R x R x R n n n n ,并易知!)(,0)()()(0)(0)1(0'0n x Q x Q x Q x Q n n n n n n =====-因为)(0)(x f n 存在,所以在点0x 的某邻域)(0x U 内)(x f 存在1-n 阶导函数)(x f .于是,当)(0x U x ∈且0x x →时,允许接连使用洛必达(L'Hospital )法则1-n 次,得到)]()()([lim !1)(2)1())(()()(lim )()(lim )()(lim )()(lim 0)(00)1()1(000)(0)1()1()1()1(''00000=---=-----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n nn n x x n n x x n n x x 所以定理1成立.定理2:若函数)(x f 在[]b a ,上存在直至n 阶的连续导函数,在),(b a 内存在)1(+n 阶导函数,则对任意给定的],[,0b a x x ∈,至少存在一点),(b a ∈ζ,使得)1()()!1()()(!)()(!2)())(()()()1(0)1(00)(200"00'0++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ζ 证明:作辅助函数])(!)())(()([)()()('n n t x n t f t x t f t f x f t F -++---= ,1)()(+-=n t x t G所以要证明的(1)式即为)!1()()()()()!1()()()1(000)1(0+=+=++n f x G x F x G n f x F n n ζζ或 不妨设x x <0,则)(t F 与)(t G 在],[0x x 上连续,在),(0x x 内可导,且))(1()()(!)()(')1('≠-+-=--=+n nn t x n t G t x n t f t F 又因0)()(==x G x F ,所以由柯西中值定理证得)!1()()()()()()()()()()1(''0000+==--=+n f G F x G x G x F x F x G x F n ζζζ 其中),(),(0b a x x ⊂∈ζ 所以定理2成立.三 泰勒公式的实际应用3.1利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具.利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项.当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限.例1 求2240cos limx x x e x -→-.分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单.解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==-.例2 求极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为00型极限,若用洛必达法求解,则很麻烦,这时可将cos x 和sinx, xe 分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=34333()()6126o o x x x x x ++=+3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos x x x x x x x x e →0----3333()162()3o o x x x x +==+.带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单.3.2利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n nf f f x f f x x x n ≈+ + + + ,其误差是余项()n R x .例1 计算Ln1.2的值,使误差不超过0.0001.解: 先写出f(x)=Ln(1+x)带拉格朗日型余项的麦克劳林展开式:231(1)(1)()23nn n x x x Ln x x R x n-+=-+++-+, 其中11(1)()(1)(1)n n n n x R x n ξ++-=++(ξ在0与x 之间).令2.0=x ,要使111(0.2)|()|(0.2)0.0001(00.2)(1)(1)n n n n R x n ξξ+++=<≤<<++ 则取5=n 即可. 因此.0001.0R 1823.000006.000040.000267.002.02.02.15<=+-+-≈其误差Ln当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公式是解决这种问题的最好方法.例2 计算lg11的值,准确到5-10. 解: 111lg11lg(101)1lg ln )10ln1010=+=+(1+)=1+(1+ 因为 23ln(1)23x x x x +=-++ (1)n x n -(-1)n +(-1)11(1)(1)n n x n x ++++θ, 1x 0<θ<1, >-,要使(1)1(1)10(1)(1)ln1010n n n n -++-||θ++5102(1)n -n+1-<<10+⇒ 542(1)1010n n -(n+1)-+>=取4n =,故11111lg111ln1010200300040000≈+(-++)≈1.04139.3.3在不等式证明中的应用关于不等式的证明,我们已经在前面介绍了多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.下面我们举例说明,泰勒公式也是证明不等式的一个重要方法.例 在[a,b]上f(x)>0,且()0nx f<,试证明2max ()()ba a x bf x f x dx b a<<<∫-. 证明: 任取[p,q]⊂[a,b],对任意x ∈[p,q],利用泰勒公式及其条件()0nx f<可得 ()()f p f x =+()x ´ƒ22()()(2p x p f ξ-+-x)!<ƒ(x)+()x ´ƒ()p x - (1)()()f q f x =+()x ´ƒ222()()(2q x q fξ-+-x)!<ƒ(x)+()x ´ƒ()q x -(2) )()2()()1(p x x q -⨯+-⨯ 得))(())(())((p q x f p x q f x q p f -<-+-所以有 ()()q p f p q x ∫[-()()f q x p +-]()qp x dx dx <(q-p)∫ƒ 即()()()()2q p f p f q q p x dx +-<∫ƒ (3) 设c ∈[a,b],使 ()c ƒ=max ()a x bx <<ƒ 根据(3)及()x ƒ >0得()()()b c ba a c x dx x dx x dx ∫ƒ=∫ƒ+∫ƒ()()2f a f c +>+()()()2f c f b b c +- ()()()()()()222f c f c f c c a b c b a >-+-=- 即 2max ()()ba a x bf x f x dx b a<<<∫-.3.4在行列式计算方面的应用若一个行列式可看做x 的函数(一般是x 的n 次多项式),记作f(x),按泰勒公式在某处0x 展开,用这一方法可求得一些行列式的值.例 求n 阶行列式D=xz z z y x z zyy x zy y y x (1)解: 记()n f x D =,按泰勒公式在z 处展开:'''()2()()()()()()()()1!2!!n n n n n n f z f z f x z f x f z x z x z x z n -=+-+-++-, (2)易知100000000()0k k z y y z y y z yy D z z y z yy z y -阶---==--- (3)由(3)得, 1()(),1,2,,k k f z z z y k n -=-=时都成立.根据行列式求导的规则,有''''1122111()(),()(1)(),,()2(),()1(()).n n n n f x nf x f x n f x f x f x f x f x x ---==-==因为=于是)(x f n 在z x 处的各阶导数为''21()()|()()n n n x z n f z f z nf z nz z y -=-===-,'''''31()()|()(1)()n n n x z n f z f z nf z n n z z y -=-===--,… … … …111()|(1)2()(1)2n n n n x z f z f n n f z n n z --===-=-()()(1)2n n f z n n =-把以上各导数代入(2)式中,有12321(1)()()()()()()1!2!(12)(1)21()()(1)!!n n n n n nn n n f x z z y z z y x z z z y x z n n n n z x z x z n n -----=-+--+----.++-+--若z y =,有1()()[(1)]n n f x x y x n y -=-+-,若z y ≠,有()()()n nn z x y y x z f x z y---=-.3.5证明根的唯一存在性例 设f(x)在[,)a +∞上二阶可导,且'()0,()0f a f a ><,对''(,),0x a f ∈+∞≤, 证明: ()0f x =在(,)a +∞内存在唯一实根.分析:这里f(x)是抽象函数,直接讨论()0f x =的根有困难,由题设f(x)在[,)a +∞上二阶可导且'()0,()0f a f a ><,可考虑将f(x)在a 点展开一阶泰勒公式,然后设法应用介值定理证明.证明: 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此x>a 时,''()()0f x f a <<,故f(x)在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<由题设''()0,()0f a f ξ<≤,于是有-∞=∞→)(lim x f x ,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由f(x)的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根.3.6 判断函数的极值例 (极值的第二充分条件)设f 在0x 的某邻域);(0δx U 内一阶可导,在0x x =处二阶可导,且0)(0'=x f ,0)(0''≠x f .(i)若0)(0''<x f ,则f 在0x 取得极大值. (ii) 若0)(0''>x f ,则f 在0x 取得极小值. 证明: 由条件,可得f 在0x 处的二阶泰勒公式))(()(!2)()(!1)()()(20200''00'0x x o x x x f x x x f x f x f -+-+-+=.由于0)(0'=x f ,因此200''0))](1(2)([)()(x x o x f x f x f -+=-.(*)又因0)(0''≠x f ,故存在正数δδ≤',当);('0δx U x ∈时,)(210''x f 与)1()(210''o x f +同号.所以,当0)(0''<x f 时,(*)式取负值,从而对任意);('0δx U x ∈有0)()(0<-x f x f ,即f 在0x 取得极大值.同样对0)(0''>x f ,可得f 在0x 取得极小值.3.7泰勒公式在函数凹凸性及拐点判断中的应用泰勒公式是高等数学的一个重要内容,在各个领域有着广泛的应用,不少书中利用它来判断函数的单调性、极值,由于泰勒公式的广泛应用,所以尝试利用泰勒公式来研究函数的凹凸性及拐点.定理 1 设()f x 在[,]a b 上连续,在(,)a b 上具有一阶和二阶导数.若在(,)a b 内()0f x ''>,则()f x 在[,]a b 上的图形是凹的.证明: 设c d <为[,]a b 内任意两点,且[,]c d 足够小.12x x <为[,]c d 中的任意两点,记012()/2x x x =+由定理条件的泰勒公式22000000()()()()()()()2!f x x x f x f x f x x x o x x ''-'=+-++-由此,2012001002010()()()2()()()()()()2!f x f x f x f x f x x x f x x x x x ''''+=+-+-+- 2220102020()()()()2!f x o x x x x o x x ''+-+-+- 因为余项为2()n x x -的高阶无穷小,12[,]x x 又为足够小,所以泰勒公式22000()()()2!f x x x o x x ''-+-的符号与0()f x ''相同.又因012()/2x x x =+,所以 010020()()()()0f x x x f x x x ''-+-=,可得:2222201200101020()()()2()()()()()02!x x f x f x f x f x x x o x x o x x -''+-=-++-+->即120()()2()0f x f x f x +->,得012()[()()]/2f x f x f x <+.由12,x x 得任意性,可得()f x 在足够小的区间[,]c d 上是凹的.再由,c d 得任意性,可得()f x 在[,]a b 内任意一个足够小的区间内部都是凹向的.定理2 若()f x 在某个0(,)U x δ内n 阶可导,且满足(1)000()()()0n f x f x f x -'''====,且0()0(2)n f x n ≠>若(1)n 为奇数,则00(,())x f x 为拐点; (2)n 为偶数,则00(,())x f x 不是拐点. 证明:写出()f x ''在0x 处的泰勒公式))(()!2())(())(()(20200000---+--++-'''=''n n n x x o n x x x f x x x f x f因为(1)000()()()0n f x f x f x -'''====则22000()()()/(2)!(())n n n f x f x x x n o x x --''=--+-,同样余项是20()n x x --的高阶无穷小.所以()f x ''的符号在0x 的δ心领域内与200()()/(2)!n n f x x x n ---相同.当n 为奇数时,显然在0x 的两边,200()()/(2)!n n f x x x n ---符号相异,即()f x ''的符号相异,所以00(,())x f x 为拐点.当n 为偶数时,则()f x ''的符号相同,所以00(,())x f x 不是拐点.例 ,4判断(0)是否是 x x -ƒ(x)=e +e +2cosx 的拐点.解: ()2sin ,x x x x ´-ƒ=e -e - (0)´ƒ0=()x x x ´´-ƒ=e -e -2cosx,(0)0´´ƒ=()2sin ,x x x x ´´´-ƒ=e -e + (0)´´´ƒ=0(4)(),x x x -ƒ=e -e -2cosx (4)(0)ƒ=4≠0因为n =4, 所以,4(0)不是x x-ƒ(x)=e +e +2cosx 的拐点.参考文献:[1] 华东师范大学数学系.数学分析[M].北京:高教出版社,2006.[2] 裴礼文编. 数学分析中的典型问题[M]. 北京:高教出版社,1993.[3]陈纪修,於崇华,金路.数学分析第二版上册[M].高等教育出版社,2004.[4]孙清华,孙昊.数学分析内容、方法与技巧(上)[M].华中科技大学出版社,2003.[5]朱永生, 刘莉.基于泰勒公式应用的几个问题[J].长春师范学院学报, 2006(08):4-25.[6]王三宝.泰勒公式的应用例举[J].高等函授学报(自然科学版) , 2005(03):3-19.[7]冯平,石永廷.泰勒公式在求解高等数学问题中的应用[J]. 新疆职业大学学报, 2003(04):4-11.[8]严振祥,沈家骅.泰勒公式在函数凹凸性及拐点判断中的应用[J]. 重庆交通大学学报(自然科学版),2007(8):4-26.。