(整理)开题报告浅谈泰勒公式及其应用
- 格式:doc
- 大小:119.50 KB
- 文档页数:7
浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。
泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。
本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。
关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。
利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。
当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。
例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。
解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。
24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。
泰勒公式开题报告泰勒公式开题报告一、引言泰勒公式是数学中的一项重要工具,它用于近似计算函数在某点的值。
该公式的提出者是英国数学家布鲁克·泰勒,他在1715年的《方法论》一书中首次描述了这一公式。
泰勒公式的应用范围广泛,涉及到物理学、工程学、计算机科学等众多领域,因此对其进行深入研究具有重要意义。
二、泰勒公式的基本原理泰勒公式是利用函数在某点的导数来逼近函数在该点附近的值。
设函数f(x)在点a处具有n阶导数,则泰勒公式可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中,f'(a)表示函数f(x)在点a处的一阶导数,f''(a)表示二阶导数,以此类推。
Rn(x)表示剩余项,用于表示泰勒公式的近似程度。
三、泰勒公式的应用1. 近似计算泰勒公式可以用于近似计算函数在某点的值。
通过取不同阶数的导数,可以得到不同精度的近似结果。
在实际应用中,我们可以根据需要选择适当的阶数,以获得满足要求的近似值。
2. 函数图像的绘制利用泰勒公式,我们可以在不知道函数解析表达式的情况下,通过计算函数在某点的导数,来绘制函数的图像。
这在计算机图形学中具有重要意义,可以用于生成曲线、曲面等复杂图形。
3. 数值计算泰勒公式的应用不仅限于函数的近似计算,还可以用于数值计算中。
例如,在数值微分和数值积分中,我们可以利用泰勒公式来构造数值算法,以提高计算的精度和稳定性。
四、泰勒公式的改进尽管泰勒公式在近似计算中具有广泛应用,但它也存在一些限制。
首先,泰勒公式要求函数在某点的导数存在,这在某些情况下可能不成立。
其次,随着阶数的增加,剩余项Rn(x)的影响逐渐增大,导致近似结果的误差也随之增大。
为了克服这些限制,人们提出了一系列改进的泰勒公式,如拉格朗日余项、佩亚诺余项等。
《泰勒公式及其应用》的开题报告《泰勒公式的验证及其应用》的关键词:泰勒公式的验证数学开题报告范文中国开题报告1.本课题的目的及研究意义目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。
泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
对泰勒公式的研究就是为了解决上述问题的。
2.本课题的研究现状数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。
泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。
对于泰勒公式在高等代数中的应用,还在研究中。
3.本课题的研究内容对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
本课题将从以下几个方面展开研究:一、介绍泰勒公式及其证明方法二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。
三、结论。
4.本课题的实行方案、进度及预期效果实行方案:1.对泰勒公式的证明方法进行归纳;2.灵活运用公式来解决极限、级数敛散性等问题;3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。
实行进度:研究时间为第8 学期,研究周期为9周。
《关于泰勒公式的应用》开题报告格式范例格式范例如下文1 课题研究意义在初等函数中,多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具.2 文献综述为了写好文章我着重查阅参考了以下文献:人民教育出版社出版江泽坚编写的《数学分析》,这本书给出了泰勒(taylor)定理的具体定义,及其麦克劳林 (maclaurin) 公式定义. 洛阳工业高等专科学校学报王素芳和陶荣写的《泰勒公式在计算及证明中的应用》,这篇文章阐述了泰勒公式在证明不等式中应用的具体方法,具体分为三个方面:有关一般不等式的证明、有关定积分不等式的证明、有关定积分等式证明的具体方法、步骤. 天津工业学院学报张励写的《泰勒公式的应用》,这篇文章中阐述了taylor公式在计算极限中应用的几种方法.以及其他的一些书目报刊.3 主要内容我的准备阐述泰勒(taylor)公式和麦克劳林(maclaurin)公式在数学分析中几个重要的应用. 准备从这两方面写这篇文章: taylor定理的应用.taylor公式的应用1 taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题. 满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难.当确定了要用泰勒公式求极限时,关键是确定展开的阶数. 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式. 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.2 taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题. 证明思路:(1)写出比最高阶导数低一阶的taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放.有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号.证题思路:直接写出的taylor展开式,然后根据题意对展开式进行缩放.有关定积分等式的证明针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题.证明思路:作辅助函数,将在所需点处进行taylor展开对taylor 余项作适当处理.3 taylor公式在近似计算中的应用利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计.4 研究方法为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作. 具体采用了数学归纳法、分析法、反证法、演绎法等方法.5 进度计划为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作.以上是开题报告格式范例。
泰勒公式的应用开题报告一、选题意义在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。
除此之外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题便的简单易解。
二、论文综述国内同类课题研究现状及发展趋势:泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,研究的方向大部分的是通过典型例题说明泰勒公式在求解极限、判定级数及广义积分敛散性方面、计算行列式、对某些定积分进行近似计算,求某些微分方程的通解等。
例如:湖南科技学院数学系的唐仁献在文章《泰勒公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了泰勒公式,哈尔滨职业技术学院郭鑫、林卓在《浅议泰勒公式应用》中着重论述了泰勒公式在近似计算、极限运算、级数与广义积分的敛散性判断等方面的具体应用方法。
在很多文章中,提到泰勒公式时,马上就是介绍泰勒公式的定义以及定性表示形式和各种形式的余项,如在我们学习的课本《数学分析》(上)中就是这样介绍的,这部分内容对于一个数学专业的学习者来说是比较基础的一部分内容,这对于以后的发展学习是很重要的.而我认为要深入研究这部分内容的话,还必须了解为此做出贡献的数学家—泰勒,因为了解一个数学家,就可以了解他创作时的数学思想,以及他的思维方式,在《世界著名科学家传记》中就对这位伟大的英年早逝的科学家进行了详细介绍.在许多书籍和论文里也都会提到泰勒公式及其应用,可见这一部分知识的重要性,尤其对于高校学生和一些应用型研究学者来说,这部分知识的学习总结是不容忽视的.由于很多课本对这些内容只是简单描述,没有系统、详细的进行总结,为了更好的了解和认识泰勒公式及其它的应用,笔者通过翻阅大量的文献和参考资料,并对泰勒公式应用的方方面面进行了认真的思考,同时总结了其他学者在这方面研究所做的贡献.三、主要内容我的论文将先对泰勒公式进行简单的介绍,对余项进行讨论,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,并配有相应的例题。
科技信息2011年第9期SCIENCE&TECHNOLOGY INFORMATION1带有不同余项的泰勒公式1.1带佩亚诺余项的泰勒公式定义:设f(x)在x0处有n阶导数,则存在x的一个邻域,对于邻域中的任一点x,成立f(x)=f(x0)+f′(x)(x-x)+f″(x)2!(x-x)2+…+f(n)(x)n!(x-x)n+rn(x)(1)其中余项rn (x)满足rn(x)=ο((x-x)n)上述公式称为f(x)在x=x处的带佩亚诺余项的泰勒公式。
它的前n+1项组成的多项式:p n(x)=f(x0)+f′(x)(x-x)+f″(x)2!(x-x)2+…+f(n)(x)n!(x-x)n+rn(x)称为f(x)的n次泰勒多项式。
余项rn (x)=ο((x-x)n)称为佩亚诺余项。
注:带佩亚诺余项的泰勒公式对函数f(x)的展开要求较低,它只要求f(x)在点x处n阶可导,展开形式也较为简单。
(1)式说明当x→x 0时用右端的泰勒多项式pn(x)代替f(x)所产生的误差是(x-x)n的高阶无穷小,这反映了函数f(x)在x→x时的性态,或者说反映了f(x)在点x处的局部性态。
1.2带拉格朗日型余项的泰勒公式定义:设f(x)在[a,b]上具有n阶连续导数,且在(a,b)上具有n+1阶导数。
设x∈[a,b]为一定点,则对于任意x∈[a,b],成立:f(x)=f(x0)+f′(x)(x-x)+f″(x)2!(x-x)2+…+f(n)(x)n!(x-x)n+rn(x)(2)其中余项rn (x)满足rn(x)=f(n+1)(ξ)(n+1)!(x-x)n+1,ξ在x与x之间。
上述公式称为f(x)在x=x处的带拉格朗日型余项的泰勒公式。
余项rn (x)=f(n+1)(ξ)(n+1)!(x-x)n+1(ξ在x与x之间)称为拉格朗日余项。
注:带拉格朗日余项的泰勒公式对函数f(x)的展开要求较高,形式也相对复杂,但因为(2)对坌x∈U(x)均能成立(当x不同时,ξ的取值可能不同),因此这反映出函数f(x)在邻域U(x)内的全局性态。
学士学位论文泰勒公式及其应用2012年5月18日毕业论文成绩评定表院(系):数学与信息学院学号:独创声明本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.此声明的法律后果由本人承担.作者签名:二〇一二年五月十八日毕业论文使用授权声明本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定.本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用.(保密论文在解密后遵守此规定)论文作者(签名):二〇一二年五月十八日目录1.引言 (1)2. 泰勒公式及其应用 (1)2.1预备知识 (1)3 泰勒公式的应用 (3)3.1利用泰勒公式求极限 (3)3.2利用泰勒公式求不等式 (3)3.3利用泰勒级数判断级数的敛散性 (4)3.4利用泰勒公式证明根的唯一性 (5)3.5利用泰勒公式判断函数的极值 (5)3.6利用泰勒公式求初等函数的幂级展开式 (6)3.7利用泰勒公式进行近似计算 (6)3.8利用泰勒公式判断函数的凸凹性和拐点 (7)3.9利用泰勒公式求高阶导数在某点的数 (8)参考文献 (8)致谢 (8)泰勒公式及其应用(数学与信息学院 数学与应用数学 2008级数本2班20082112010)摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用Taylor formula and it ’s application(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)Abstract:In the mathematical analysis Taylor formula is a important content. This paperdiscusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, theuniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.Keywords: Taylor ’s formula The emaining of the Piano The remaining of the LagrangianApplication1.引言泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.2. 泰勒公式及其应用2.1 预备知识定义[]12.1 若函数f 在0t 存在n 阶导数,则有()()()()()()()()()()20000001!2!!n n nn n f t f t f t f t f t t t t t t t o t t n '''=+-+-++-+-(1)这里()()0no t t -为皮亚诺余项,称(1)f 在点0t 的泰勒公式.当0t =0时,(1)式变成()()()()()()200001!2!!n nn f f f f t f t t t o t n '''=+++++称此式称为(带皮亚诺余项的)麦克劳林公式.定义2.2 若函数f 在0t 某邻域内为存在直至n+1阶的连续导数,则()()()()()()()()200000()1!2!!n nn n n f t f t f t f t f t t t t t t t R t n '''=+-+-++-+(2)这里R (n )为拉格朗日余项()()()110()()1!n n f R n t t n α++=++,其中α在t 与0t 之间,称(2)为f 在0t 的泰勒公示.当0t =0时,(2)式变成()()()()()20000()1!2!!n nn f f f f t f t t t R t n '''=+++++称此式为(带有拉格朗日余项的)麦克劳林公式.其中,常见函数的展开式:()()()()21135212224222311212!!(1)!sin (1)()3!5!21!cos (1)()2!4!2!ln 1(1)()231111n n a n n nn nnn n n n n n a a e e a a n n t t t t t o t n t t t t t o t n t t t x t o t n t t t t t++++++=++++++=-+++-++=-+-+-++=-+-+-++=+++++-定理[]12.1 (介值定理)设函数g 在闭区间],[21x x 上连续。
泰勒公式的应用综述首先, 给出常见的泰勒公式.设函数f(x)在区间(a,b)内有n+1阶导数,x0∈(a,b),则对任意x∈(a,b), 有:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+R n(x).其中Rn(x)为余项, 常见的余项有:(1)佩亚诺型余项: R n(x)=o((x−x0)n);(2)拉格朗日型余项: R n(x)=f(n+1)(x0)(n+1)!(x−x0)n+1;(3)柯西型余项: R n(x)=f(n+1)(ϑ)n!(x−x0)(x−ϑ)n, 其中ϑ在x与x0之间.根据实际的学习情况, 我们知道遇到的大多数有关泰勒公式的问题是, 泰勒公式在x0=0时的特殊形式( 见文献[15]), 即:f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+∙∙∙+f(n)(0)n!x n+o(x n) (1)f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+f(n+1)(x0)(n+1)!(x−x0)n+1(2)(1)式及(2) 式就是分别带佩亚诺型及拉格朗日型余项的麦克劳林公式. 类似的常见函数的余项不同的麦克劳林公式有:e x=1+x+x22!+∙∙∙+x nn!+o(x n);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+o(x2m);cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+o(x2m+1);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nno(x n);(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+o(x n);111−x=1+x+x2+∙∙∙+x n+o(x n).e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1,0<θ<1,x∈(−∞,+∞);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+(−1)m cosθx(2m+1)!x2m+1;cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+(−1)m cosθx(2m+1)!x2m+1,0<θ<1,x∈(−∞,+∞);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nn+(−1)n x n+1(n+1)(1+θx)n+1,0<θ<1,x>1;(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+α(α−1)∙∙∙(α−n)(n+1)!(1+θx)α−n−1x n+1,0<θ<1,x>1;1 1−x =1+x+x2+∙∙∙+x n+x n+1(1−θx)n+2,0<θ<1,|x|<1.1.1泰勒公式在数学分析中的应用1.1.1泰勒公式在求极限上的应用求极限limx→0cos x−e−x22x4讨论:观察发现针对于此题, 我们当然可以采用之前学习过的方法进行解答,但是我们发现由于题中出现指数幂的形式, 求解过程较繁琐, 在上面泰勒公式的证明中, 我们知道带有佩亚诺型余项的泰勒公式可以在极限求解中使用, 因此我们不妨一试(见文献[14]).根据前面我们可以写出余弦函数和底数为e的幂指数麦克劳林公式, 并做差有:cos x=1−x22+x224+o(x5);e−x 22=1−x22+x48+o(x5);cos x−e−x 22=−x412+o(x5);故而求得:lim x→0cos x−e−x22x4=limx→0−x412+o(x5)x4=−112.1.1.2泰勒公式在近似计算上的应用2例1: 计算e的值, 使其误差不超过10−6;解一开始我们不妨写出函数f(x)=e x的麦克劳林公式形式, 这个可以由泰勒公式写出, 即: e x=1+x+x22!+∙∙∙+x nn!+o(x n), 紧接着对于把麦克劳林公式, 我们可以直接换写为, 带有拉格朗日型余项的形式. 故由f(n+1)=e x, 得到e x=1+x+x2 2!+∙∙∙+x nn!+eθx(n+1)!x n+1,其中0<θ<1,x∈(−∞,+∞). 故R n(1)=eθ(n+1)!<3(n+1)!, 又n取值为9时, 可得R9(1)<310!=33628800<e−6. 则e的近似值为:e=1+1+12!+13!+∙∙∙+19!≈2.718285.例2:证明e 为无理数.证明常见函数f(x)=e x它的麦克劳林公式, 就是: e x=1+x+x22!+∙∙∙+x nn!+o(x n).写成拉格朗日型余项的时候就有:e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1其中0<θ<1,x∈(−∞,+∞). 当x=1时有:e=1+1+12!+13!+∙∙∙+1n!+eθ(n+1)!(0<θ<1).即由上式得: n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=e θ(n+1). 倘若e=pq(p,q为正整数), 则当n>q时, n!e为正整数, 从而式子n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=eθ(n+1)左边是正整数. 且我们可知:一方面e θ(n+1)<e(n+1)<1(n+1), 另一方面n大于等于2时右边不是整数, 故而e是无理数.1.2泰勒公式在数值分析中的应用(见文献[4])1.2.1泰勒公式在数值微分上的应用设步长ℎ>0, 把函数f(x+ℎ), 以及函数f(x+ℎ)在x点泰勒展开, 即:f(x+ℎ)=f(x)+ℎf′(x)+ ∙∙∙+ℎkk!f(k)(x)+ℎk+1(k+1)!f(k+1)(ϑ1)3(1)f(x−ℎ)=f(x)−ℎf′(x)+ ∙∙∙+(−ℎ)kk!f(k)(x)+(−ℎ)k+1(k+1)!f(k+1)(ϑ2)(2)其中x−ℎ<ϑ2<x<ϑ1<x+ℎ.当k=1时, 由(1) 式可得:f′(x)=f(x+ℎ)−f(x)ℎ−ℎ2f′′(ϑ1),所以,一阶导数的向前差分公式近似为: f′(x)≈f(x+ℎ)−f(x)ℎ, 同时−ℎ2f′′(ϑ1)是产生的误差. 即k取值为2时,(1) 式和(2) 式作差可得f′(x)=f(x+ℎ)−f(x−ℎ)2ℎ−ℎ26f′′′(ϑ3).其中ϑ2<ϑ3<ϑ1. 则: f′(x)≈f(x+ℎ)−f(x−ℎ)2ℎ是一阶中心差分公式, 其中−ℎ26f′′′(ϑ3)是误差. 又k取值为3时,(1) 式和(2) 作和可得:f′′(x)=f(x+ℎ)−2f(x)+f(x−ℎ)ℎ−ℎ212f′′′′(ϑ4).其中ϑ2<ϑ3<ϑ1. 则: f′′(x)≈f(x+ℎ)−2f(x)+f(x−ℎ)ℎ是二阶中心差分公式, 其中−ℎ212f′′′′(ϑ4)是误差.除了上述之外, 我们进行近似求导时, 不妨使用积分来实现, 即有:Dℎf(x)=32ℎ3∫f(x−t)dt ℎ−ℎ.对函数f(x+t),t∈[−ℎ,ℎ]. 在x点进行泰勒展开可得:f(x+t)=f(x)+tf′(x)+t22f′′(x)+t36f′′′(ϑ5),并由上式可知: x−ℎ<ϑ5<x+ℎ, 且把(4) 式代入(3) 式有:Dℎf(x)=f′(x)+ℎ210f′′′((ϑ5),即:f′(x)≈32ℎ3∫tf(x+t)dt ℎ−ℎ,且其误差为−ℎ210f′′′((ϑ5).1.2.2泰勒公式在常微分方程数值解上的应用(见文献(4))4考虑一阶常微分方程初值问题:{p′=f(x,p),x∈[a,b],p(a)=p0,的数值解.解首先我们要知道, 数值解就是将一般函数p(x), 在离散的节点上的近似值p n≈p(x n)求解出来.其次考虑在[s,t]上, 建立等距的且离散的节点: s=x0< x1< ∙∙∙ <x N=t, 步长为r,即x n=x0+nr,n=0,1,∙∙∙,N.将p(x)在x n点泰勒展开, 可得(8) 式:p(x n+1)=p(x n)+ℎp′(x n)+ℎ22p′′(x n)+o(ℎ3)=p(x n)+ℎf(x n,p(x n))+ℎ22p′′(x n)+o(ℎ3)即得求解上述问题的欧拉法:p n+1=p n+ℎf(x n,p n),n=0,1,∙∙∙,N−1.假设p n是正确的, 即p n=p(x n), 则(8) 式减(9) 式, 可得局部截断误差(10) 式:p(x n+1)−p n+1=ℎ22p′′(x n)+o(ℎ3)对泰勒公式截断误差, 我们还可以在局部进行分析. 下面, 以辛普森(Simpson) 方法:p n+1=p nℎ3[f(x n,p n)+4f(x n+1,p n+1)+f(x n+2,p n+2)](11)为例, 且当它的近似值是准确值时展开分析, 即:p n+2=p(x n)+ℎ3[p′(x n)+4p′(x n+1)+p′(x n+2)](12)分别将p(x)和p′(x)在x n点泰勒展开, 可得:p(x)=p(x n)+(x−x n)p′(x)+∙∙∙+(x−x n)kk!p(k)(x)+o[(x−x n)k+1]5(13)p′(x)=p′(x n)+(x−x n)p′′(x)+∙∙∙+(x−x n)k−1p(k)(x)+o[(x−x n)k](k−1)!(14)又k取值为5时, 在(13) 式中取x=x n+2, 在(14) 式中分别取x=x n+1和x=x n+2, 代入(12) 式得, 辛普森(Simpson) 公式的局部截断误差:p(x n+2)−p n+2=ℎ5p(5)(x n)+o(ℎ6).906参考文献[1]徐会林, 刘智广, 肖中永. 从多项式逼近函数引出泰勒公式[J]. 高师理科学刊, 2018, 38(02): 57-60.[2]张笛. 罗尔中值定理及其应用[J]. 数学学习与研究, 2014(01): 122-123.[3]李晟威. 泰勒公式的证明及应用[J]. 课程教育研究, 2018(42): 129-130.[4]徐会林. 泰勒公式在数值分析中的应用[J]. 韶关学院学报, 2019, 40(12): 5-8.[5]阙凤珍, 温少挺. 柯西中值定理的应用[J]. 数学学习与研究, 2016(21): 19+21.[6]王建云, 全宏波, 赵育林. 浅谈拉格朗日中值定理的几种证明方法[J]. 数学学习与研究, 2021(07): 150-151.[7]陈天戈. 泰勒的著作与成就[J]. 语数外学习(高中版下旬), 2021(04): 63-64.[8]胡有婧. 向量函数的泰勒公式的不同形式及其证明[J]. 数学学习与研究,2021(29): 140-141.[9]韩树新, 何军, 王钥, 王炜卿. 浅谈拉格朗日对数学的贡献[J]. 教育教学论坛,2020(32): 322-323.[10]何锐, 春光. 数学“ 诗人” ——柯西[J]. 课堂内外(小学智慧数学), 2021(12):24-27.[11]Ian Tweddle. The prickly genius – Colin MacLaurin (1698–1746)[J]. TheMathematical Gazette,1998,82(495).[12]迟炳荣, 王秀红. 用数学归纳法证明泰勒公式[J]. 中学数学杂志, 2008(09):13-14.[13]姚海燕. 带有佩亚诺型余项的泰勒公式的新证明[J]. 教育教学论坛, 2014(20):120.[14]胡汉章. 泰勒公式在数学分析解题中的应用探讨[J]. 教育教学论坛, 2020(52):281-282.7[15]何小芳. 浅谈泰勒(Taylor) 公式的应用[J]. 企业家天地(理论版), 2011(07):192-194.8。
浅谈泰勒公式的应用泰勒公式是数学中的一个重要工具,它可以将一个光滑函数在一些点的附近用无穷阶的多项式来近似表示。
泰勒公式的应用非常广泛,涉及到物理、工程、金融等多个领域。
以下将从几个方面来浅谈泰勒公式的应用。
一、函数近似表示泰勒公式可以将一个函数在一些点附近用多项式来近似表示。
这对于研究函数的性质和行为非常有用。
比如,在数值计算中,我们常常需要对函数进行逼近计算,而泰勒公式可以提供一个简单而准确的方法。
此外,在物理学中,泰勒公式也常用于描述物理量的变化规律,比如速度、加速度等。
二、数值计算在数值计算中,泰勒公式可以用于求解函数的近似值。
通过选择适当的展开点和多项式次数,可以得到满足精度要求的近似解。
泰勒公式的应用在数值积分、数值微分和数值方程求解等方面都有重要作用。
比如,在求根算法中,泰勒公式可以用于构造迭代格式,从而提高求解效率。
三、物理建模泰勒公式在物理建模中也有广泛的应用。
物理现象往往可以用函数来描述,而泰勒公式可以将函数在其中一点附近展开成多项式,从而方便对物理现象进行研究。
比如,在力学中,我们可以利用泰勒公式来研究物体的运动规律,推导出牛顿第二定律等重要定理。
此外,在电磁学中,泰勒公式也可以用于描述电场和磁场的变化规律。
四、金融工程泰勒公式在金融工程中也有一定的应用。
金融市场中的价格变动往往是连续的,而泰勒公式可以将价格变动用多项式来逼近。
这对于金融衍生品的定价和风险管理非常重要。
比如,在期权定价中,可以利用泰勒公式将期权价格展开成多项式,从而方便计算和分析。
此外,在风险管理中,泰勒公式也可以用于计算金融产品的敏感性,帮助投资者进行风险控制。
总之,泰勒公式是数学中的一个重要工具,它的应用涵盖了各个领域。
无论是数值计算、物理建模还是金融工程,泰勒公式都发挥着重要的作用。
通过泰勒公式,我们可以对函数进行近似表示,进行数值计算,描述物理现象和分析金融风险。
因此,熟练掌握泰勒公式的应用是非常重要的。