弧形钢闸门设计计算实例分析
- 格式:doc
- 大小:40.00 KB
- 文档页数:14
弧形闸门支座反力计算
图a表示某混凝土坝泄流孔的弧形闸门,有对称的两个支架和铰链支座。
已知闸门重G=113t,静水总压力P=1540t,其作用线通过闸门的转动轴(即两铰链支座中心的连线),铰链支座的支撑面与水压力P 垂直。
试求图b所示的一个支架的支座反力和(垂直于支撑面,平行支撑面)。
解:作用在一个闸门支架上的荷载为及,闸门与底面可看成是
光滑表面接触,因此反力应竖直向上,图4—9。
取A点为矩心,列力矩方程
由
得
取x、y轴方向如图4—9b,列投影方程
由
得
由
得
反力和的方向如图(b)所示。
钢闸门自重(G)计算公式一、 露顶式平面闸门当5m ≤H ≤8m 时KN B H K K K G g c Z 8.988.043.1⨯= 式中 H 、B ----- 分别为孔口高度(m)及宽度(m); K z ----- 闸门行走支承系数;对滑动式支承K z = 0.81;对于滚轮式支承K z = 1.0;对于台车式支承K z = 1.3;K c ----- 材料系数:闸门用普通碳素钢时取1.0;用低合金钢时取0.8;K g ----- 孔口高度系数:当H<5m 时取0.156;当5m<H<8m 时取0.13;当H>8m 时,闸门自重按下列公式计算KN B H K K G c Z 8.9012.085.165.1⨯=二、 露顶弧形闸门当B ≤10m 时KN H B H K K G s b c 8.933.042.0⨯= 当B>10m 时KN H B H K K G s b c 8.91.163.0⨯= 式中 H s ----- 设计水头,m;K b ----- 孔口宽度系数: 当B ≤5m 时取0.29;当5m<B ≤10m 时取0.472;当10m<B ≤20m 时取0.075;当B>20m 时取0.105;其他符号意义、数值同前.三、 潜孔式平面滚轮闸门KN H A KK K K G s 8.9073.079.093.0321⨯= 式中 A ----- 孔口面积,m 2K 1----- 闸门工作性质系数:对于工作闸门与事故闸门取1.0;对于检修门与导流门取0.9;K 2----- 孔口宽度比修正系数:当H/B ≥2时取0.93;H/B<1取1.1;其他情况取1.0;K 3----- 水头修正系数:当H s <60m 时取1.0;当H s ≥60m时K 3 = 25.0)(AH s 其他符号意义同前四、潜孔式平面滑动闸门KN H A KK K K G s 8.9022.063.034.1321⨯= 式中 K 1----- 意义同前:对于工作闸门与事故闸门取1.1;对于检修门取1.0;K 3----- 意义同前:当H s <70m 时取1.0;当H s ≥70m时K 3 = 25.0)(AH s 其他符号意义同前五、 潜孔式弧形闸门KN H A K G s 8.9012.006.127.12⨯= 式中 K 2-----意义同前:当B/H ≥3时取1.2;其他情况取1.0; 其他符号意义同前。
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[τ]=90 MPa ; 第2组:[б]=140MPa ,[τ]=85 MPa ; ZG310-570:[б]=150MPa ,[τ]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:()kN B H P s s 3.74390.12135.1110212122=⨯⨯⨯==γ垂直水压力:()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-----=212212221sin sin 2sin 2sin 180/21φφφφφφπφγB R V s式中:()471.19,3333333.0155sin 14224,409.0155135.11sin 222111======-==φφφφ所以所以R H 。
设计水位:366m设计水头:6m闸门形式:采用露顶式弧形钢闸门闸门尺寸:闸门高度大于设计水头加安全超高(按《水利水电工程钢闸门设计规范》SL-7495中取0.3~0.5m),即H > 6 + 0.5 = 65m。
闸门宽度为12m面板弧面半径:弧而曲面半径R=8m (1.1^1.5H)o校心位宜:对于宽顶溢流坝较心位叠可布置在a= (2/3^1) H处,且高出下游水位0.5m左右(如图1)。
此处取a=5m.主框架选择:主框架形式分两种:主横梁式(1)带悬臂的直支臂TT形框架。
(如图a)(2)斜支臂八形框架。
(如图b)(3)直支臂口形框架。
(如图c)a) b) c)主纵梁式主梁竖立放置,与匕卜两支臂链接(如图d)初步釆用主横梁式斜式支臂八形框架(图b)主横梁布置:1、实腹截面主横梁:闸门宽高比偏人时采用2、横桁架主横梁:闸门宽高比偏小时采用(1)、据《小型水电站机电设计手册》(黄希元主编)中闸门尺寸为:宽X长=12X6.5m时宜选择实腹截面主横梁。
(2)、为了缩小门槽尺寸和减少钢材用量,釆用变截面主梁。
根据《水利水电匸程钢闸门设计规范》SL 7495中,主横梁式斜式支臂厂\形框架,,部梁高为中跨梁高的0.4〜0.6倍II要与边纵梁相结合,梁高改变高度位豐距端部(2/4〜2/6)跨度。
考虑以上因素端部梁高取0.5h・变化位置取1/6L (如图2)。
一般弧形闸门釆用双主横梁,而双主横梁布置一般分为两种:1、等分水压力布置2、不等分水压力布置本水闸釆用等水压力布置(如图3)次横梁布置:2、顶、底横梁:按构造需求选择。
2、小横梁分段嵌设于各纵梁之间,排列间距按水压力的分布布置。
则布置5根小横梁,上主梁以上等间距布説2根,两主梁之间等距布垃3根(见图4)纵梁布置:2、跨中纵梁:布豐在启吊纵梁与边纵梁之间,2、启吊纵梁:布置在主横梁与支臂连接处3、边纵梁:布置在面板梁格两端。
为禹宦门体刚度要求将心吊纵梁、启吊纵梁间的跨屮纵梁的截面扩人,形成隔板。
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[τ]=90 MPa ; 第2组:[б]=140MPa ,[τ]=85 MPa ; ZG310-570:[б]=150MPa ,[τ]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:()kN B H P s s 3.74390.12135.1110212122=⨯⨯⨯==γ垂直水压力:()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-----=212212221sin sin 2sin 2sin 180/21φφφφφφπφγB R V s式中:()471.19,3333333.0155sin 14224,409.0155135.11sin 222111======-==φφφφ所以所以R H 。
弧形闸门闸墩受拉区数值分析摘要:本文采用数值分析方法,对弧形闸门闸墩受拉区应力进行了分析,对工程设计有一定的借鉴意义。
关键词:弧形闸门牛腿闸墩受拉区数值分析1. 工程概况某节制闸闸室总长20m,总宽23.2m。
闸室分3孔布置,每孔净宽6.0m,底板高程78.441m,墩顶高程90.732m。
闸室为开敞式钢筋混凝土整体结构,中墩厚1.3m,边墩顶厚1.0m,底厚1.8m,底板厚1.8m。
设置3扇工作闸门和2扇检修闸门,工作门为弧形钢闸门,检修闸门为平面滑动叠梁门。
门库布置在闸室两侧,地下结构。
当采用弧形闸门时,闸墩上设置有牛腿以支承弧形闸门的支臂。
当闸门关闭时,二分之一的闸门推力由门轴支承传至牛腿,因而牛腿处闸门内有较大的集中应力。
2. 倒虹吸结构计算模型2.1基本参数闸底板高程78.441m,闸门高7.8m,孔口宽度6.0m,闸门半径10.975m。
闸室混凝土强度等级C30。
牛腿宽度b=1.5m,高度h=2.1m,牛腿中心高程为86.441m,如图1所示。
图1牛腿结构图2.2模型建立把闸墩当成固接于底板的悬臂结构进行建模,把计算出来的支铰处的力施加于牛腿上,分析牛腿的受力与闸墩受拉区域。
中闸墩、边闸墩单元划分见图2和图3。
图2中闸墩单元划分图图3边闸墩单元划分图2.4计算方案本次数值模拟建立三维模型,仅选取以下两种不利工况进行分析,即工况1:闸门全关承受静水压力:支铰最大反力1117.5kN,与水平线夹角31.1384°;支铰最大侧推力79.4 kN(支铰反力、侧推力计算过程略)工况2:闸门全关在启门瞬间,闸门承受静水压力和启门力叠加作用:支铰最大反力1307.3kN,与水平线夹角36.4109°;支铰最大侧推力91.8 kN3. 计算结果分析3.1中闸墩有限元分析表明,牛腿处闸墩内有集中应力,工况1最大值为1.3MPa,工况2最大值为1.52MPa。
在距离牛腿1.5m左右处,两工况应力分别为0.52MPa 和0.61MPa左右。
弧形闸门计算书-CAL-FENGHAI.-(YICAI)-Company One1目录1 计算目的与要求 ................................................................... 错误!未定义书签。
2 设计计算内容....................................................................... 错误!未定义书签。
3 设计依据 .............................................................................. 错误!未定义书签。
4 基本资料和结构布置............................................................ 错误!未定义书签。
基本参数 (3)基本结构布置 (4)荷载计算 (4)面板弧长 (6)主框架位置 (7)5 结构计算 .............................................................................. 错误!未定义书签。
面板....................................................................................... 错误!未定义书签。
水平次梁............................................................................... 错误!未定义书签。
中部垂直次梁(隔板)....................................................... 错误!未定义书签。
边梁....................................................................................... 错误!未定义书签。
89第45卷 第07期2022年07月Vol.45 No.07Jul.2022水 电 站 机 电 技 术Mechanical & Electrical Technique of Hydropower Station0 引言某电站泄洪坝段共分为23个土建坝段[1],每坝段中部设置1个深孔,每个孔道末端设置弧形工作闸门,孔口尺寸7 m×9 m,设计水位为175 m,从安装至今,深孔弧形工作闸门长期服役超过20年。
鉴于深孔弧形钢闸门所处干湿交替的环境,长期服役导致构件发生低周疲劳等原因,闸门结构的安全性会有所降低,为确保深孔弧形钢闸门的安全稳定运行,某电站每年会根据《水工钢闸门和启闭机安全检测技术规程》[2]的要求,依据《水利水电工程钢闸门设计规范》[3]对弧形钢闸门进行在役安全性评价。
弧形闸门的安全性评价方法有原型观测试验、水弹性模型试验、数值分析或三者结合的方法[4]。
原型观测试验是指在工程现场对工程及相关影响因素进行的观察、监测和分析的活动[5],但是由于工程条件的限制和原型观测试验技术标准的不统一[6],部分弧形闸门无法开展原型观测试验或者试验数据准确性存疑;水弹性模型试验法是通过建立水弹性模型来研究弧形闸门的动力特性参数[7],但由于水弹性模型试验周期长、成本较高且往往所测节点数量较少,至今还无法实现真正完全水弹性相似模拟试验[4];数值分析法则按空间结构体系建立弧形闸门有限元模型,不仅能充分体现出闸门较强的空间效应,而且能准确地计算出各构件的内力、应力及变形[8]。
文中采用有限元对某电站泄洪深孔弧形钢闸门的强度和刚度进行分析,依据《水利水电工程钢闸门设计规范》[3]对弧形钢闸门进行在役安全性评价,并将有限元结果与现场实测数据相对比,进一步验证闸门的安全性。
1 分析模型1.1 有限元模型及材料特性根据深孔弧形工作闸门结构图纸,在SolidWorks 软件中建立闸门三维实体模型(图1所示),并将三维模型导入ANSYS Workbench 中,采用实体单元对闸门进行网格划分,选择4节点四面体单元(Solid187 element)和8节点六面体单元(Solid185 element)。
弧形钢闸门设计计算实例分析摘要:本文主要根据某面板堆石坝工程弧形钢闸门的实例数据,就其结构布置和结构设计中一些重要参数进行了实际的计算验证分析。
关键词:弧形钢闸门;设计;计算;实例Abstract: In this paper, according to the instance data of CFRD tainter gate, it analyzed the actual calculation and verification on some important parameters of the structural layout and structure design.Keywords: tainter gate design; calculation; examples中图分类号: TV663.2本文将以工程实例为据通过具体的计算就弧形钢闸门工程设计进行分析。
重点对结构的稳定、强度及应力计算进行分析。
本文设计计算的内容主要包括框架内力分析、框架结构计算及启闭力计算。
一、水库工程概况说明大坝坝型为面板堆石坝,主堆石区以中下部强风化或弱风化岩体作为基础持力层,次堆石区以强风化岩体为基础持力层。
趾板应放在弱风化岩体中下部。
1)水库特性指标正常蓄水位:500.00m正常蓄水位以下库容:1492万m3设计洪水位:500.44m校核洪水位:501.70m总库容:1629万m3(校核洪水对应库容)死水位:474.00m死库容:327万m3调节库容:1165万m32)材料容重混凝土:24kN/m3钢筋混凝土:25kN/m3钢材容重:78.5kN/m3浆砌石:23kN/m3水:10kN/m33) 设计安全系数抗剪断公式:基本荷载组合K′≥3.00特殊荷载组合K′≥2.50闸门采用斜支臂双主横梁式焊接结构,其结构布置图见图1。
弧门半径R=9.0m,支铰高度H2=4.2m。
垂直向设置三道实腹板式隔板及两道边梁,区格间距为2.25m,边梁距闸门面板边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了5根水平次梁,其中上主梁以上布置1根,两主梁之间布置4根。
支铰采用圆柱铰,侧水封为“L”行橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×160kN固定式卷扬机操作。
二、结构布置1、荷载计算分析闸门在关闭位置的静水压力,由水平水压力和垂直水压力组成,如图2所示。
水平水压力:(kN)垂直水压力:图1主横梁式弧形闸门结构简图(单位:mm)其中:=(6.44-4.2)/9=0.249,所以=14.412°=4.2/9=0.467,所以=27.818°=42.23°=0.737°=sin55.636°=0.825=-sin13.406°=-0.232=sin42.23°=0.672=-sin6.703°=-0.117故=457.82(kN)总水压力:=1921.6(kN)总水压力作用方向:=457.8/1866.3=0.2453所以=13.783°2、面板弧长闸门门叶垂直高度为6.5m,支铰中心水平线以上弧形面板包角为=14.807°总水压力作用线上、下的弧长L上、L下分别为L上=0.01745 = 0.01745×9.0×(14.807+13.783)= 4.490(m)L下=0.01745 = 0.01745×9.0×(27.818-13.783)= 2.204(m)面板总弧长L总为L总= L上+ L下= 4.49+2.204 = 6.694(m)3、主框架位置根据等荷载原则,闸门上、下主梁与支臂组成的主框架平面布置应与总水压力作用线对称,使两框架受力均匀。
两主梁之间的弧长为 3.925m,上、下主框架之间的夹角为,即=180×3.925/28.274=24.987°所以=12.494°上、下框架与水平线的夹角(负号表示位于水平线的上方)为=13.783-12.494=1.289°=13.783+12.494=26.277°三、结构计算1、面板面板厚度按下列公式初选,并按表1计算。
式中:为弹塑性薄板支承长边中点弯曲应力系数;为弹塑性调整系数(b/a >3时,=1.4;b/a≤3时,=1.5);为面板计算区格中心的压力强度,N/mm2;a、b为面板计算区格的短边和长边长度,mm,从面板与主(次)梁的连接焊缝算起;[σ]为钢材的抗弯容许应力。
表1面板厚度计算表注:主梁前翼缘宽度取100mm,次梁前翼缘宽度取70mm。
根据表1的计算结果,面板厚度选定为δ=10mm。
2、水平次梁(1)荷载及内力水平次梁荷载按“近似取相邻间距和之半法”计算单位宽度荷载,见表2。
表2 水平次梁荷载计算表全部次梁及顶、底次梁采用同一截面,按其中最大荷载的一根次梁(次梁5)进行计算。
水平次梁按受均布荷载的六跨连续梁计算,其计算简图见图3。
图3水平次梁计算简图(单位:m)水平次梁参数为:=43.5kN/m,=2.25m。
最大支座弯矩:=0.106×43.5×2.252 =23.3(kN·m)最大跨中弯矩:=0.078×43.5×2.252 =17.2(kN·m)最大剪力:=0.606×43.5×2.25=59.3(kN)(2)应力计算弯曲应力:(MPa)<(MPa) <剪应力:(MPa) <最大跨中挠度:(mm)(mm)<3、中部垂直次梁(隔板)中部隔板按两端悬臂简支梁计算,其计算简图见图4。
图4竖直次梁计算简图(单位:m)(1)荷载及内力荷载:(kN /m)(kN /m)(kN /m)(m),(m),(m),(m)支座反力:(kN)(kN)剪力:(kN)(kN)(kN)(kN)弯矩:(kN·m)(kN·m)跨中最大弯矩位置:解得(m)(kN/m)(kN·m)4、主框架(1)荷载上、下主框架对称于总水压力作业线布置,上、下主框架之间的夹角为(,见前面的计算),则每个框架上的静水荷载为(kN)式中的1.1为动载系数。
启门力在主框架上产生的力为(kN/m)式中:为每侧因钢丝绳拉力引起的压力;为每侧钢丝绳所受拉力,即每侧启门力;为钢丝绳在弧面上的包角。
主梁上的均布荷载为(kN/m)(2)框架内力主梁断面初选。
面板参与主梁作用的有效宽度(下主梁)为,cm。
查表得:,则(cm)又≤(cm)所以面板有效宽度取B=74cm。
主梁截面尺寸见图5,截面特性如下:图5主梁跨中截面尺寸(单位:cm)(cm2)(cm3)(cm)(cm4)(cm3)(cm3)框架计算:所以(mm)(mm)(mm)(mm)(mm)框架内力:根据前面的计算,跨中均布荷载kN/m。
内力计算如下:(kN)=120.5(kN)(kN)(kN·m)(kN·m)(kN·m)(kN·m)(3)框架应力验算主横梁:(1跨中截面应力。
跨中截面正应力按下式计算:前翼缘:(MPa)<后翼缘:(MPa)<(2支座截面特性。
面板参与主梁作用的有效宽度,,则查表得:,则(cm)又≤(cm)所以面板有效宽度取B=64cm。
主梁截面尺寸见图6,截面特性如下:图6主梁跨中截面尺寸(单位:cm)(cm2)(cm3)(cm)(cm4)(cm3)(cm3)(cm3)(3支座截面应力。
正应力:前翼缘:(MPa)<后翼缘:(MPa)<剪应力:(kN)(MPa)<(4主梁局部稳定性计算。
支座处:<80所以,主梁支座处可以不配置横向加劲肋板。
但为了支臂传力均匀,一般均按构造要求设置有横向肋板。
支臂:弯矩作用平面内的稳定验算:偏心率:长细比:(cm)(cm)根据,查表得,则(MPa)<弯矩作用平面外的稳定验算:其中近似地取长细比:其中=400cm。
(cm)根据,查表得,则(MPa)<支臂与主横梁连接计算:螺栓的最大拉力:其中;;;,螺栓每排数量为8;间距为0.1m,所以;;;;;;,代入上式,得:(kN)又螺栓选用M30,A=6.16cm2,则(MPa)<抗剪板焊缝:(MPa)<其中焊缝高度=1.2cm,焊缝长度=30cm。
四、启闭力的计算闸门采用前拉式起吊形式,启闭机采用固定卷扬式启闭机。
总水压力为P=1921.6KN,轴套采用MGA,阻力系数为0.3,阻力臂=0.155m,弯矩为=0.3×1921.6×0.155 =89.4(kN·m)侧止水采用L形弧形闸门橡皮止水,其摩擦系数为0.5,弯矩为=0.5×10×(6.694×0.06×6.44/2)×2×9.03 =116.8(kN·m)门叶重量及阻力臂参数如下:面板=5000kg,力臂=9.0m;主梁、水平次梁及隔板等=5000kg,力臂=8.4m;支臂=6000kg,力臂=5.2m。
(1)闸门闭门力的计算=1.2×(89.4+116.8)-0.9×(50×9+50×8.4+60×5.2)=-816.36(kN·m)所以,闸门可以靠自重关闭。
(2)闸门启门力的计算总的阻力矩为=1.2×(89.4+116.8)+0.9×(50×9+50×8.4+60×5.2)=1311.24(kN·m)=146(kN)式中:为启闭力轴线到支铰转动中心的垂直距离,= 9 m。
启闭机容量选择为2×100KN。
参考文献:[1] 徐国宾,高仕赵.淤泥对弧形钢闸门启门力影响的计算方法[J].排灌机械工程学报,2012,30(3):304-308.DOI:10.3969/j.issn.1674-8530.2012.03.012.[2] 郑小平,熊增生,彭琳等.班多水电站大型弧形钢闸门启升技术[J].施工技术,2011,40(12):65-66,72.[3] 许凯.弧形钢闸门的结构布置及门架选型[J].北京电力高等专科学校学报(自然科学版),2010,27(11):147.。