模拟信号运算电路
- 格式:doc
- 大小:1.07 MB
- 文档页数:15
实验目的和要求:① 了解运放调零和相位补偿的基本概念。
② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。
实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。
直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。
模拟运算电路实验报告实验目的,通过本次实验,我们旨在通过模拟运算电路的搭建和实验操作,加深对模拟电路基本原理的理解,掌握模拟运算电路的基本工作原理和实验方法。
实验仪器,本次实验所需的仪器设备包括,模拟运算电路实验板、示波器、信号发生器、直流稳压电源等。
实验原理,模拟运算电路是一种能够对输入信号进行放大、滤波、积分、微分等处理的电路。
常见的模拟运算电路包括比较器、反相放大器、非反相放大器、积分器、微分器等。
通过调整电路中的元件参数,可以实现对输入信号的不同处理效果。
实验步骤:1. 将模拟运算电路实验板连接好,接通直流稳压电源,并接入示波器和信号发生器。
2. 调节信号发生器产生不同频率和幅值的正弦波信号,并输入到模拟运算电路中。
3. 观察示波器上输出波形的变化,通过调节电路中的元件参数,比如电阻、电容值,观察输出波形的变化规律。
4. 尝试搭建比较器、反相放大器、非反相放大器、积分器、微分器等不同类型的模拟运算电路,观察其输入输出特性的差异。
5. 对比实验结果,总结不同类型模拟运算电路的特点和应用场景。
实验结果与分析:通过本次实验,我们成功搭建了比较器、反相放大器、非反相放大器、积分器、微分器等不同类型的模拟运算电路,并观察了它们的输入输出特性。
在实验过程中,我们发现不同类型的模拟运算电路对输入信号的处理效果各有不同,比如比较器可以实现信号的比较和判断,反相放大器可以实现信号的放大和反向输出,积分器可以实现对信号的积分处理等。
这些实验结果进一步加深了我们对模拟运算电路工作原理的理解,为今后的电路设计和应用提供了重要的参考。
实验总结:本次实验通过搭建模拟运算电路,加深了我们对模拟电路基本原理的理解,掌握了模拟运算电路的基本工作原理和实验方法。
在实验过程中,我们不仅学会了如何搭建模拟运算电路,还通过观察实验现象和分析数据,进一步理解了模拟运算电路对输入信号的处理方式和特点。
通过本次实验,我们对模拟运算电路有了更加深入的认识,为今后的学习和研究打下了良好的基础。
模拟电路和数电电路必备的基础知识作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。
下面我们就来了解一下这两个电路的基本知识。
一、模拟电路与数字电路的定义及特点模拟电路(电子电路)处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇,意思是“成比例的”。
其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。
数字电路((进行算术运算和逻辑运算的电路))用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。
电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。
模拟运算电路的工作原理
模拟运算电路的工作原理主要基于模拟信号的处理。
模拟信号是指连续变化的电信号,而模拟运算电路则是对这些模拟信号进行传输、变换、放大、处理、测量和显示等工作的电路。
模拟运算电路主要包括放大电路、信号运算和处理电路、振荡电路、调制和解调电路及电源等。
以模拟乘法器为例,其工作原理是将两个模拟信号相乘,得到它们的积。
这个积可以用来实现多种运算,如比例、差分、积分等。
模拟乘法器通常由两个运放(运算放大器)组成,输入信号分别加到两个运放的反向输入端,而输出信号则为两个输入信号的乘积。
另外,模拟运算电路还包括模拟加减器、模拟比较器等。
模拟加减器可以实现两个模拟信号的相加或相减,而模拟比较器则可以将一个模拟信号与另一个参考值进行比较,输出比较结果。
在实际应用中,模拟运算电路可以用于多种场合,如音频处理、图像处理、控制系统等。
通过不同的组合和改进,模拟运算电路可以实现各种不同的功能和处理效果,满足各种实际需求。
20个模拟电路详解本文将详细介绍20个常见的模拟电路,并逐步解释其原理和作用。
一、[反相器]反相器是最基本的模拟电路之一。
它由一个操作放大器和两个电阻组成。
输入信号经过电阻R1和R2进入操作放大器,并由输出端反向输出。
这种电路主要用于信号放大和相位反转。
二、[放大器]放大器是用于放大电信号的电路。
它有不同的类型,如运算放大器、差动放大器和电压放大器等。
原理是在放大器电路中引入反馈,通过增加放大器的增益,使得输入信号在输出端得到放大。
三、[积分器]积分器是一种求积分的电路。
它由一个电容和电阻组成。
输入信号经过电容器积分,输出信号与输入信号的积分成正比。
四、[微分器]微分器是一种求微分的电路。
它由一个电容和电阻组成。
输入信号经过电阻微分,输出信号与输入信号的微分成正比。
五、[RC 低通滤波器]RC 低通滤波器用于滤除高频信号。
它由一个电容和电阻组成,当输入信号的频率超过截止频率时,输出信号将被滤波器抑制。
六、[RC 高通滤波器]RC 高通滤波器用于滤除低频信号。
它由一个电容和电阻组成,当输入信号的频率低于截止频率时,输出信号将被滤波器抑制。
七、[振荡器]振荡器是一种产生周期性波形的电路。
它由放大器和反馈网络组成。
当反馈信号增强输入信号时,电路将产生稳定的振荡波形。
八、[压控振荡器(VCO)]压控振荡器是一种通过改变输入电压控制输出频率的振荡器。
它由一个控制电压和振荡器电路组成,当控制电压变化时,输出频率也会相应变化。
九、[非反相放大器]非反相放大器与反相器类似,但输出信号不反相。
它由一个操作放大器和电阻组成,输入信号通过电阻进入操作放大器,输出信号与输入信号具有相同的相位。
十、[窗口比较器]窗口比较器用于比较输入信号与设定的参考电压。
它由一个比较器和两个参考电压分压器组成,当输入信号在两个参考电压之间时,输出信号为高电平;否则为低电平。
十一、[模拟开关]模拟开关用于控制信号的通断。
它由一个开关和控制电压组成,当控制电压高于阈值电压时,开关闭合,信号通过;否则开关断开,信号被阻断。
模拟信号运算电路实验报告实验名称:模拟信号运算电路实验实验目的:了解模拟信号运算电路的相关知识,掌握运算放大器的工作原理及应用。
实验器材:运算放大器、电阻、三角波信号发生器、示波器等。
实验内容:1.用运算放大器实现两个输入信号的加、减、乘、除等基本运算。
2.了解运算放大器的输入输出电阻、放大倍数、共模抑制比等相关参数,掌握运算放大器的放大倍数计算方法。
3.通过实验观察和测量,学习运算放大器的反相输入、同相输入、输出端及电源的连接方法及作用。
实验步骤:1.将运算放大器反相输入端输入三角波信号,同相输入端输入直流偏置电压,将运算放大器的输出连接至示波器,观察三角波信号的放大效果。
2.利用反相输入和同相输入实现两个信号的加、减运算,将运算放大器的输出连接至示波器,观察输出信号的波形和幅度。
3.利用反相输入和同相输入实现两个信号的乘、除运算,将运算放大器的输出连接至示波器,观察输出信号的波形和幅度。
4.通过实验测量运算放大器的输入输出电阻、放大倍数、共模抑制比等参数,计算运算放大器的放大倍数。
实验结果:1.经实验观察和测量,发现运算放大器的反相输入和同相输入可以实现两个信号的加、减、乘、除等基本运算。
同时,通过改变反相输入和同相输入的电压,可以实现不同幅度的信号输出。
2.运算放大器的输入输出电阻、放大倍数、共模抑制比等参数影响着电路的输入输出性能,正确计算这些参数有助于优化电路设计和性能。
3.实验结果表明,模拟信号运算电路在实际应用中具有广泛的应用价值,在信号放大、滤波、调节等领域发挥着重要的作用。
实验结论:通过本实验,我们成功掌握了模拟信号运算电路的相关知识和运算放大器的基本工作原理及应用。
同时,我们学习了运算放大器的输入输出电阻、放大倍数、共模抑制比等参数的测量方法和计算方法,加深了对电路的理解和掌握。
这对我们今后的电路设计和应用有着指导意义。
集成运算放大电路实验报告浙大电工电子学实验报告实验十二集成运算放大器及应用(一)模拟信号运算电路课程名称:指导老师:实验名称:集成运算放大器及应用(一)实验报告一、实验目的1.了解集成运算放大器的基本使用方法和三种输入方式。
2.掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。
二、主要仪器设备1.MDZ-2型模拟电子技术实验箱2.实验板及元器件3.直流稳压电源4.万用表三、实验内容在实验中,各实验电路的输入电压均为直流电压,并要求大小和极性可调。
因此在实验箱中安放了电位器,并与由集成运算放大器构成的电压跟随其联结,如图12-7所示。
当在电位器两端分别加+5V和-5V电源电压时,调节电位器就可在集成运算放大器构成的跟随器的输出端得到稳定而可调的正、负直流电压,此电压即作为各实验电路的输入电压。
图12-7 1.同相输入比例运算图12-1按图12-1接线,输入端加直流电压信号Ui,适当改变Ui,分别测量相应的Uo值,记入表12-1中,并2.加法运算图12-2按图12-2电路接线,适当调节输入直流信号Ui1和Ui2的大小和极性,册书Uo,计入表12-2。
表12-23.减法运算图12-4按图12-4电路完成减法运算,并将结果记入表12-4。
表12-44.积分运算图12-5按图12-5电路连接(注意:电路中的电容C是有极性的电解电容,当Ui为负值时,Uo为正值,电容C的正极应接至输出端;如Ui为正值时,则接法相反)。
将Ui预先调到-0.5V,开关S合上(可用导线短接)时,电容短接,保证电容器五初始电压,Uo=0。
当开关S断开时开始计时,每隔10秒钟读一次Uo,记入表12-5,直到Uo不继续明显增大为止。
表12-5(Ui=-0.5V)四、实验总结1.画出各实验电路图并整理相应的实验数据及结果。
实验电路图已在上文中画出,下面处理实验数据。
(1).同相输入比例运算作Ui-Uo图如下:(2).加法运算作Ui1-Ui2-Uo图如下:(3).减法运算作Ui1-Ui2-Uo图如下:(4).积分运算作T-Uo图如下:2.总结集成运放构成的各种运算电路的功能。
模拟运算电路一般以运算放大器为主要构成元件,具有电路简单、成本低、实时性强等优点,在许多领域有重要而广泛的应用。
由于器件本身的特性和外部干扰等原因,模拟运算电路在电路实现时或存在一定的误差[1]。
本文设计了一种输出电压可调的模拟信号选通运算电路,适用于高频信号处理,且信号输出稳定。
1 模拟信号选通运算电路结构模拟信号选通运算电路主要由前置放大电路单元、模拟开关电路单元和减法器电路组成。
输入信号经前置信号放大电路放大后,由模拟开关控制两路输入信号的选通,再将选通的信号与另一路输入信号进行减法运算,输出运算后的电压。
模拟信号选通运算电路的工作原理框图如图1所示。
2 模拟信号选通运算电路原理设计2.1 放大电路单元设计放大电路单元原理图如图2所示,为同相比例运算电路,以集成运算放大器为核心原件构成,输入信号作用在运放的压V O1=(R4/(R3+R4))((R1+R2)/R2)V 1。
图2 放大电路单元原理图同相比例运算电路中运放的输入端有共模信号成分,为使共模输出为零同时补偿运放输入平均偏置电流及其漂移影响,通常要求运放的输入端电阻平和,即运放反相输入端、同相输入端所接的电阻相等[3]。
图2中,当R1=R2=R3=R4时,其增益为1,V O1=V 1,同理V O2=V 2,V O3=V 3。
该电路单元具有输入电阻大、输出电阻小的特点,输出电压受后级电路的影响小,输出稳定。
选用的AD8028是一种低失真的高速放大器,对高性能和宽动态范围的信号处理具有较好的效果。
2.2 模拟开关电路单元模拟开关ADG779是一种单刀双掷开关,具有低功耗、高开关速度和低导通电阻等特性,3dB 带宽达200M 以上,适用于高频信号处理,其真值表如表1所示。
模拟开关电路单元原理图如图3所示,由SEL 信号来选择输入信号V O1和V O2,若SEL 信号为低电平,则V 12=V O1,若SEL 信号为高电平,则V 12=V O2。
第六章模拟信号运算电路典型例题本章习题中的集成运放均为理想运放。
6.1 分别选择“反相”或“同相”填入下列各空内。
(1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。
(2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。
(3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。
(4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。
解:(1)反相,同相(2)同相,反相(3)同相,反相(4)同相,反相6.2填空:(1)运算电路可实现A u>1的放大器。
(2)运算电路可实现A u<0的放大器。
(3)运算电路可将三角波电压转换成方波电压。
(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。
(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。
(6)运算电路可实现函数Y=aX2。
解:(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和(6)乘方6.3 电路如图P6.3所示,集成运放输出电压的最大幅值为±14V ,填表。
图P 6.3u I /V 0.1 0.5 1.0 1.5 u O 1/V u O 2/V解:u O 1=(-R f /R ) u I =-10 u I ,u O 2=(1+R f /R ) u I =11 u I 。
当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。
u I /V 0.1 0.5 1.0 1.5 u O 1/V -1 -5 -10 -14 u O 2/V1.15.511146.4 设计一个比例运算电路, 要求输入电阻R i =20k Ω, 比例系数为-100。
解:可采用反相比例运算电路,电路形式如图P6.3(a)所示。
R =20k Ω,R f =2M Ω。
6.5 电路如图P7.5所示,试求: (1)输入电阻; (2)比例系数。
解:由图可知R i =50k Ω,u M =-2u I 。
342R R R i i i += 即 3OM 4M 2M R u u R u R u -+=-输出电压 I M O 10452u u u -== 图P 6.56.6 电路如图P6.5所示,集成运放输出电压的最大幅值为±14V ,u I 为2V 的直流信号。
分别求出下列各种情况下的输出电压。
(1)R 2短路;(2)R 3短路;(3)R 4短路;(4)R 4断路。
解:(1)V 4 2I 13O -=-=-=u R R u (2)V 4 2I 12O -=-=-=u R R u (3)电路无反馈,u O =-14V (4)V 8 4I 132O -=-=+-=u R R R u6.7 电路如图P6.7所示,T 1、T 2和T 3的特性完全相同,填空: (1)I 1≈ mA ,I 2≈ mA ;(2)若I 3≈0.2mA ,则R 3≈ k Ω。
图P 6.7解:(1)1,0.4;(2)10。
6.8 试求图P6.8所示各电路输出电压与输入电压的运算关系式。
图P 6.8解:在图示各电路中,集成运放的同相输入端和反相输入端所接总电阻均相等。
各电路的运算关系式分析如下:(a )13I2I1I33f I22f I11f O 522u u u u R Ru R R u R R u +--=⋅+⋅-⋅-= (b )13I2I1I33f I22f I11f O 1010u u u u R Ru R R u R R u ++-=⋅+⋅+⋅-= (c ))( 8)(I1I2I1I21fO u u u u R R u -=-=(d )I44f I33f I22f I11f O u R Ru R R u R R u R R u ⋅+⋅+⋅-⋅-= 1413I2I1402020u u u u ++--=6.9 在图P6.8所示各电路中,是否对集成运放的共模抑制比要求较高,为什么?解:因为均有共模输入信号,所以均要求用具有高共模抑制比的集成运放。
6.10 在图P6.8所示各电路中,集成运放的共模信号分别为多少?要求写出表达式。
解:因为集成运放同相输入端和反相输入端之间净输入电压为零,所以它们的电位就是集成运放的共模输入电压。
图示各电路中集成运放的共模信号分别为(a )I3IC u u = (b )I3I2I3322I2323IC 1111110u u u R R R u R R R u +=⋅++⋅+=(c )I2I2f 1f IC 98u u R R R u =⋅+=(d )I4I3I4433I3434IC 4114140u u u R R R u R R R u +=⋅++⋅+=6.11 图P6.11所示为恒流源电路,已知稳压管工作在稳压状态,试求负载电阻中的电流。
图P 6.11解:6.02Z 2P L ===R U R u I mA6.12 电路如图P6.12所示。
(1)写出u O 与u I 1、u I 2的运算关系式;(2)当R W 的滑动端在最上端时,若u I 1=10mV ,u I 2=20mV ,则u O =? (3)若u O 的最大幅值为±14V ,输入电压最大值 u I 1ma x =10mV ,u I 2ma x =20mV ,最小值均为0V ,则为了保证集成运放工作在线性区,R 2的最大值为多少?图P 6.12解:(1)A 2同相输入端电位 )( 10)(I1I2I1I2fN2P2u u u u RR u u -=-== 输出电压 ))(1(10)1(I1I212P212O u u R Ru R R u -+=⋅+= 或 )(10I1I21WO u u R R u -⋅⋅= (2)将u I 1=10mV ,u I 2=20mV 代入上式,得u O =100mV(3)根据题目所给参数,)(I1I2u u -的最大值为20mV 。
若R 1为最小值,则为保证集成运放工作在线性区, )(I1I2u u -=20mV 时集成运放的输出电压应为+14V ,写成表达式为14201010)(10min1I1I2min 1W O =⋅⋅=-⋅⋅=R u u R R u 故 R 1m i n ≈143ΩR 2ma x =R W -R 1m i n ≈(10-0.143)k Ω≈9.86 k Ω6.13 分别求解图P6.13所示各电路的运算关系。
图P 6.13解:图(a )所示为反相求和运算电路;图(b )所示的A 1组成同相比例运算电路,A 2组成加减运算电路;图(c )所示的A 1、A 2、A 3均组成为电压跟随器电路,A 4组成反相求和运算电路。
(a )设R 3、R 4、R 5的节点为M ,则))(( )(2I21I15434344M O 5M2I21I15342I21I13M R u R u R R R R R R i u u R u R u R u i i i R u R u R u R R R R +++-=-=-+=-=+-=(b )先求解u O 1,再求解u O 。
))(1()1()1( )1()1(I1I245I245I11345I245O145O I113O1u u R R u R Ru R R R R u R Ru R R u u R R u -+=+++-=++-=+=(c )A 1、A 2、A 3的输出电压分别为u I 1、u I 2、u I 3。
由于在A 4组成的反相求和运算电路中反相输入端和同相输入端外接电阻阻值相等,所以 )( 10)(I3I2I1I3I2I114O u u u u u u R R u ++=++=6.14 在图P6.14(a )所示电路中,已知输入电压u I 的波形如图(b )所示,当t =0时u O =0。
试画出输出电压u O 的波形。
图P 6.14解:输出电压的表达式为 )(d 11O I O 21t u t u RC u t t +-=⎰当u I 为常量时)()(100 )()(10101)()(11O 12I 1O 12I 75112I O t u t t u t u t t u t u t t u RCu O +-=+-⨯-=+--=-- 若t =0时u O =0,则t =5ms 时 u O =-100×5×5×10-3V =-2.5V 。
当t=15mS时u O=[-100×(-5)×10×10-3+(-2.5)]V=2.5V。
因此输出波形如解图P6.14所示。
解图P6.146.15已知图P6.15所示电路输入电压u I的波形如图P7.4(b)所示,且当t=0时u O=0。
试画出输出电压u O的波形。
图P6.15解图P6.15解:输出电压与输入电压的运算关系为u O=100u I(t2-t1)+u I-u C(t1),波形如解图P7.15所示。
6.16 试分别求解图P6.16所示各电路的运算关系。
图P 6.16解:利用节点电流法,可解出各电路的运算关系分别为: (a ) t u u t u C R u R R u d 100d 1I I I 1I 12O ⎰⎰--=--= (b ) I I 3I 21I 1O 2d d 10d d u tuu C C t u RC u --=--=- (c ) t u t u RCu d 10d 1I 3I O ⎰⎰==(d ) t u u t R u R u C u d )5.0(100d )(1I2I12I21I1O +-=+-=⎰⎰6.17 在图P6.17所示电路中,已知R 1=R =R '=100k Ω,R 2=R f =100kΩ,C =1μF 。
图P 6.17(1)试求出u O 与 u I 的运算关系。
(2)设t =0时u O =0,且u I 由零跃变为-1V ,试求输出电压由零上升到+6V 所需要的时间。
解:(1)因为A 1的同相输入端和反相输入端所接电阻相等,电容上的电压u C =u O ,所以其输出电压I O O 2f I 1f O1u u u R R u R R u -=⋅+⋅-= 电容的电流R u R u u i I O O1C -=-=因此,输出电压t u t u RC t i C u d 10d 1d 1I I C O ⎰⎰⎰-=-== (2)u O =-10u I t 1=[-10×(-1)×t 1]V =6V ,故t 1=0.6S 。
即经0.6秒输出电压达到6V 。
6.18 试求出图P6.18所示电路的运算关系。
图P 6.18解:设A 2的输出为u O 2。
因为R 1的电流等于C 的电流,又因为A 2组成以u O 为输入的同相比例运算电路,所以⎰⎰⎰-==+=-=-=tu u u u R R u t u t u CR u d 2)1( d 2d 1I O O O 32O2I I 1O26.19 在图P6.19所示电路中,已知u I 1=4V ,u I 2=1V 。