大学物理竞赛力学辅导2016
- 格式:ppt
- 大小:5.52 MB
- 文档页数:173
物理竞赛辅导资料:力学三把“金钥匙”解决动力学问题,一般有三种途径:①牛顿第二定律和运动学公式(力的观点);②动量定理和动量守恒定律(动量观点);③动能定理、机械能守恒定律、功能关系、能的转化和守恒定律(能量观点)。
——以上这三种观点俗称求解力学问题的三把“金钥匙”。
三把“金钥匙”的合理选取:研究某一物体所受力的瞬时作用与物体运动状态的关系(或涉及加速度)时,一般用力的观点解决问题;研究某一物体受到力的持续作用发生运动状态改变时,一般选用动量定理;涉及功和位移时优先考虑动能定理;若研究的对象为一物体系统,且它们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对路程的则优先考虑能量守恒定律。
一般来说,用动量观点和能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点。
有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化。
下面通过历年高考题说明各个观点的应用。
〖典型例题透析〗力学观点与能量观点的综合〖例1〗(1991年上海高考)如图所示,长为l 的轻绳一端系于固定点O ,另一端系质量为m 的小球。
将小球从O 点正下方4l 处,以一定初速度水平向右抛出,经一定时间绳被拉直,以后小球将以O 为支点在竖直平面内摆动。
已知绳刚被拉直时,绳与竖直线成600角,求:⑴小球水平抛出时的初速度v 0;⑵在绳被拉紧的瞬间,支点O 受到的冲量I ;⑶小球摆到最低点时,绳所受的拉力T 。
〖命题意图〗考查平抛运动、运动合成、冲量、机械能守恒定律及其应用、牛顿第二定律。
〖解题思路〗⑴小球在绳拉直前做平抛运动,令做平抛运动的时间为t ,则有:水平方向:lsin 600=v 0t …………①竖直方向:0260214cos l gt l =+…………② 由①、②式解得:g l t 2=,gl v 6210= ⑵在绳拉直前瞬时,小球速度的水平分量为v o ,竖直分量为gt ,如图所示。
l. 水平轻绳跨过固定在质量为m 1的水平物块的一个小圆柱棒后,斜向下连接质量为m 2的小物块,设系统处处无摩擦,将系统从静止状态自由释放,假设两物块的运动方向恒如图所示,即绳与水平桌面的夹角α始终不变,试求α.21,,a a α1a .2a 1a 1m 2mα1a .2a 1a 1m 2m 解:画隔离体图,受力分析α1a 1m TT1a .2a 2m T例7. 光滑水平面上有一半径为R 的固定圆环,长为l 2的匀质细杆AB 开始时绕着C 点旋转,C 点靠在环上,且无初速度.假设而后细杆可无相对滑动地绕着圆环外侧运动,直至细杆的B 端与环接触后彼此分离,已知细杆与圆环间的摩擦系数μ处处相同,试求μ的取值范围.Rl lABC 解:设初始时细杆的旋转角速度为0ω,转过θ角后角速度为ω.由于摩擦力并不作功,故细杆和圆环构成的系统机械能守恒例8. 两个均质圆盘转动惯量分别为1J 和2J 开始时第一个圆盘以10ω的角速度旋转,第二个圆盘静止,然后使两盘水平轴接近,求:当接触点处无相对滑动时,两圆盘的角速度10ω1r 2r解:受力分析:1r 2r 10ω1N gm 1ffgm 22N 1o 2o 无竖直方向上的运动g m f N 11+=gm f N 22=+以O 1点为参考点,计算系统的外力矩:))((2122r r g m N M +-=0)(21≠+-=r r f例9: 质量为2m,半径为R 的均质圆盘形滑轮,挂质量分别为m 和2m 的物体,绳与滑轮之间的摩擦系数为μ,问μ为何值时绳与滑轮之间无相对滑动.解: 受力分析:mg1T mg22T m 2m2T 1Tββθ。