智能路灯控制系统的设计样本
- 格式:doc
- 大小:462.00 KB
- 文档页数:30
智能路灯控制系统设计毕业设计智能路灯控制系统设计——毕业设计一、课题背景随着城市的不断发展和智能化的进步,传统路灯系统已经不能满足人们的需求。
智能路灯控制系统可以通过智能化的技术手段,对路灯进行智能化的管理和控制,实现路灯的智能化,提高路灯的使用效率,同时也为城市节能减排做出了积极的贡献。
因此,设计一套可靠性高、易于操作、具有智能化管理和控制功能的智能路灯控制系统成为当今的热门课题。
二、设计思路本次毕业设计的智能路灯控制系统主要包括智能控制器、路灯控制中心和手机App三个部分。
具体实现方式如下:1.智能控制器:智能控制器使用单片机(MCU)和无线通讯模块组成,通过感应器检测环境光强度、路灯实际功率和亮度,并实时反馈传感器数据到路灯控制中心。
控制器安装在路灯杆上,通过网络通讯可以与路灯控制中心实现实时通讯。
2.路灯控制中心:路灯控制中心是智能路灯系统的核心部分,由服务器和数据库组成,实现对智能控制器、路灯和App的智能管理和监控。
路灯控制中心可以对路灯进行智能化管理,如控制路灯的开关、设置灯光亮度等,同时具备实时监控路灯的工作状态,当路灯损坏时,可以及时进行维修和更换,避免路灯故障对城市安全带来的影响。
3.手机App:智能路灯控制系统提供了手机App,用户可以通过手机App对路灯进行管理和控制,例如通过App对路灯开关进行控制、调整灯光亮度等,用户还可以通过App监控路灯的工作状态和及时反馈意见。
三、技术实现方案1.硬件设计:将传感器等硬件设备与单片机(MCU)相连,通过编写程序实现路灯的智能管理和控制。
2.通信技术:选择物联网通信技术,采用GPRS、WiFi等网络通讯技术,通过路灯控制中心实现智能管理和监控。
3.软件设计:采用云计算技术,实现路灯的实时监控和远程操作,使用Web接口和App接口等软件技术,与MCU设备通信协议进行通讯。
四、实验结果及分析本次毕业设计成功实现了一套三部分智能路灯控制系统,实现了路灯的智能化管理和控制,减少了能源的浪费,大大提高路灯的使用效率,为城市的节能减排做出了积极贡献。
智能路灯节能控制器的设计与实现(精选5篇)第一篇:智能路灯节能控制器的设计与实现智能路灯节能控制器的设计与实现时间:2009-07-03 09:58:37 来源:现代电子技术作者:胡开明李跃忠卢伟华0 引言随着我国经济高速发展,人民生活水平日益提高,能源和资源变得日益紧张,电力短缺已成为制约国民经济发展的突出矛盾。
目前我国照明消耗的电能约占电力生产总量的10%~20%,而城市公共照明则在照明耗电中占30%,并且近几年随着让城市亮起来的口号的提出,全国路灯的数量仍在迅猛地增长。
公共路灯节能的口号便由此而提出。
通常的节能途径有两个:一个是采用节能光源;二是采用合理的控制线路。
本文在使用节能光源的情况下采用合理的控制线路来实现路灯节能。
在供电系统中,为避免送电过程中的线路损耗和用电高峰时造成末端电压过低,供电部门均采用较高电压进行传输。
因此路灯承受电压多高于灯具的额定电压。
然而据调查我国小型城市晚上21:00后,大中城市00:00以后道路上几乎空无一人。
从而造成了“人少车稀灯更亮”的不合理情况。
为了避免这种情况,大多数城市和地区均采用了发达国家早已淘汰了的隔盏关灯的原始路灯控制方法。
这种方法不仅导致路面照度分布不均,而且会减少路灯使用寿命。
本文采用“全年分三季,一季分时段”的分时控制思想实现节能的目的。
在不同的时段投入不同的供电电压运行,在保证路灯正常照明的前提下,兼顾到了用电低谷期节能的效果。
同时利用电力载波技术实现对路灯运行状况的实时监控。
系统硬件电路的设计 1.1 智能路灯控制系统该智能路灯节能系统主要由电量检测电路、实时时钟、自耦变压器电路、显示电路及载波通信等电路组成。
将一年大致分为三个季节段来对路灯进行控制,使其在不同的季节有不同的开关灯时间。
而从开灯到关灯根据当地交通又可大致分为三个阶段(高峰、正常、低谷)来对路灯进行控制。
从实时时钟芯片中将当前的路灯工作状况进行相应的归类,由单片机输出控制接触器的线圈的断合,而其触点的输出分别控制自耦变压器的三个触头,对应着四个档位,每个档位对应着相应的路灯电压。
智慧路灯工作系统设计方案智慧路灯工作系统是一种基于物联网技术的智能路灯管理系统,通过数据传输、智能控制和云平台管理等技术手段,实现对路灯的远程监控、智能调控和数据分析。
以下是一份智慧路灯工作系统的设计方案。
一、硬件设备部分:1. 集中控制器:安装在路灯杆上,负责集中控制路灯的开关、亮度调节和故障检测等功能。
2. 传感器:包括光照传感器、温度传感器、湿度传感器等,用于感知环境参数。
3. 数据采集设备:负责采集传感器的数据,并将数据传输给集中控制器或云平台。
4. 通信设备:集中控制器和云平台之间进行数据通信的设备,可以使用无线通信方式如4G、LoRa等。
5. 云平台:负责接收、存储和处理路灯数据,为用户提供数据分析和管理功能。
二、工作流程:1. 数据采集:传感器感知到环境参数后,数据采集设备将数据发送给集中控制器。
2. 数据传输:集中控制器通过通信设备将采集到的数据传输给云平台。
3. 数据处理:云平台对收到的数据进行处理和存储,包括实时监测、故障检测和数据分析等功能。
4. 控制指令发送:云平台根据数据分析结果,生成控制指令并发送给集中控制器。
5. 路灯控制:集中控制器根据接收到的控制指令,控制路灯的开关、亮度等参数。
三、系统功能:1. 远程监控:通过云平台可以实现对路灯的远程监控,包括实时状态、工作时长、亮度等参数的监测和显示。
2. 自动调光:根据环境光照强度和交通情况等因素,智能调整路灯亮度,实现节能和降低运维成本。
3. 故障检测:通过路灯的故障报警系统,可以及时检测到故障信息并发送到云平台,以便及时维修。
4. 数据分析:云平台可以对采集到的数据进行分析,包括路灯使用情况、能耗统计、故障率分析等功能。
5. 告警功能:当路灯发生故障或者异常情况时,系统能自动发送告警信息给相关人员,以便及时处理。
四、系统优势:1. 节能环保:通过自动调光和智能控制功能,系统可以实现节能和减排的目标。
2. 故障检测和维修周期优化:系统可以及时检测和报警故障信息,避免因故障造成的安全隐患和不必要的维修成本。
LED智能路灯控制系统设计随着城市的不断发展,城市道路的安全和照明需求也越来越重要。
传统的路灯照明系统存在能耗高、环境污染,光污染等问题。
而LED智能路灯控制系统的出现,为解决这些问题带来了新的希望。
LED智能路灯控制系统利用现代智能化技术,通过对路灯进行远程监控和控制,实现了能效高、节能环保、智能化管理等优点。
本文将结合相关软硬件技术,具体介绍LED智能路灯控制系统的设计。
一、系统整体架构LED智能路灯控制系统主要由硬件和软件两部分组成。
硬件部分包括LED路灯、智能控制器、通讯设备,软件部分包括远程监控平台、控制程序等。
系统整体架构如下:1. 硬件部分:LED路灯:采用LED光源,具有高亮度、节能等特点。
智能控制器:负责收集LED路灯的工作状态和环境数据,同时控制LED路灯的亮度和运行状态。
通讯设备:实现LED路灯与远程监控平台之间的数据交互和控制指令的传递。
2. 软件部分:远程监控平台:通过互联网实现LED路灯的远程监控和管理。
控制程序:根据监控平台下发的指令,实现LED路灯的亮度调节、开关控制等功能。
二、硬件设计1. LED路灯:LED路灯采用高亮度LED灯珠和光学器件,具有高能效、长寿命等优点。
LED路灯还内置光敏传感器和环境传感器,可以实时感知周围环境的亮度和温度,从而根据实际需求调节亮度和节能运行。
3. 通讯设备:通讯设备可选用有线或者无线通讯方式。
有线通讯方式可以采用RS485、CAN总线等通讯协议,实现LED路灯之间和监控平台之间的数据传输。
无线通讯方式可以采用LoRa、NB-IoT等低功耗广域网通讯技术,实现LED路灯与远程监控平台的无线连接。
1. 远程监控平台:远程监控平台基于云计算技术,实现LED路灯的远程监控和管理。
用户可以通过PC端或者手机APP端,实时查看LED路灯的工作状态和环境数据,同时下发控制指令,实现LED路灯的远程控制。
四、系统工作流程1. LED路灯工作状态监测:LED路灯的智能控制器实时监测LED路灯的工作状态和环境数据,包括亮度、温度、湿度等信息,并将数据上传到远程监控平台。
本科毕业论文(设计)智能路灯控制系统的设计院系机械与船舶海洋工程学院专业自动化学生班级 2015级1班姓名学号指导教师单位钦州学院机械与船舶海洋工程学院指导教师姓名李四指导教师职称副教授2019 年 2 月智能路灯控制系统的设计摘要在二十一世纪随着现代社会经济的高速发展,各类居民用电和公共用电量都急剧增加。
传统的路灯采用人工开关或者定时开关,这不仅耗费了大量的人力、电力资源,并且用电的不合理使得资源的大量浪费[1-2]。
现在的社会是一个飞速发展的社会,是一个以节能减排为目标的科技时代,因而传统的路灯已经不在可以满足现代化城市的需求;为此我们设计了智能路灯控制系统。
该系统具有成本低廉的优点,并且其工作相当稳定,安装和维护都相对简单。
[3]该智能路灯的控制系统设计,使用以STC89C52RC为核心控制的单片机,通过语音播报和LCD1602显示来实现人机交互,使用光敏电阻控制灯的状态,利用红外传感器检测人体,最后我们不仅设置了操作按键,并且使用蓝牙进行操作,方便管理人员的操作和控制。
该系统的原理是根据光强的变化、时间的设置和人体的感应来实现路灯的亮灭,首先是当光强低到一定程度时,系统通过采样分析,然后点亮所有的路灯。
其次当到达设定时间后,路灯将全部熄灭;第三则是在路灯全部熄灭的时间里,并且光强还是低于设定值;若是有人经过第一个路灯,将会被红外人体检测传感器监测到,此时将依次亮起所有灯光,并且语音模块将会发出语音提示;当人走过最后一个路灯后,同样会被红外检测到,这时路灯将会再亮一段时间,然后全灭。
若是期间又有人经过第一个路灯,那么直到最后一个人通过最后一个路灯,路灯才会过一段时间关闭,否则路灯将会一直常亮。
[4-6]该系统经过整体框架的搭建和设计,完成了硬件电路和程序的设计和调试工作,最后进行了测试。
经过实际情况的模拟和测试,该系统和预期的功能完全符合,硬件电路的设计和搭建都完好,程序代码经过调试都解决了出错的地方,该系统经过测试,其稳定性强、操作简单、实用价值高和经济效益好等特点。
基于物联网的智能路灯控制系统设计智能路灯控制系统设计:实现安全、节能与环保在现代城市中,路灯是保障行人和车辆安全的重要设施。
然而,传统路灯系统存在诸多问题,如能耗高、维护困难、操作不便等。
为了解决这些问题并提升路灯的效率和可靠性,基于物联网的智能路灯控制系统应运而生。
一、智能路灯控制系统的概念和原理智能路灯控制系统是利用物联网技术将路灯与集中管理系统相连,实现对路灯的远程监控和控制。
该系统通过无线通信技术将路灯和管理系统连接起来,实现实时数据的传输和反馈。
通过集中管理系统,可以监控路灯的亮度、能耗、故障等数据,实现对路灯的远程调控和维护。
智能路灯控制系统的原理是基于物联网的技术架构。
路灯通过传感器和终端设备收集和传输数据,传输通道可以是无线网络或有线网络。
数据传输到集中管理系统后,系统可以进行数据分析和处理,从而实现对路灯的智能控制和管理。
二、智能路灯控制系统的功能与特点1. 远程监控和管理:智能路灯控制系统可以实时监控路灯的工作状态、亮度、温度等参数。
用户可以通过集中管理系统远程查看各个路灯的工作情况,并可根据需求进行调整和设定。
2. 节能与环保:智能路灯控制系统可以根据天气、时间、路况等外部条件智能调整路灯的亮度和开关状态。
可通过提前设定开关时间、调整亮度等措施,节约能源。
同时,路灯故障时可立即发送故障报警,提高故障检测和处理的效率,减少环境污染。
3. 数据分析与预警功能:通过智能路灯控制系统获取的实时数据,可以进行数据分析和挖掘,预测路灯的寿命、故障风险等。
当系统检测到异常情况时,可以发送预警信息,提醒维护人员及时修复故障,保证路灯的正常运行。
4. 智能报警与应急功能:智能路灯控制系统可以根据路灯附近的环境变化实时发出报警信号,例如检测到异常人群、火灾等情况。
同时,系统还可以根据交通流量实时调整路灯的亮度和时序,提供更好的路况指引和交通安全保障。
三、智能路灯控制系统的设计流程1. 硬件设计:智能路灯控制系统的硬件设计包括路灯节点设备、传感器、无线通信模块等。
《智能太阳能路灯系统设计》篇一一、引言随着科技的不断进步和环保意识的日益增强,太阳能作为一种清洁、可再生的能源,其应用越来越广泛。
智能太阳能路灯系统是太阳能技术在实际应用中的一种重要体现,它不仅解决了传统路灯耗能高、管理不便的问题,还通过智能化管理提高了路灯的实用性和节能性。
本文将详细介绍智能太阳能路灯系统的设计思路、原理及优势。
二、系统设计目标智能太阳能路灯系统的设计目标主要包括以下几点:1. 节能环保:利用太阳能作为主要能源,减少对传统电能的依赖,实现绿色环保。
2. 智能化管理:通过安装传感器和控制单元,实现路灯的自动开关、亮度调节等功能。
3. 便捷维护:系统应具备自检功能,方便对故障进行诊断和维护。
4. 适应性强:系统应能根据不同的环境条件和用户需求进行灵活调整。
三、系统设计原理智能太阳能路灯系统主要由太阳能电池板、充电控制器、蓄电池、LED路灯灯头和智能控制单元等部分组成。
其工作原理如下:1. 太阳能电池板:负责将太阳能转化为电能,为系统提供电力。
2. 充电控制器:控制电池板的充电过程,防止过充或过放,保护蓄电池的使用寿命。
3. 蓄电池:储存太阳能电池板产生的电能,为夜间路灯供电。
4. LED路灯灯头:采用高效节能的LED灯作为光源,根据智能控制单元的指令调节亮度。
5. 智能控制单元:负责接收传感器信号,根据预设的逻辑控制路灯的开关和亮度调节。
四、系统设计内容1. 硬件设计:包括太阳能电池板的选型与安装、充电控制器的设计、蓄电池的选型与配置、LED路灯灯头的选择以及智能控制单元的电路设计等。
2. 软件设计:包括智能控制单元的程序编写,实现路灯的自动开关、亮度调节、故障自检等功能。
3. 系统集成:将硬件和软件进行集成,确保各部分之间的协调工作。
五、系统优势1. 节能环保:智能太阳能路灯系统利用太阳能作为能源,减少了传统电能的消耗,实现了绿色环保。
2. 智能化管理:通过安装传感器和控制单元,实现了路灯的自动开关、亮度调节等功能,提高了管理的便捷性和实用性。
模拟智能路灯控制系统基于STC89S52的智能路灯的设计物理与电子信息科学系电子信息科学与技术专业12960137 谢丰应指导老师:唐建峰摘要:智能路灯系统STC89C52单片机作为控制核心,系统使用简单的电路,体积小专用时钟芯片DS1302,工作时保持数据和时钟信息,当功率小于1兆瓦时。
使用DS1302不但降低电路的功耗,而且能保存IO端口资源。
使用光敏电阻搭配LML393感应环境亮度变化,用红外感应模块感应行人和车辆经过智能控制光照强度。
自动感应光照方式和时机模型两种。
配备了键盘输入模式下,液晶的使用LCD1602显示。
单片机灯光定时控制器是一种新型智能控制仪表,它能够不同季节调整不同的晚上开灯时间,黑暗的人根据不同的需要经过按钮和路灯的光熄灭的时间条件。
系统智能化程度高,可靠性高,系统稳定,和高性价比,具有较大的市场方向。
关键词:AT89S52 DS1302 LCD1602 光敏路灯 LM393 红外感应Abstract:Smart street system for the control of microcontroller core STC89C52, the system uses simple circuit, small dedicated clock chip DS1302, DS1302 work, low power consumption, keep the data and clock information power is less than 1mW. The circuit using the DS1302 not only reduce power consumption, and save the IO port resources. Photosensitive resistance testing environment with brightness changes, with automatic light-sensitive mode and timer mode two. With keyboard input, the LCD LCD1602 display.SCM street smart timing controller is a new control instruments, which can change depending on the season with the dark dawn of time changes, depending on the needs of people through the street light through the button and off time conditions. System, high intelligence, high reliability, the system is stable, and comprehensive cost-effective high, with large market applications.Key words: AT89S52 DS1302 LCD1602 photosensitive lights目录1引言 (1)2系统方案设计 (1)3系统硬件电路设计 (2)3.1单片机最小系统 (2)3.2按键模块电路 (2)3.3光敏电路设计 (2)3.4时钟芯片模块设计 (6)3.5显示模块设计 (9)3.6红外模块设计 (11)4软件设计 (15)4.1主程序设计 (15)4.2按键模块子程序 (16)4.3光敏程序设计……………………………………………………(17) 4.4红外程序设计 (17)4.5时钟程序设计 (17)5总结 (18)参考文献 (18)致谢 (18)附录1:电路原理图 (20)附录2:实物图 (21)1引言城市各种路灯的节能工作是城市工作管理的重要任务之一,现代城市的快速发展需要有更加可靠,更加智能,更加节能的城市路灯控制系统。
课程设计任务书
14/15 年第一学期
学院: 计算机与控制工程学院
专业: 电气工程及其自动化
学生姓名: 学号:
课程设计题目: 智能路灯控制系统的设计
起迄日期: 1月5 日 ~ 1月 16 日课程设计地点:专业教室
指导教师:余红英李静
学科部副主任: 刘天野
下达任务书日期: 年 1月 5日
课程设计任务书
课程设计任务书
目录
1 绪论 (1)
1.1 AT89C52简介 (1)
1.2 Proteus软件介绍 (1)
1.3 Keil C51软件介绍 (2)
2 总体设计 (3)
2.1 设计要求 (3)
2.2 设计思路 (3)
2.3 声检测模块 (3)
2.4 光检测模块 (4)
3 硬件接线图 (5)
3.1 最小系统 (5)
3.2 路灯设计电路 (6)
3.3 行人检测电路 (6)
3.4 光控制电路 (7)
3.5 手动控制电路 (7)
3.6 智能路灯电路设计原理图及说明 (8)
4 流程图 (9)
4.1 主流程图 (9)
4.2 紧急情况流程图 (10)
5 软件仿真 (11)
5.1 软件仿真截图 (11)
5.2 软件仿真结果分析 (13)
6 总结 (14)
附录 A 程序清单 (15)
附录 B 软件仿真图 (17)
参考文献 (18)。