墩基础计算书
- 格式:doc
- 大小:12.50 KB
- 文档页数:1
墩身模板计算书1.面板计算:根据墩身施工确定以下数据:混泥土自重2.5t/m3,混泥土的浇注速度为1.5米每小时,混泥土的初凝时间为8小时,外加剂影响系数为1.0,混泥土塌落度为18—20,小于30mm,取0.85。
故根据公式得P=0.22rt0β1β2v1/2=0.22x2.5x8x1.0x0.85x1.51/2=4.6 t/m3混泥土在倾斜过程时的冲击载荷为0.2 t/m3在施工过程中的振捣产生压力为0.4 t/m3故整体侧压力为三者之和5.2 t/m31.面板计算面板厚度为h=0.008m,两槽钢开档间距为b=0.3m.看做300mm的面板两点简支梁计算。
q300b=300mm, h=8mm, E=200GPa,[σ]=215Mpa , l即是b∵F=5.2t=52000N b=0.3m∴q=52000x0.3=15600N/mI z =bh3/12=0.3x(0.008)3/12=12.8 x10-6m4∴W z =bh2/6 =0.3x(0.008)2/6=3.2x10-6m3∵M max =ql2/8=15600x0.32/8=176N.m∵σ=∣M max∣/ W z =176/3.2x10-6 =55 Mpa∴σ﹤[σ]扰度计算∵扰度f=5ql4/384EI z E=200Gpa I z=12.8 m4 ∴f=5ql4/384EI z=5x15600x0.34/384x200x109x12.8 x10-6=6.4x10-6m ∵l=0.3m∴l/300=1x10-3 mf﹤l/300∴面板符合要求。
2.纵肋型钢(槽钢)计算。
型钢为[10a,后面背带间距为1000mm。
看为两点简支。
q1000∵F=15600N l=1m∴q=15600N/m∵M max =ql2/8=15600x0.82/8=1248 N.m∵查型钢截面系数表得:I z=198.3 x10-6m4W z=39.7 x10-6m3∵σ=∣M max∣/ W z =1248/39.7x10-6 =32 Mpa∴σ﹤[σ]∵扰度f=5ql4/384EI zE=200Gpa I z=198.3 x10-6m4∴f=5ql4/384EI z=5x15600x0.84/384x200x109x198.3 x10-6=8x10-6m ∵l=1m∴l/300=3.3x10-3 m∴f﹤l/3003.背带计算。
墩基础计算墩基础计算特例1、墩基础承载力计算:(取持力层为残积砂质粘性土,拟定墩长为3m) 地基承载力特征值fak=修正后地基承载力特征值fa=fak+ηdγm(d-0.5) =220+1.6*18*2.5=292Kpa 初步估计承台上土厚为0.65,底面尺寸为1.2 m x 1.2m,厚度为1.1m3基础顶面的填土天然重度为18KN/m。
2、墩的强度等级C253、承台自重为:G1= 1.2 x 1.2x 1.1 x 25 =39.6KN承台上填土自重:G2= 1.2x 1.2x 0.65x18=16.8 KN2扩大头上填土自重:G3=(1.25 x3.14 x3)x 18=264.94KN柱最大轴力设计值为: F1 =4847KN竖向力: N1 = F1 /1.25+(G1 + G2+G3)=4200KN4、墩底扩大头直径D为:2A1 = N1 / fa =4200/ 292=14.38m算得D =3.79,取3.8m;因此取墩径为1.3m5、灌注墩墩身承载力计算:Q=0.6Apfc2fc(C25)=11.9N/mm墩身直径:2D1 = 1.3m. A 1=1.33m,6Q1 = 0.6*1.33*10*11.9 =9496KN>4200KN所以: J1 所取墩径满足。
7、对墩进行构造配筋:622 J1:墩径为1.3m,Ap=1.33×10mm;配筋率取0.4%,5320选用21φ18为5334 mm1墩基础计算DJ11、墩基础承载力计算:(取持力层为残积砂质粘性土,拟定墩长为5m) 地基承载力特征值fak=修正后地基承载力特征值fa=fak+ηdγm(d-0.5) =250+1.6*18*4.5=379.6Kpa初步估计承台上土厚为0.65,底面尺寸为1.2 m x 1.2m,厚度为0.9m3基础顶面的填土天然重度为18KN/m。
2、墩的强度等级C253、承台自重为:G1= 1.2 x 1.2x 0.9 x 25 =32.4KN承台上填土自重:G2= 1.2x 1.2x 0.65x18=16.8 KN2扩大头上填土自重:G3=(0.95 x3.14 x5)x 18=255KN柱最大轴力设计值为: F1 =3110KN竖向力: N1 = F1 /1.25+(G1 + G2+G3)=2792KN4、墩底扩大头直径D为:2A1 = N1 / fa =2792/ 379.6=7.36m算得D =3,取3m;因此取墩径为1.0m5、灌注墩墩身承载力计算:Q=0.6Apfc2fc(C25)=11.9N/mm墩身直径:2D1 = 1m. A 1=0.785m,6Q1 = 0.7*0.79*10*11.9 =6539KN>2792KN所以: J1 所取墩径满足。
空心墩墩身计算书一、设计资料桥梁跨径:L=40m路基宽度:W=26m桥梁跨径组合:4×40m空心墩尺寸:横桥向宽度4.25m(对应悬臂长度3.5m)顺桥向宽度2.4m、3m、4m三种空心墩壁厚:空心墩尺寸表二、桥墩集成刚度计算假定1、一联桥中,仅仅计算三个中墩的受力,不考虑过渡墩的受力。
2、偏安全考虑,汽车制动力的分配按照三个中墩的集成刚度分配。
3、一联桥梁中,空心桥墩墩高分别采用低限和高限的组合即:采用2.4米厚的空心墩,一联中桥墩高度分别采用40m、50m、50m;采用2.4米厚的空心墩,一联中桥墩高度分别采用50m、60m、60;采用2.4米厚的空心墩,一联中桥墩高度分别采用60m、70m、70。
4、主梁的收缩徐变折成降温计算,降温温度取30℃。
5、为取得最大水平力,温度变化须与收缩徐变变化一致,升温不控制设计,升温水平力不做计算。
故由温度变化引起的水平力,仅考虑降温引起,降温温度取25℃。
6、在中墩处均设置固定支座,过渡墩处设置滑板支座。
三、桥墩集成刚度计算1、桥墩几何参数计算空心墩墩身惯矩按照下式计算:33)2)(2(121121t h t b bh I ---=桥墩几何参数2、桥墩抗推刚度计算按照《铁路桥涵设计规范(TBJ2-85)》第5.3.1条,计算抗推刚度时,混凝土的抗弯弹性模量取抗压弹性模量的0.8倍,桥墩抗推刚度按照下式计算,即:38.03H EId ⨯=ρ 其中:E-混凝土弹性模量,C30混凝土,E=3×104MPa ; H-桥墩高度桥墩抗推刚度3、支座刚度计算支座为板式橡胶支座,规格为GYZ425×99,每个桥墩顶8个支座。
支座刚度按照下式计算,即: tnAGz =ρ 其中:n-支座的个数;A-支座的面积;G-支座的剪切模量,取1.1×104MPa ; t-支座橡胶厚度,取支座高度的0.8倍;支座刚度:ρz =15763KN/m 4、桥墩集成刚度计算桥墩与支座串联,桥墩的集成刚度按照下式计算,即:zd zd ρρρρρ+=.桥墩集成刚度四、桥墩墩顶水平力计算1、一联桥梁变形零点计算变形零点按照下式计算,即:∑∑∑+=ii i i L K C RL K C X μ其中:C —收缩系数,计算中按照混凝土收缩+徐变+降温取55℃,C=1E-5×55=0.00055; i i L K -桥墩抗推刚度与桥墩距桥台距离的乘积;R μ-桥台摩擦系数与上部结构竖直反力的乘积,如为滑板支座,取0。
钢模板验算书一、工程概况1、主墩为单曲线墩,墩身最小截面尺寸为3m*11m,最大截面尺寸为15m*3m,为了计算方便取值,墩身截面取最小值11m*3m 。
2、因墩高较低,故采用一次性拼装模板到顶,整体浇筑方式。
3、本计算书只针对砼对模板的侧压力分析,不包含施工时托架计算。
4、混凝土为C50混凝土,浇筑时温度约25摄氏度,混凝土浇筑速度为603m/h。
二、模板设计1、模板按高度分为2m、1m,其中1m为墩顶模板。
2、块件组合:1节模板包括6块正面模板、2块侧面模板,共计8 块模板组成。
3、模板构造:面板采用6mm钢板,边框法兰设置竖肋(t12*100),竖肋为10#槽钢,间距0.3m,模板最外侧采用2[20#槽钢作横向背杠,平向间距1m。
对拉杆采用PSB830精扎螺纹钢,直径为Φ25。
详见构造设计图。
墩身模板截面构造图三、模板验算依据1、计算依据:(1)、《公路桥涵施工规范》对模板的相关要求;(2)、《路桥施工计算手册》>对模板计算的相关说明。
2、荷载组合:(1)、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载(2)、挠度验算:新浇砼对侧模板的压力(3)、Q235钢材许用应力(新模板是提高系数1.25): 轴向应力: 140Mpa ,新模板计算采用175Mpa . 弯曲应力: 145Mpa ,新模板计算采用181Mpa . 剪应力: 85Mpa ,新模板计算采用106Mpa .弹性模童: Mpa E 5101.2⨯=.(4)、PCB830精轧螺纹钢许用应力为1030Mpa.3、变形里控制值:结构外露模板,其挠度值为≤L/400钢模面板变形≤1.5mm钢模板的钢棱、柱箍变形≤L/5004、计算范围:因墩身截面尺寸不固定,墩身下部截面较小,在固定砼输入的情况下,墩身部分有效压头高度最大,墩顶有效压头高度最小。
因此计算时只计算最不利的施工情况(最大混泥土浇筑速度,墩身下部模板所受混凝土侧压力最大时模板变形)。
本桥选择左幅桥2号桥墩和右幅桥3号桥墩计算1、左幅桥2号墩(非过渡墩)(一)、基本资料:1).设计荷载:公路Ⅰ级2).T梁(单幅5片梁,简支变连续)高:2.4m3).跨径: 40m4).该联跨径组合:(3×40)m5).结构简图如下:二、水平力计算1.横向风力计算按《公路桥涵设计通用规范(JTG D60-2004)》附表1,取湖北省黄石市设计基本风速为V10=20.2m/s;2.温度力计算温差按25度考虑,混凝土收缩徐变近似按温差15度考虑,计算刚度K时,偏安全的忽略支座和桩基的刚度,计算如下表:3.汽车制动力力计算(考虑2车道,一联中近似由一个非过渡墩承受)4.撞击力计算由《公路桥涵设计通用规范(JTG D60-2004)》查得,六级航道内的撞击力顺桥向为100KN,横桥向为250KN,作用点位于通航水位线以上2m的桥墩宽度或长度的中点。
5.桥墩及盖梁自重荷载计算三、作用组合1.支反力汇总按上述盖梁计算立面图,5片主梁从左到右依次编号为1~5,其对应盖梁顶支座反力如下表:2.墩底内力计算因墩柱与盖梁(约5:7)刚度相近,将盖梁与墩柱在横桥向做刚架计算,其中,盖梁计算书另行给出,此处只计算墩柱部分。
荷载分别计算上述“上构支反力汇总”三种活载工况及“横桥向水平风力”作用下墩底内力,计算模型及工况3计算结果如下图所示,其他见下表。
1)活载横桥向产生的墩底内力:(1)墩柱盖梁刚架模型(2)活载工况3结构弯矩图(3)工况3结构剪力图(4)工况3结构轴力图2)风力横桥向产生的墩底内力:3)墩底内力组合a.考虑顺桥向撞击力的偶然组合:对于圆形截面,纵横向内力应合并计算。
b四、墩身强度与裂缝验算1.墩底截面强度验算(36×HRB335-25)M最大时墩身截面强度验算:弯矩设计值6664.27钢筋直径25.0桩半径R(m)弯矩设计值6664.02钢筋直径25.0桩半径R(m)2.墩底截面裂缝宽度计算由于横桥向抗弯刚度较大,因此横桥向裂缝在此不做验算。
xxxxx高速公路常见跨径组合桥墩的计算xxxxx高速公路桥梁上部结构大部分采用先简支后连续预应力混凝土箱梁或板梁,下部结构采用双柱式墩、柱式台或肋台,钻孔灌注桩基础。
为了设计方便,给出如下几种跨径组合下相应的桥墩几何参数的计算书。
设计参数:(见下表)设计荷载:公路-Ⅰ级,q k=10。
5KN/m;集中荷载的取值视桥梁跨径的不同取值见下表:桥墩墩身材料:C30混凝土,Ec=3.0×104Mp a;非连续端采用滑板式支座,其规格与对应的连续端的板式支座相同。
支座的力学性能根据规范取值。
一、桥墩墩顶集成刚度计算1、桥墩截面惯性矩计算按照公式:I i=π×d4/64;其中d为柱径。
2、桥墩抗推刚度计算根据公式K1=3×EcI/H3计算,其中混凝土的弹性模量没有考虑0.8的折减系数是偏于安全的。
计算结果见下表:3、支座抗推刚度计算支座抗推刚度按下式计算:K2=nAG/t式中K2:一横排支座的抗推刚度;n:一横排支座的支座个数,每个梁底放置两个支座,8个支座串连放置在盖梁上,所以每个墩分配的支座个数为4,所以n=4;A:一个支座的平面面积,根据具体的支座规格计算;G:橡胶支座剪切弹性模量,根据规范取1。
1×104Mp a;t:支座橡胶层总厚度,根据橡胶支座的规格取橡胶支座厚度的0.8倍。
计算结果见下表:4、墩顶与支座集成刚度的计算在墩顶有一排支座串连,再与墩顶刚度串连,串连后的刚度即为支座顶部由支座与桥墩联合的集成刚度。
其计算公式为:K= K1×K2 /( K1+ K2)计算结果见下表:二、桥墩墩顶水平荷载效应计算1、混凝土收缩+徐变在墩顶产生的水平力按照公式:p1=c×△x×k其中:c—收缩系数,计算中按照混凝土收缩+徐变按相当于降温30℃的影响力计算,c=30×10—5;△x-桥墩距离变形零点的距离;变形零点x 根据以下公式计算:i c l k Rx C nkμ+=⨯∑∑l i :桥墩矩桥台的距离; n :桥墩个数;k :桥墩顶部合成刚度;R μ∑:桥台摩擦系数与上部结构竖直反力的乘积,由于联端支座与桥台支座的摩阻力大小相差不大,方向相反,所以近似地认为R μ∑=0.计算结果见下表:计算中没有考虑桥墩刚度的差异是出于如下考虑:首先,由于桥墩小于12米时,根据规范和相关资料可以不考虑二阶弯矩的影响,这就大大降低了由于竖向荷载引起的弯矩的数值;其次,墩高的降低虽然增加了墩的刚度而导致了相同变形下水平力的增加,但由于墩高的降低,墩顶水平力在墩底产生的弯矩也有所降低;出于以上两项的考虑,在荷载相同的情况下,如果高12米的墩根据计算是安全的,则小于12米的墩也是安全的。
一、计算依据:1. 设计标准:(1) 设计荷载:公路-Ⅰ级 (2) 桥面宽度: 12m 2. 技术规范:(1) 中华人民共和国交通部部颁标准《公路工程技术标准》JTG B01-2003; (2) 中华人民共和国交通部部颁标准《公路桥涵设计通用规范》JTG D60-2004; (3) 中华人民共和国交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004;二、本桥基本数据:上部结构:4x40连续-刚构T 梁 下部结构:空心墩、桩基础 温度荷载:温度(升)=25(C 0)温度(降)=23(C 0)设计风载:V 10=24.4(m/s)本桥空心墩尺寸(初步拟定):6x3m ; 壁厚0.6m三、施工阶段计算:注:本桥最高墩为左8号墩:墩高=40m ,进行裸墩施工阶段验算。
施工阶段荷载:(1) 架桥机荷载:前支点90t ,距桥墩中心56.5cm (考虑到施工误差:增加5cm ),则N=900 (KN);M=900×0.615=553.5 (KN.M)(2) 桥墩自重:21600(KN )(3) 风荷载: 基准高度Z =40×0.65=26(m )V d = =28.4 (m/s)施工阶段的设计风速:V sd =0.84×V d =25.8 (m/s )静阵风风速 V g =G v V sd =1.35×25.8=34.8 (m/s)F H = =0.5×1.25×34.82×0.9×6×40=163.7 (KN) N=0M=163.7×26=4256 (KN.M)16.01010264.24)10()(⨯=a s ZV nH g A C V 221ρ施工阶段荷载合计:N=900+18780+0=19680(KN) M=553.5+4256=4809.5 (KN.M) 1. 稳定性验算a 、墩身稳定性验算 Pcr =π2EI/L 02取L 0=2×40=80 (m) (按两端自由状态取值) E h =3.00x104 (Mpa) I h =11.39(m 4) P cr =5.26e 5 (KN) P j =19680 (KN)P cr /P j =26.75 --------------【稳定安全】成桥后,墩顶约束增强,L 0取值显著减小,墩身稳定性不再另行计算。
本桥选择左幅桥2号桥墩和右幅桥3号桥墩计算1、左幅桥2号墩(非过渡墩)(一)、基本资料:1).设计荷载:公路Ⅰ级2).T梁(单幅5片梁,简支变连续)高:2.4m3).跨径:40m4).该联跨径组合:(3×40)m5).结构简图如下:二、水平力计算1.横向风力计算按《公路桥涵设计通用规范(JTG D60-2004)》附表1,取湖北省黄石市设计基本风速为V10=20.2m/s;横桥向水平风力计算表参数k0k1k2k3k5桩柱式墩顺桥向挡风面积很小,故顺桥向水平风力不计。
2.温度力计算温差按25度考虑,混凝土收缩徐变近似按温差15度考虑,计算刚度K时,偏安全的忽略支座和桩基的刚度,计算如下表:3.汽车制动力力计算(考虑2车道,一联中近似由一个非过渡墩承受)4.撞击力计算由《公路桥涵设计通用规范(JTG D60-2004)》查得,六级航道内的撞击力顺桥向为100KN,横桥向为250KN,作用点位于通航水位线以上2m的桥墩宽度或长度的中点。
5.桥墩及盖梁自重荷载计算三、作用组合1.支反力汇总按上述盖梁计算立面图,5片主梁从左到右依次编号为1~5,其对应盖梁顶支座反力如下表:2.墩底内力计算因墩柱与盖梁(约5:7)刚度相近,将盖梁与墩柱在横桥向做刚架计算,其中,盖梁计算书另行给出,此处只计算墩柱部分。
荷载分别计算上述“上构支反力汇总”三种活载工况及“横桥向水平风力”作用下墩底内力,计算模型及工况3计算结果如下图所示,其他见下表。
1)活载横桥向产生的墩底内力:(1)墩柱盖梁刚架模型(2)活载工况3结构弯矩图(3)工况3结构剪力图(4)工况3结构轴力图活载横桥向墩底内力左右工况1 N 1029.63 N -23.03 Q 5.38 Q 5.38 M 16.96 M 72.57工况2 N 1650.48 N 362.82 Q 11.97 Q 11.97 M 111.86 M 11.93工况3 N 1447.94 N 907.662)风力横桥向产生的墩底内力:3)墩底内力组合a.考虑顺桥向撞击力的偶然组合:对于圆形截面,纵横向内力应合并计算。
基础工程课程设计一.设计题目:某桥桥墩桩基础设计计算二.设计资料:某桥梁上部构造采用预应力箱梁。
标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。
1、水文地质条件:河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下:(1)地质情况c(城轨):2、标准荷载:(1)恒载桥面自重:N1=1500kN+8×10kN=1580KN;箱梁自重:N2=5000kN+8×50Kn=5400KN;墩帽自重:N3=800kN;桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN(2)活载一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m;两跨活载反力:N6=5030.04kN+8×100kN;(3)水平力制动力:H1=300kN,对承台顶力矩6.5m;风力:H2=2.7 kN,对承台顶力矩4.75m3、主要材料承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;4、墩身、承台及桩的尺寸墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3。
承台平面尺寸:长×宽=7×4.5m 2,厚度初定2.5m ,承台底标高20.000m 。
拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。
5、其它参数结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.46、 设计荷载(1) 桩、承台尺寸与材料承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。
桥墩桩基础设计计算书一、荷载计算:永久荷载计算:永久荷载包括桥墩的自重,上部构造恒荷载反力。
1.承台重:3132330.33 1.40.520.460.9(17.7 2.14) 1.425110.6(17.7 2.14) 1.4[(2.0750.6) 1.4(2.0650.6) 1.4]2216.67 1.7414.93V m V m V mm =⨯⨯⨯==⨯+⨯==⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=-= 3123=V 16.67 1.7414.931009.75V V V mm G V KNγ++=-===总2.墩身重:23423523635641.23.14() 6.8437.7421.23.14() 6.7387.6221.23.14() 6.6337.50222.8657105V m V m V m V V V V m G V KNγ=⨯⨯==⨯⨯==⨯⨯==++===3、上部铺装自重:各梁恒载反力表表1—1边梁恒载:12.54⨯19.94⨯2=500.1KN 中梁荷载:10.28⨯19.94⨯15=3074.75KN上部铺装荷载: 3.5⨯19.94⨯18=1256KN(说明:边梁为2根,中梁数:17-2=15根) 取入土深度为1延米122(5.80.252)0.82252121.5[3.14()1]325.325132.47G V KN G V KNγγ==-⨯⨯⨯⨯===⨯⨯⨯=⨯==1009.75571.5500.13074.151256022212132.47=6756.19G KN++++++恒载可变荷载计算:采用公路一级车道荷载,3车道横向折减系数k q =10.5KN/m ,满跨布置。
1、车道荷载:跨径≤5m 时 ,K p =180kN ;跨径≥50m 时 ,K p =kN 360 当跨径为19.46时,内差得360180(19.465)()1802155051.2258K K K P KNP P KN-=-⨯+=-=⨯=剪力(见《公路桥涵设计规范》 P24 图、表4.3.1-1)支座反力:P=(215+1/2 ⨯1 ⨯19.46 ⨯10.28)⨯3 ⨯0.78=549.92KN 活载作用:P=(205+1/2 ⨯1 ⨯19.46 ⨯10.28 ⨯2)⨯3 ⨯0.78=971.21KN 而力臂=(20-19.46)/2=0.27m M=971.21 ⨯0.27=262.23KN ·m 汽车作用:P=(215+1/2 ⨯1 ⨯19.46 ⨯10.28)⨯3 ⨯0.78=737.16kN M=P ⨯0.27=199.03KN ·m 2.人群荷载的支座反力:在5.5m 的人行道上产生竖向力.3.019.94 5.5329.01=329.01/2=164.51mN kN R =⨯⨯=总支座由行人产生的弯矩:M=R ·l=164051 ⨯0.27=44.42KM ·m 3.计算汽车制动力因为公路一级汽车荷载的制动力标准值不得小于165kN R=(10.5 ⨯19.46+215)⨯0.1=41.93<165KN 显然计算值小于165kN ,那么直接取用165kN 因为同向行驶三车道为一个设计车道的2.34倍 4.车道的制动力: P=2.34 ⨯165=386.1KN 产生弯矩:M=P ⨯(1.5+6.843+1)=3607.33KN ·m 5.计算支座摩阻力: 固定支座摩阻系数f=0.05 则此时支座摩阻力:F=N`f=(500.1+3074.75+1256.22) ⨯0.05=241.55KN 产生弯矩:M=F ·(1.5+6.843+1)=2251.66KN ·m二.进行作用效应组合计算:对桥墩不计汽车荷载的冲击力;同时以上制动力与摩擦力与计算结合结果说明支座摩阻力大于制动力,因此;在以上的组合荷载中,车道的制动力作为控制设计。