2018年上海市奉贤区高三二模数学卷(含答案)
- 格式:doc
- 大小:681.00 KB
- 文档页数:9
奉贤区2018学年第二学期区调研测试高三数学二模卷考试时间120分钟,满分150分一、填空题(第1题到第6题每题4分,第7题到第12题每题5分,满分54分)1.计算行列式2cossin 32sin3cosππππ=_____________. 2.在62⎪⎭⎫⎝⎛+x x 的展开式中常数项为_____________. 3.设函数()c x f y x+==2log 的图像经过点()5,2,则()x f y =的反函数()x f 1-=_______.4.参数方程⎩⎨⎧=+=θθsin cos 2y x [)()πθθ2,0,∈为参数表示的普通方程为________.5.若关于y x ,的二元一次线性方程组的增广矩阵是⎪⎪⎭⎫ ⎝⎛26011a ,该方程组的解为⎪⎪⎭⎫⎝⎛2c ,则=+c a _____________.6.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-2620y x y x y x ,则y x 3+的最小值为_________.7.设等比数列{}n a 中,首项01<a ,若{}n a 是递增数列,则公比q 的取值范围是 . 8.双曲线的右焦点恰好是x y 42=的焦点,它的两条渐近线的夹角为2π,则双曲线的标准方程为_________.9.已知函数()x f y =是定义在R 上的奇函数,且在[)+∞,0单调递减,当2019=+y x 时,恒有()()()y f f x f >+2019成立,则x 的取值范围是_________.10.随机选取集合{5}地,,莘南铁号线BRT 线的非空子集A 和B 且∅≠B A I 的概率 是_________. 11.实系数一元二次方程012=++bx ax ()0≠ab 的两个虚根21,z z ,1z 的实部()0e 1<z R ,则2120202920202120z z mm m --+的模等于1,则实数=m ________. 12.设点P 在以A 为圆心,半径为1的圆弧上运动(包含B 、C 两个端点),π32=∠BAC ,且AC y AB x AP +=,xy y x ++的取值范围为_________.二、选择题(单项选择题,每题5分,满分20分)13.在等差数列{}n a 中,设*,,,N r p l k ∈,则r p l k +>+是r p l k a a a a +>+的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分非必要条件.14.如左下图的后母戊鼎(原称司母戊鼎)是迄今为止世界上出土最大、最重的青铜礼器,有“镇国之宝”的美誉.后母戊鼎双耳立,折沿宽缘,直壁,深腹,平底,下承中空“柱足”,造型厚重端庄,气势恢宏,是中国青铜时代辉煌文明的见证.上右图为鼎足近似模型的三视图(单位:cm ).经该鼎青铜密度为a (单位:kg /cm 3),则根据三视图信息可得一个“柱足”的重量约为(重量=体积×密度,单位:kg )( ) A .πa 1250 B .πa 5000 C .πa 3750 D .πa 15000. 15. 已知ABC ∆的周长为12,()()2,0,2,0C B -,则顶点A 的轨迹方程为( )A .()01161222≠=+x y x B .()01161222≠=+y y x C .()01121622≠=+x y x D .()01121622≠=+y y x .16.设有000C B A ∆,作它的内切圆,得到的三个切点确定一个新的三角形111C B A ∆,再作111C B A ∆的内切圆,得到的三个切点又确定一个新的三角形222C B A ∆,以此类推,一次一次不停地作下去可以得到一个三角形序列()Λ,3,2,1=∆n C B A n n n ,它们的尺寸越来越小,则最终这些三角形的极限情形是( )A .等边三角形B .直角三角形C .与原三角形相似D .以上均不对.三、解答题(14+14+14+16+18=76分)17.已知θαθcos ,sin ,sin 成等差数列,θβθcos ,sin ,sin 成等比数列,(1)若6πα=,求θ;(2)求βα2cos 212cos -的值.18.如图,在四棱锥ABCD P -中,PD PA ⊥,PDPA =,AD 的中点是E,ABCD PE 面⊥,AD AB ⊥,5,2,1====CD AC AD AB , (1)求异面直线PC 与AB 所成角的大小;(2)求面PDC 与平面PAB 所成二面角的大小.19.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下图,该函数近似模型如下:()⎪⎩⎪⎨⎧≥+<≤+⎪⎭⎫⎝⎛-=-2,18.1027.5420,42.47233.02x ex x a x f x. 又已知刚好过1小时时测得酒精含量值为44.42毫克/百毫升.根据上述条件,解答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少? (2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整分钟计算)20.已知两点()()0,2,0,221F F -,动点P 在y 轴上的射影是H ,且22121PF PF =⋅,(1)求动点P 的轨迹方程;(2)设直线21,PF PF 的两个斜率存在,分别记为21,k k ,若121=k k ,求点P 的坐标; (3)若经过点()0,1-N 的直线l 与动点P 的轨迹有两个交点为T 、Q ,74=时,求直线l 的方程.21.统计学中将()*,2N n n n ∈≥个数n x x x ,,,21Λ的和记作∑=ni ix1(1)设133-=n b n ()*Nn ∈,求∑=101i i b ;(2)是否存在互不相等的非负整数n a a a a ,,,,321Λ,n a a a a <<<≤Λ3210,使得201921=∑=ni a i成立,若存在,请写出推理的过程;若不存在请证明;(3)设n x x x x ,,,,321Λ()3≥n 是不同的正实数,a x =1,对任意的()3*≥∈n N n ,都有2122212111221x x x x x x x x x n n i i i n --=∑-=+,判断n x x x x ,,,,321Λ是否为一个等比数列,请说明理由.奉贤区高三数学二模参考答案 2019年4月一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、02、160(必须要化简)3、R x x ∈-,24(可以不写定义域) 4、22(2)1x y -+=或03422=++-y x x5、5a c +=6、2-7、(0,1) 8、2211122x y -=(标准方程是唯一的表达形式),9、0∞(-,)或0<x 或{}0<x x 1011、2 12、[1,3] 二、选择题(每个5分,合计20分)13、D 14、C 15、A 16、A三、解答题(14+14+14+16+18=76分)17、(1)因为θαθcos ,sin ,sin成等差数列,所以2sin sin cos αθθ=+··········2分又6πα=,所以sin cos 1θθ+=,即sin()42πθ+=所以2k θπ=或22k πθπ=+,k Z ∈·····················2分解出⎩⎨⎧==0cos 1sin θθ或⎩⎨⎧==1cos 0sin θθ····················1分因为θβθcos ,sin ,sin 成等比数列,所以θ的解集是空集···················1分 方法二:θαθcos ,sin ,sin 成等差数列,所以2sin sin cos αθθ=+··········2分 又6πα=,所以sin cos 1θθ+=,1cos sin22=+θθ,解出⎩⎨⎧==0cos 1sin θθ或⎩⎨⎧==1cos 0sin θθ····················3分因为θβθcos ,sin ,sin 成等比数列,所以θ的解集是空集···················1分(2)因为θαθcos ,sin ,sin 成等差数列,所以2sin sin cos αθθ=+因为θβθcos ,sin ,sin 成等比数列,所以2sin sin cos βθθ=⋅···················2分 所以2211cos 2cos 212sin (12sin )22αβαβ-=---·················2分 2sin cos 112()(12sin cos )22θθθθ+=---⋅·················2分 111sin cos sin cos 22θθθθ=--⋅-+⋅0=·················2分 18、(1)方法一:E CD CA ,=是中点,所以AD CE ⊥ 2分AD AB ⊥,所以CE 平行AB ,PCE ∠或其补角是异面直线所成的角 2分 计算可得12==PE CE ,,所求异面直线角为21arctan 3分方法二:建立空间直角坐标系,但必须证明AD CE ⊥,AD PE ⊥,CE PE ⊥ 若不写证明,直接写如图所示,以E 点为坐标原点,建立空间直角坐标系直接扣2分E PD PA ,=是中点,所以AD PE ⊥ABCD PE 面⊥,所以CE PE ⊥如图所示,以E 点为坐标原点,建立空间直角坐标系,0,-1,0(0,10),(1,10),(2,00),(0,01)D A B C P (), ,,,,··········2分 (201),(100)PC AB =-=u u u r u u u r ,,,, ···········2分异面直线PC 与AB 所成角为θ225cos ||||5||||211PC AB PC AB θ⋅===⋅+⋅u u u r u u u ru u u r u u u r 异面直线PC 与AB 所成角为25arccos5···········2分 (2)设面PDC 的一个法向量为1(,,)n u v w =r11,n DP n DC ∴⊥⊥u r u u u r u r u u u r,又(011),(21,0)DP DC ==u u u r u u u r ,,, 即11=00u+1v+1w=02u+1v+0w=0=0n DP n DC ⎧⋅⋅⋅⋅⎧⎪⇒⎨⎨⋅⋅⋅⋅⎩⎪⎩u r u u u r u r u u u r 不妨令2v =, 则2,1w u =-=-,即面PDC 的一个法向量为1(1,2,2)n =--r,···········2分同理可得面PAB 的一个法向量为2(0,1,1)n =r···········2分令1n u r 和2n u u r 所成角为ϕ,则1212cos 0||||n n n n ϕ⋅===⋅u r u u r u r u u r ···········2分 所以2πϕ=,即面PDC 与平面PAB 所成二面角的大小为2π.···········1分19、(1)由题意得:当1x =时,23(1)()47.4244.422f a x =-+=,即12a =-····2分 所以当02x ≤<时,23()12()47.422f x x =--+, 在32x =时取到最大值47.42 ·········2分 又当2≥x 时,0.3()54.2710.18xf x e -=+是单调递减函数,在2x =时取到最大值96.39 ·········2分39.9647.42<,所以喝1瓶啤酒1.5小时血液中的酒精含量达到最大值47.42·····1分(2)当02x ≤<时,23()12()47.422f x x =--+,此时血液中酒精含量范围是(20.42,47.42],不可以驾车;·········3分 当2≥x 时,0.3()54.2710.18xf x e-=+单调递减函数所以令0.3()54.2710.1820xf x e -=+< 即982ln5427 5.6990.3x >≈-小时,·········2分所以喝1瓶啤酒后342分钟后才可以驾车。
上作在草稿纸、本试卷上答题一律无效.0 2 .若 x =2, y = -1,那互为相反数;2y0 3 5 .下列说法中,正确的是(▲) B. 4;2018 学年奉贤区调研测试九年级数学(满分 150 分,考试时 100 分钟)间2018.04考生注意:1 .本试卷含三个大题,共25 题.答题时,考生务必按答题要求在答题纸规定的位置答,2 .除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6 题,每题 4 分,满分24 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上】1 .如果两个实数 b 满足a b,那么a ,b 一定是(▲)a ,B.一正一负;C. D .互为倒数.A .都等于么代数式x 2 2xy 的值是(▲);A .0; B. 1;C. 2;D. 4.3 .函数y-2x 的图像不经过(▲)A .第一象限;B.第二象限;C.第三象限;D.第四象限.4 .一组数据3,3, 2, 5,8, 8的中位数是(▲)C. 5;D. 8.A . 3;A.关于某条直线对称的两个三角形一定全等;B.两个全等三角形一定关于某条直线对称;C.面积相等的两个三角形一定关于某条直线之间对称;D.周长相等的两个三角形一定关于某条直线之间对称.6 .已知⊙ O1与⊙ O 2外离,⊙ O 1的半径是 O 1O 2 5 ,圆心距7 ,那么 ⊙ O 2 的半径可以是( ▲)A.4; B.3; C.2; D.1.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:16a=▲;8.因式分解:2a a▲;yx1的定义域是3 ,那么n =▲;x ,在其图像所在的每个象限内,y 的值随x 的值增▲;x16 .四边形 示ABCD 中,ABCD9 .函数1▲;10 .一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有球,n 个黄球,从中随机摸出白球的概率是x1 2的解集是 ▲; 11 .不等式组2x822 个白12 .已知反比例函数y 3大而(填“增大”或“减小”)113 .直线ykx (b k)平行于直线 且经过点(0, 2 ),那么这条直y2 线的解析式是▲;14 .小明在高为18 米的楼上看到停在地面上的一辆汽车的俯角为底的距离是▲米;(结果保留根号)60 o ,那么这辆汽车到楼a15 .如图,在△ ABC 中,点 D 在边 BC 上,且 DC=2BD ,点E 是边AC 的中点,设 BC =,AC = b ,那么 DE = ▲;(用)到四边形a 、b 的线性组合表AD //BC ,∠ D=90 o ,如果再添加一个条件,可以得是矩形,那么可以添加的条件是 ▲;(不再添加线或字母,写出一种情况即可)17 .如图,在 RtABC 中,∠ACB=90o ,AD 是BC 边上的中线,如果 AD=BC ,那么cot ∠ CAB的值是 ▲;18 .如图,在△ ABC 中,∠ C=30 o , AC=2 ,点D 在 BC 上,将△ACD 沿B=45 o ,∠直线 ADCF 的值是 ▲;翻折后,点 C 落在点E 处,边AE 交边BC 于点BFF,如果DE// AB ,那么AAAEBD C第 15 题图BDCB第 18 题图 C三、解答题:(本大题共7题,满分78分)第17题图19.(本题满分2)-1-81320.(本题满分10分)解方程:x212.x16作 DE ⊥ AD ,垂足为点 D ,交 BE 延21 .(本题满分10 分,每小题满分各5 分)已知:如图,在 Rt △ ABC 中,∠ ACB=90 o , AB=4 , AD 是∠ D BAC 的角平分线,过点1. AAB 于点 E ,且AB 4( 1 )求线段 BD的长;( 2 )求∠ADC 的正切值.ECD 第21 题图B22 .(本题满分10 分,第( 1 )小题 4 分,第( 2 )小题 6 分)今年 3月 5 日,某中学组织六、七年 200 位学生参与了“走出校门,服务社会”的活级 动.该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示.( 1 )参与社区文艺演出的学生人数是▲人,参与敬老院服务的学生人数是 ▲人;( 2 )该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40% 和 60% .求参与敬老院服务的六、七年级学生分别有多少人?打扫 街道 90 人社区文 艺 演出 25 %敬老院 服务第 22 题图23 .(本题满分12 分,每小题满分各6 分)已知:如图,梯形 ABCD 中, DC ⊥ AB ,AD=BC=DC ,AC 、 BD 是对角线,线上一点,且∠ E 是ABBCE=长∠ ACD , 联结 CE .( 1 )求证:四边形 DBEC 是平行四边形;D C(2)求证:2AD AE.B EA第23题图2c5 的菱形 ABCD 中, CE ,24 .(本题满分12 分,每小题满分各4 分) 已知在平面直角坐标系xoy (如图)中,抛物线y b x 与 x 轴交于点 A(-1, 0)与点 C ( 3, 0 ),与y 轴交于点B ,点 B 作射线AP 的垂线,垂足P 为 OB 上一点,过点 为点 D ,射线 BD 交 x 轴于点 E.( 1 )求该抛物线解析式; ( 2 )联结 BC ,当 P 点坐标为( 0, 2 )时,求△ EBC 的面积; 3( 3 )当点 D 落在抛物线的对称轴上时, P 的坐标.求点yyBBDPAOE C x A OC x第24 题图备用图25 .(本题满分 14 分,第( 1 )小题 5 分,第(2 )小题 5分,第( 3 )小题4 分)已知:如图,在边长为3,点cosA=5 A 为圆P 为边 AB 上一点,以心、AP 为半径的⊙ A 与边AD 交于点E ,射线F . 与⊙A 另一个交点为点( 1 )当点 E 与点 D 重合时,求 EF 的长; ( 2 )设 AP=x , CE=y ,求 y 关于 x 的函数关系式 及定义域;( 3 )是否存在一点 P ,使得 EF 2 PE 若存在,求AP 的长,若不存在,请说明理由.ED CD CFA P BAB备用图第25题图7. 4a ; 8.a( a1); 1 32 17 . 218 .4 . y ) 321 解 分)216 0x 2CAD = ∠ BAD ⊥∠ BAD= ∠ 2分5 ⊥ o2018 学年奉贤区调研测试九年级数学答案一、选择题:(本大题共6 题,每题4 分,满分24 分)1.C ;2.B ; 3.C ;2018.046. D .4. B ;5.A ;9. x ;10 . 1 ; 11 . x > ;12 .减二、填空题:(本大题共12 题,每题小;12 1 313分,满分 x ; 48 分14 . 6 ;b ; 16 . AD=BC 等; ; 2 15 .a33 ;三、解答题:(本大题共 7 题,满分19 .(本题满分78 分)10:原式 2-= 1- 2 -22,,,,,,,,,,,,,,,,,,,,,,,, 各 2分22= 1- 2,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2分20.(本题满分10 分)解:方程两边同乘以 4),,,,,,,,,,,,,,,,,,,,,,,( x1分得:(x2)(x2),,,,,,,,,,,,,,,,,,,,,,3分整理,得:解得:x 2 3x 10 ,,,,,,,,,,,,,,,,,,,,,,x 1 2 , x 2 5 ,,,,,,,,,,,,,,,,,,,,,,,2分2分经检验:x 1 2 是增根, 5 是原方程的根,,,,,,,,,,,,,1分所以原方程的根是x1分21 .(本题满分 10 分,每小题满分各,,,,,,,,,,,,,,,,,,,,,,, 5 分)BE 1解:( 1 )∵ ⊥ BE= 1,,,,,,,,,,,,,,,,,,,,1AB=4 ,AB 4分∵DE ⊥ AD ,∠ACB=90 ∠ CAD+ ∠ ADC= ∠ BDE+ ∠ ADC. ⊥∠CAD= ∠ BDE∵ AD 是∠ BAC 的角平分线,⊥∠BDE,,,,∵∠ B= ∠ B ⊥△ BDE ⊥△BADBDBDAB ⊥ BD= 2,,,,,,,,,,,,,,,,,,,,,,( 2 )解法一:∵△ BDE ⊥△BE,,,,,,,,,,,,,,DE 1 BAD ⊥BD AD21分1分1分⊥AD2分AB 4 2 AC 21 ADC=Rt ( 2 )小题 6 分)每空各证明:( 1 )6∵ ) ∵∠ BCE= ∠ ACD, BC=DC ⊥△ADC CBE △⊥ ,,,,,,, EBC,,,,,,,,,,,行四边形∵DC ⊥ AB ,⊥∵∠ ∵∠ E= ∠ E ⊥△ ECB ⊥△ BE EC∵∠ CAD= ∠ BAD ,∠ ADE=90 o ,∠ ACB=90 o ⊥∠AED= ∠ 1 分ADC ,,,,1分 ⊥ tan ∠ ADC=2 ,即:∠ ADC 的正切值为 2,,,,,,,,,,,,,,解法二:过点 D 作 DH ⊥ AB 于点 H ,,,,,,,,,,,,,,,,,,,,,,⊥∠ AHD =90 o ∵ AD 是∠ BAC 的角平分线,∠ACB=90 CD=DH ,,,∵∠ AHD = ∠ ACB=90 ,∠ B= ∠ B ,BDH ⊥△ o BAC ,,,,,,,,,,,,DH BD 2 ,⊥ CD 1⊥ ,,,,,,,,,,,,,,,,,,AC1分o ⊥ 1分1分1分⊥在 △AC ACD 中,∠ACD=90o ,tan ∠CD2 即:∠ ADC 的正切值为 1分2,,22 .(本题满分10 分,第( 1 )小题 4 分,第( 1 ) 50 , 60 ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2分( 2 )设参与敬老院服务的六、七年级学生分别有x 人、 y 人 ,,,,,,,,,, 1分根据题意,得:解得x y 60,,,,,,,,,,,, ( 1 40%) x ( 1 60%) y90x 30y 30,,,,,,,,,,,,,,,,,,,,,,,3分2分答:参与敬老院服务的六、七年级学生各有30 人.23 .(本题满分 12 分,每小题满分各分DC ⊥ AB ,AD=BC=DC⊥∠ DCB= ∠ ADC ,∠ DCB= ∠ ⊥∠ ADC = ∠CBE⊥ AD =B E ⊥ DC =B E ,,,,,,,,,,,,,,,,,,,,∵ DC ⊥ AB ⊥四边形 DBEC 是平,,,,,,,,,,,,,,1分2分2分1分( 2 )∵四边形 DBEC 是平 ⊥ BD=CE行四边形⊥AC=BDAC=BD ,,,,,,,,,,1分AD=BC=DC DCA= ∠ ∠ BCE= ∠ ACD ⊥∠ BCE= ∠ CABCAB3分EAC,,,,,,,,,,,,,,,,,,,, ⊥⊥ CE 2 BE AEEC AE即AC2AD AE ,,,,,,,,,2分24 .(本题满分12 分,每小题满分各(1) ∵抛物线 y4分)x2bx交x轴交于点A(1,0)点C(3,0)⊥1b c093b c解得:b2c3,,,,,,,,,,,,,,,,,,3分⊥该抛物线的解析式:y x22x3,,,,,,,,,,,,,,,,1分c和1 , 2y x 21 y 2⊥ yBP PD3y 解得:y 1 1,21分2y 1 1,都是原方程的根 , 过点⊙ AA 作 , AH ⊥EF=2 EH 点,∠ AHEH ,,,,,,,,,,,,,,,,,,, EF 于=90 oAE 5 ⊥ EH= 32x)( 2 )由x 2 2x3 得点 B(0 ,3),,,,,,,,,,,,,,,,,,,,分y∵ AD ⊥ CD⊥∠ DBP+ ∠ BPD= 90 °∵∠POA= 90 ⊥⊥∠OAP+ ∠ APO= 90 °∵∠ BPD= ∠ APO ⊥∠DBP= ∠ OAP ∵∠AOP= ∠ BOE= 90 ⊥⊥△ AOP ⊥△BOE , 分2⊥AO POBO OE2∵ OA=1 , PO= , BO=3 3⊥1 33 OE ⊥OE=2,,,,,1分∵ OC=3⊥ EC=1⊥SEBC1 3 1 32 2,,,,,,,,,,,,,,,1分( 3 )设点P (0, y) 则OP=AP= 1 y y , BP=3 ,∵点D 在抛物线的对称轴上,过点 D 作DH ⊥轴,垂足为点 H⊥ AH= 2 ⊥ AO=OH ⊥ PD =AP=1 y∵∠ BPD = ∠ APO ∠ AOP= ∠ BDP= 90 ° ⊥△AOP ⊥△ BDP ,,,,,,,1分⊥AP PO1y2 1 y . ,,,,,,经检验:y 21 2⊥ P 1 (0,1) P 2(0, 1) ,,,,,, 22分25 .(本题满分 14 分,第( 1 )小题 5 分,第( 2 )小题 5分,第( 3 )小题 4 分)(1 )解:当点 E 与点 D 重合时, AE=5 , EF//AB ⊥∠ 1分ADF = ∠ DAB,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1分⊥在 中 EH 3⊥ cos ∠ ADF=cos ∠ DAB = =EF=6,,,,,,,,,,,,( 2 )解:过点 C 作 CM ⊥ AD 交 AD 延长线于点 M ,,,,,,,,,,,,,,,3在 Rt △ CMD 中,∠ CMD =90 o , cos ∠ MDC=cosA = , CD= 5 5⊥ MD =3 ,⊥CM=4,,,,,,,,,,,,,,,,,,,,,,,,,,,1分2分1分1分在 RtCME 中,∠CME =90o ,⊥CE2CM2ME2∵ CM =4 , MD =3 , DE=5- x , CE=y ⊥y 2 4 2 ( 3 5 ,,,,,,,, 1分⊥ yx16x800<x⊥5),,,,,,,,,,,,,,,,,,2分2,,,(3)解:假设存在一点P,使得EF2PE过圆心A作AH⊥EF于点H,交⊙A为1分点N,,,,,,,,,,,,,,,,⊥EF2EN∵EF2PE⊥PE∠NAE=∠PAE,,,,,,1分∵AH⊥EF,⊥∠NAE+∠HEA=90°.∠CME=90°,⊥∠CEM+∠ECM=90°.(MC43834∵∠HEA=∠CEM,⊥∠NAE=∠ECM=∠PAE=∠⊥tan∠ECM=tan∠MDC=MDC.3⊥在Rt△CME中,∠CME=90o,CM=4,ME=MD+DE=3+5-xME8x48tan∠ECM=,解得,,,,,,,,,,,,,,,,x=3即:存在点P,使得EF2PE,此时.AP长为2分。
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为A B ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____.7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 10、代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示) 12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321Λ,且n n x x x x x <<<<<-1321Λ,*N n ∈ 若π283222212321=++++++--n n n x x x x x x Λ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行 15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x x f +=,则()()()=+++201921a f a f a f Λ ( ).A .2018B .4036C .2019D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2.③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅OB OA ,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf Θ ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
2018届高三数学4月调研测试(二模)试题(上海市奉贤区
附答案)
5 c 19题每题14分,第20题16分,第21题18分,满分76分)
17.如图,圆锥的底面圆心为,直径为,为半圆弧的中点,为劣弧的中点,且.
(1)求异面直线与所成的角的大小;
(2)求二面角的大小.
18.已知美国苹果司生产某款iphne手机的年固定成本为万美元,每生产只还需另投入美元.设苹果司一年内共生产该款iphne 手机万只并全部销售完,每万只的销售收入为万美元,且(1)写出年利润(万美元)关于年产量(万只)的函数解析式;
(2)当年产量为多少万只时,苹果司在该款手机的生产中所获得的利润最大?并求出最大利润.
19.如图,半径为的半圆上有一动点,为直径,为半径延长线上的一点,且,的角平分线交半圆于点.
(1)若,求的值;
(2)若三点共线,求线段的长.
20.已知数列的前项和为,且().
(1)求的通项式;
(2)设,,是数列的前项和,求正整数,使得对任
意均有恒成立;
(3)设,是数列的前项和,若对任意均有
恒成立,求的最小值.。
2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=,()4,0,4-=,()3,4,0-= 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00AE n ⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=.……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-x xk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--xx k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
奉贤区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 集合的真子集共有( ){}1,2,3A .个 B .个C .个D .个2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°3. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是()A .C .D .4. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .5. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33%B .49%C .62%D .88%6. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .17. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④8. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1A A .B .C .D .16cm26cm班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .10.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+B.(1)+∞C. (1,3)D .(3,)+∞11.△的内角,,所对的边分别为,,,已知,则ABC A B C a =b =6A π∠=( )111]B ∠=A .B .或C .或D .4π4π34π3π23π3π12.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( )A .1条B .2条C .3条D .4条二、填空题13.抛物线y=4x 2的焦点坐标是 . 14.已知关于 的不等式在上恒成立,则实数的取值范围是__________15.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+16.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .17.圆心在原点且与直线相切的圆的方程为_____.2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.18.对于|q|<1(q 为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .三、解答题19.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.20.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.21.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值.序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)1[60,70)65①0.10 2[70,80)7520②3[80,90)85③0.20 4[90,100)95④⑤合计50122.(本题满分12分)已知数列的前项和为,().}{n a n n S 233-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)若数列满足,记,求证:().}{n b 143log +=⋅n n n a b a n n b b b b T ++++= 32127<n T +∈N n 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前项和.重n 点突出运算、论证、化归能力的考查,属于中档难度.23.已知函数f (x )=和直线l :y=m (x ﹣1).(1)当曲线y=f (x )在点(1,f (1))处的切线与直线l 垂直时,求原点O 到直线l 的距离;(2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(3)求证:ln<(n∈N+)24.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n奉贤区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】考点:真子集的概念.2.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题. 3.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.4.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.5.【答案】B【解析】6.【答案】C【解析】考点:指数函数的概念.7.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.8.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.9.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.10.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m 的范围.11.【答案】B 【解析】试题分析:由正弦定理可得或,故选B.()sin 0,,4B B B ππ=∴=∈∴=Q 34π考点:1、正弦定理的应用;2、特殊角的三角函数.12.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;;∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C .二、填空题13.【答案】 .【解析】解:由题意可知∴p=∴焦点坐标为故答案为【点评】本题主要考查抛物线的性质.属基础题. 14.【答案】【解析】因为在上恒成立,所以,解得答案:15.【答案】②④【解析】试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角sin sin a A b B =A B =2A B π+=形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正sin sin a B b A =sin sin sin sin A B B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知是正确,故选选②④.1sin sin sin a b cA B C+=+考点:正弦定理;三角恒等变换.16.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.17.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线的距离,所以2x y +=r d ===.222x y +=18.【答案】 .【解析】解:0. = + +…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】证明:(Ⅰ)∵数列{a n }满足a 1=,a n+1=a n +(n ∈N *),∴a n >0,a n+1=a n +>0(n ∈N *),a n+1﹣a n =>0,∴,∴对一切n ∈N *,<.(Ⅱ)由(Ⅰ)知,对一切k ∈N *,<,∴,∴当n ≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.20.【答案】【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1﹣)+2x;∵y=1﹣在(1,+∞)上是增函数,故y=log2(1﹣)在(1,+∞)上是增函数;又∵y=2x在(1,+∞)上是增函数;∴h(x)在x∈(1,+∞)上单调递增;同理可证,h(x)在(﹣∞,﹣1)上单调递增;而h(1.1)=﹣log221+2.2<0,h(2)=﹣log23+4>0;故h(x)在(1,+∞)上有且仅有一个零点,同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;故a=;结合函数a=的图象可得,<a<0;即﹣1<a<0.【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.21.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320;(3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82,∴800名学生的平均分为82分22.【答案】【解析】23.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.24.【答案】【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,解得x=a,即每年拆除的旧住房面积是am2(Ⅱ)设第n年新建住房面积为a,则a n=所以当1≤n≤4时,S n=(2n﹣1)a;当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.。
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为A B ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x-中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 .10、代数式2521(2)(1)x x +-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示) 12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈ 若π283222212321=++++++--n n n x x x x x x ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行 15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x x f +=,则()()()=+++201921a f a f a f ( ).A .2018B .4036C .2019D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2.③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-x x k x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--xx k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
上海市奉贤区2018届高三二模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 集合,,则________【答案】【解析】∵集合∴集合∵集合∴故答案为.2. 已知半径为2R和R的两个球,则大球和小球的体积比为________【答案】8【解析】∵球的体积公式为(为球的半径)∴半径为2R和R的两个球,则大球和小球的体积比为故答案为8.3. 抛物线的焦点坐标是________【答案】【解析】试题分析:即,所以抛物线的焦点坐标是(0,)。
考点:本题主要考查抛物线的标准方程及其几何性质。
点评:简单题,首先应将抛物线方程化为标准方程。
4. 已知实数满足,则目标函数的最大值是_______【答案】4【解析】作出不等式组对应的平面区域如图所示:由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大,.故答案为4.点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5. 已知△ABC中,a、b、c分别为∠A、∠B、∠C所对的边. 若,则________【答案】【解析】∵∴根据余弦定理可得∵∴故答案为.6. 三阶行列式中元素的代数余子式为,则方程的解为________【答案】【解析】由题意知.∵∴,即.故答案为.7. 设是复数,表示满足时的最小正整数,是虚数单位,则________【答案】4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为.8. 无穷等比数列的通项公式,前项的和为,若,则________【答案】或【解析】∵∴∵数列为无穷等比数列∴,∵∴,即∴,即.∴∴或故答案为或.9. 给出下列函数:①;②;③;④;⑤;⑥;⑦. 从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是________【答案】【解析】对于①,定义域为,且,故为奇函数;对于②,定义域为,且,,故既不是奇函数也不是偶函数;对于③,定义域为,且,故是偶函数;对于④,定义域为,且,故是偶函数;对于⑤,是正切函数,故是奇函数;对于⑥,定义域为,且,故是偶函数;对于⑦,定义域为,且,故是奇函数.∴共有3个奇函数,3个偶函数∴从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是.故答案为.10. 代数式的展开式的常数项是________(用数字作答)【答案】3【解析】的通项公式为.令,得;令,得.∴常数项为故答案为.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11. 角的始边是x轴正半轴,顶点是曲线的中心,角的终边与曲线的交点A的横坐标是,角的终边与曲线的交点是B,则过B点的曲线的切线方程是________(用一般式表示)【答案】【解析】由题意可得:角的终边与曲线的交点的纵坐标是或,设曲线的中心为.①当点的坐标是时,,.∴,∵角的终边与曲线的交点是∴∴∴过点的曲线的切线方程是,即.②当点的坐标是时,,.∴,∵角的终边与曲线的交点是∴∴∴过点的曲线的切线方程是,即.综上,过点的曲线的切线方程是.故答案为.点睛:本题主要考查三角函数的二倍角的运用及圆的切线方程的求解,对于这类题目,首先利用已知条件得到切点的坐标,进而可得到切线的斜率,利用点斜式方程即可得到圆的切线的一般方程,因此正确求出切点的坐标是解题的关键.学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...【答案】【解析】由题意,令,解得.∵函数的最小正周期为,,∴当时,可得第一个对称轴,当时,可得.∴函数在上有条对称轴根据正弦函数的图象与性质可知:函数与的交点有9个点,即关于对称,关于对称,…,即,,…,.∵∴∴故答案为.点睛:本题考查了三角函数的零点问题,三角函数的考查重点是性质的考查,比如周期性,单调性,对称性等,处理抽象的性质最好的方法结合函数的图象,本题解答的关键是根据对称性找到与的数量关系,本题有一个易错点是,会算错定义域内的交点的个数,这就需结合对称轴和数列的相关知识,防止出错.二. 选择题(本大题共4题,每题5分,共20分)13. 已知曲线的参数方程为,则曲线为()A. 线段B. 双曲线的一支C. 圆弧D. 射线【答案】A【解析】由代入消去参数t 得又所以表示线段。
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为A B ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____.7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______. 8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x 则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 10、代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=,平面α的一个法向量()0,3,1-=,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212xx f +=,则()()()=+++201921a f a f a f ( ).A .2018B .4036C .2019D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2.③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形.(1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z的轨迹方程为曲线1C .双曲线2C :122=-n y x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅,O 为坐标原点. (1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
…………………………………………1分说明:定义域1分,说明不是奇函数2分,说明偶函数4分,结论1分 (2)【方法一】对任意(]0,21∞-∈x x 、,且21x x >,有()()021<-x f x f 恒成立 ()()()0221122212121<⎪⎭⎫⎝⎛⋅--=-∴x x x xk x f x f ……………………………………2分 212221xx x x >⇒>21211x x k +<∴恒成立……………………………………………………………………2分 ()[)+∞⋃∞-∈⇒≤⇒,10,11k k……………………………………………………2分【方法二】设t x=2,则11-+=tk t y ,10≤<t 当0<k 时,函数()x f 在R 上单调递减,所以满足条件。
………………………2分当0>k 时,(]k t ,0∈时单调递减,[)+∞∈,k t 单调递减,…………………2分1≥∴k 1≥⇒k ……………………………………………………………………2分 ()[)∞⋃∞-∈∴,10,k19、(1)6π=w ………………………………………………………………………2分⎩⎨⎧=-=+100500A k k A ……………………………………………………………………1分⎩⎨⎧==300200k A ………………………………………………………………………2分 32πθ=…………………………………………………………………………2分()300326cos 200+⎪⎭⎫⎝⎛+=∴ππn n f ………………………………………………………1分 (2)令()()400cos ≥++=k wn A n f θ……………………………………………2分21326cos ≥⎪⎭⎫ ⎝⎛+⇒ππn []()Z k k k n ∈--∈⇒212,612[]12,1∈n[]10,6∈∴n 10,9,8,7,6=⇒n …………………………………………………3分 答:一年中10,9,8,7,6月是该地区的旅游“旺季”。