高考数学压轴题常考题型准高三学生按照这个复习考试就对了
- 格式:docx
- 大小:1.21 MB
- 文档页数:21
高考数学常考压轴题:复合函数1500字高考数学中,复合函数是一个经常考察的重要知识点。
掌握复合函数的概念和相关性质,对于解决许多与函数有关的问题非常有帮助。
下面我们来深入了解复合函数,看看高考中常出现的一些压轴题。
首先,我们来回顾一下复合函数的定义。
给定两个函数f(x)和g(x),则将g(x)的值作为f(x)的自变量,得到一个新的函数(h(x) = f(g(x))),称为f(x)和g(x)的复合函数。
通过复合函数,我们可以将一个函数的结果作为另一个函数的输入,从而进行更复杂的计算。
在复合函数的考察中,最常见的题型是要求计算给定函数的复合函数。
这种题目通常将两个函数给出,要求我们求出它们的复合函数。
在做这类题目时,我们需要按照定义,首先计算出g(x)的值,然后将结果作为f(x)的自变量,求出复合函数的表达式。
考生在做这类题目时,需要熟练掌握函数的运算规律和基本计算方法,以便能够对复合函数进行正确的计算。
此外,高考数学中还会出现一些更复杂的复合函数题目。
例如,给定一个函数f(x),已知它的定义域为[-1,1],求使f(g(x)) = 1的函数g(x)。
这类题目要求我们通过已知函数的复合函数与给定函数等于某个值的条件,来求解未知函数。
在解这类题目时,我们需要利用复合函数与给定函数之间的关系,建立方程并求解。
这就要求我们掌握方程的解法和函数的性质,才能正确地解答问题。
此外,复合函数还与其他数学概念有密切的联系。
例如,求复合函数的导数是一个常见的问题。
通过复合函数的求导法则,我们可以求出复合函数的导数表达式,进而进行更复杂的导数计算。
在高考中,有时会考查函数的导数与复合函数的关系,要求我们计算给定复合函数的导数。
在解这类题目时,我们需要熟练掌握导数的运算法则和计算方法,以便能够正确地求解复合函数的导数。
除了上述常见的题型,高考中还可能出现其他与复合函数相关的问题。
例如,给定一个函数f(x),要求我们找到使f(g(x)) = g(x)的函数g(x)。
高考压轴题数学题型在高考数学考试中,压轴题往往是最具挑战性和分值最高的题目。
这些题目通常涵盖了多个知识点,并需要考生具备较高的思维能力和解题技巧。
本文将对高考数学压轴题的常见题型进行深度解析,并提供一些应对策略,以帮助考生更好地应对这类题目。
一、数列与函数综合题数列与函数综合题是高考数学压轴题中的一类常见题型。
这类题目通常要求考生结合数列和函数的性质和图像,解决一些复杂的问题。
为了应对这类题目,考生需要熟练掌握数列和函数的性质,了解一些常见的数列和函数的图像和变化趋势。
同时,考生还需要具备较强的逻辑思维能力和分析问题的能力。
二、解析几何题解析几何题也是高考数学压轴题中的一类常见题型。
这类题目通常涉及到直线、圆、椭圆等几何图形的性质和变化。
为了应对这类题目,考生需要熟练掌握解析几何的基本概念和性质,了解一些常见的几何图形的图像和性质。
同时,考生还需要具备较强的空间想象能力和代数运算能力。
三、排列组合与概率题排列组合与概率题是高考数学压轴题中的另一类常见题型。
这类题目通常涉及到组合数学和概率的基本概念和应用。
为了应对这类题目,考生需要熟练掌握排列组合和概率的基本概念和公式,了解一些常见的组合数学问题和概率模型。
同时,考生还需要具备较强的逻辑思维能力和分析问题的能力。
针对以上三种压轴题题型,考生可以采取以下策略来提高解题效率:首先,考生需要熟练掌握基础知识,这是解决任何数学问题的前提。
对于压轴题来说,考生需要掌握的知识点更为深入和广泛,因此更需要考生在日常学习中多加积累。
其次,考生需要提高自己的解题技巧和分析问题的能力。
在解题过程中,考生需要善于观察和发现问题的本质,并能够将问题分解为更小的部分,逐一解决。
同时,考生还需要注意解题的规范性和准确性,避免因为粗心或格式不规范而失分。
最后,考生可以通过模拟考试来提高自己的解题能力和应试能力。
在模拟考试中,考生可以尝试不同类型的压轴题,找出自己的薄弱环节,并有针对性地进行复习和提高。
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考数学必做36道压轴题答案(解析几何部分)1-1 解:(Ⅰ)设双曲线的方程是12222=-by a x (0>a ,0>b ),则由于离心率2==ace ,所以a c 2=,223a b =. 从而双曲线的方程为132222=-ay a x ,且其右焦点为F (a 2,0). 把直线MN 的方程a x y 2-=代入双曲线的方程,消去y 并整理,得074222=-+a ax x .设M 11(,)x y ,N 22(,)x y ,则a x x 221-=+,22127a x x -=. 由弦长公式,得212214)(2||x x x x MN -+⋅=)27(4)2(222a a ---⋅==6.所以1=a ,3322==a b .从而双曲线的方程是1322=-y x . (Ⅱ)由m kx y +=和1322=-y x ,消去y ,得032)3(222=----m kmx x k . 根据条件,得0)3)(3(442222>----=∆m k m k 且032≠-k .所以 3322≠>+k m .设A ),(33y x ,B ),(44y x ,则24332k km x x -=+,332243-+=k m x x . 由于以线段AB 为直径的圆过原点,所以04343=+y y x x . 即 0)()1(243432=++++m x x km x x k .从而有03233)1(22222=+-⋅+-+⋅+m k km km k m k ,即22321m k =+. 所以 点Q 到直线l :m kx y +=的距离为|11|2632|1|1|1|22mm m k m d +=+=++=.由 13222-=m k ≥0,解得 36136≤≤-m 且01≠m . 由 13222-=m k 3≠,解得 ≠m 166±. 所以当26=m 时,d 取最大值226)361(26+=+,此时0=k . 因此d 的最大值为226+,此时直线l 的方程是26=y . 1-2 解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l=2c = 所以椭圆C 的焦距为4.(Ⅱ)设1122(,),(,)A x y B x y ,由题意知10y <,20y >,且直线l的方程为2).y x -联立22222),1y x x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y y b +--=,解得12y y ==. 因为222AF F B =,所以122y y -=,即222222(22)(22)233a a a b a b+-=⋅++,得3a =.而224a b -=,所以b =故椭圆C 的方程为221.95x y += 2-1 解:(Ⅰ)因为c e a ==所以 22222213c a b e a a -=== ,即2223b a =,又b == 所以22b =,23a =,即a =b =(Ⅱ)解法1:由(1)知12,F F 两点分别为(1,0)-,(1,0),由题意可设(1,)P t . 那么线段1PF 中点为(0,)2tN ,设(,)M x y .由于(,)2tMN x y =--,1(2,)PF t --, 则1,2(),2y t t MN PF x t y =⎧⎪⎨⋅=+-⎪⎩消去参数t ,得24y x =-,其轨迹为抛物线. 解法2:如图,因为M 是线段1PF 垂直平分线上的点,所以1||||MP MF =,即动点M 到定点1F 的距离与的定直线1l 的距离相等,1F ,由抛物线的定义知,动点M 的轨迹是以定点以定直线1l 为准线的抛物线,易得其方程是24y x =-.2-2 解:(Ⅰ)设动点E 的坐标为(,)x y ,依题意可知1222y y x x ⋅=-+-,整理得221(2)2x y x +=≠±. 所以动点E 的轨迹C 的方程为221(2)2x y x +=≠±. (II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+. 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++.由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++.当0k >时,因为12k k +≥0P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= 综上所述,点P纵坐标的取值范围是[. 3-1 解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为所以1c =,a =22b =. 所以W 的方程是22132x y +=.(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221,132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=.所以122632k x x k +=-+, 所以12023232x x kx k +==-+, 从而0022132y kx k =+=+.所以MN 斜率2002232332MNy k k k x m m k +==---+. 又因为CM DM =, 所以CD MN ⊥,所以222132332k k k m k +=---+,即 212323k m k k k=-=-++6[,0)(0,]1212∈-. 故所求m 的取范围是[]1212-. 3-2 解:(Ⅰ)依题意,c =1b =,所以a .故椭圆C 的方程为2213x y +=. (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设A ,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=. 综上所述,,m n 的关系式为10m n --=.4-1 解:(Ⅰ)设椭圆长半轴长及分别为a ,c ,由已知得,1,7.a c a c -=⎧⎨+=⎩解得a =4,c =3.所以椭圆C 的方程为221.167x y += (Ⅱ)设M (x ,y ),P(x ,1y ),其中[]4,4.x ∈- 由已知得222122.x y e x y+=+ 因为 34e =, 所以 2222116()9().x y x y +=+由点P 在椭圆C 上得,221112716x y -=,化简得 29112y =. 所以点M的轨迹方程为(44)3y x =±-≤≤, 轨迹是两条平行于x 轴的线段.4-2(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行. 设M (x , y ),由题意,得(),(,3)A x B x x ,所以||,||AM y MB y -=,因为||||3AM MB ,所以)()3y y -⨯=,即2213y x -=,所以点M 的轨迹W 的方程为221(0)3y x x -=>.(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M , 此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠;当02x 时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+, 又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x y x y x ⨯++==+--+, 因为点M 在W 上,所以220013y x -=,即220033y x =-,所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-, 所以tan tan 2MQP MPQ ∠=∠, 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠.综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立.5-1 解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等, 即(,2)M m 到2py =-的距离为3; 所以 232p-+=,解得2p =. 所以 抛物线P 的方程为24x y =.(ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 216160k ∆=-=,解得1k =±.所以切线方程为1y x =±-.(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. 所以 122x x pk +=,212x x p ⋅=-; 因为 11(,)A x y , 所以 直线OA :11y y x x =,与2p y =-联立可得11(,)22px p C y --, 同理得22(,)22px pD y --. 因为 焦点(0,)2pF , 所以 11(,)2px FC p y =--,22(,)2pxFD p y =--, 所以 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- 所以 以CD 为直径的圆过焦点F .5-2 解:(Ⅰ)如图,由题意得,22b c ==.所以b c ==2a =.所以所求的椭圆方程为22142x y +=. (Ⅱ)由(Ⅰ)知,C (2-,0),D (2,0).由题意可设CM :(2)y k x =+,P (1x ,1y ).MD CD ⊥,∴M (2,4k ).由 22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩,整理 得:2222(12)8840k x k x k +++-=.因为21284212k x k --=+, 所以2122412k x k-=+. 所以1124(2)12k y k x k =+=+,222244(,)1212k kP k k-++. 所以222222444(12)244121212k k k OM OP k k k k-+⋅=⋅+⋅==+++. 即OM OP ⋅为定值. (Ⅲ)设0(,0)Q x ,则02x ≠-.若以MP 为直径的圆恒过DP ,MQ 的交点,则MQ DP ⊥,∴0MQ DP ⋅=恒成立.由(Ⅱ)可知0(2,4)QM x k =-,22284(,)1212k kDP k k -=++. 所以202284(2)401212k kQM DP x k k k -⋅=-⋅+⋅=++. 即2028012k x k =+恒成立. 所以00x =.所以存在(0,0)Q 使得以MP 为直径的圆恒过直线DP ,MQ 的交点. 5-3 解:(I)直线l 的方程为210x y --=;(II) 由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=. (*)由2228(1)804m m m ∆=--=-+>,知28m <.设11(,)A x y ,22(,)B x y ,则由(*)式,有12212,21.82m y y m y y ⎧+=-⎪⎪⎨⎪=-⎪⎩由于1(,0)F c -,2(,0)F c ,且O 是12F F 的中点,依题意,由2AG GO =,2BH HO =,可知,11(,)33x y G ,22(,)33x yH . 若原点在以线段GH 为直径的圆内,则0OG OH ⋅<,即12120x x y y +<.而2222121212121()()(1)()2282m m m x x y y my my y y m +=+++=+-, 所以21082m -<,即24m <.又由已知1m >,所以12m <<. 即,实数m 的取值范围是(1,2).5-4 解:(Ⅰ)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:1(0)x x =>,化简得24(0)y x x =>.(Ⅱ)设过点M (m ,0)(m >0)的直线l 与曲线C 的交点为A 12(,)x y ,B 22(,)x y . 设直线l 的方程为x =ty +m , 由2,4x ty m y x=+⎧⎨=⎩得2440y ty m --=,△=16(2t +m )>0,于是12124,4.y y t y y m +=⎧⎨=-⎩ ①又1122(1,),(1,)FA x y FB x y =-=-.0FA FB ⋅<1212(1)(1)x x y y ⇔--+=1212()x x x x -++1+120y y < ②又24y x =,于是不等式②等价于2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+<⎣⎦ ③ 由①式,不等式③等价于22614m m t -+< ④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+<, 即33m -<<+由此可知,存在正实数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0FA FB ⋅<,且m的取值范围(3-+.6-1 解:(Ⅰ)由题意,2221,,a c b a b c ⎧-=⎪⎪=⎨⎪=+⎪⎩解得1a c ==.即:椭圆方程为.12322=+y x (Ⅱ)当直线AB 与x轴垂直时,AB =,此时AOB S ∆不符合题意故舍掉;当直线AB 与x 轴不垂直时,设直线 AB 的方程为:)1(+=x k y , 代入消去y 得:2222(23)6(36)0k x k x k +++-=.设1122(,),(,)A x y B x y ,则212221226,2336.23k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以AB =. 原点到直线的AB距离d =,所以三角形的面积12S AB d ==由224S k k =⇒=⇒=所以直线0AB l y -=或0AB l y +=.6-2 解:(I )椭圆C 的方程为)0(12222>>=+b a b y a x,由已知得2222.c e a a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩解得1,1a b c ===所以所求椭圆的方程为1222=+y x .(II)由题意知l 的斜率存在且不为零,设l 方程为2(0)x my m =+≠ ①,将①代入1222=+y x ,整理得 22(2)420m y my +++=,由0>∆得2 2.m >设),(11y x E ,),(22y x F ,则1221224222m y y m y y m -⎧+=⎪⎪+⎨⎪=⎪+⎩②由已知,12OBE OBF S S ∆∆=, 则||1||2BE BF = 由此可知,2BF BE =,即212y y =,代入②得,12212432222m y m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,消去1y 得222221629(2)2m m m ⋅=++ 解得,2187m =,满足22.m >即7m =±. 所以,所求直线l的方程为71407140x x --=+-=或.7-1 解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F .所以532422a ==+=. 所以2a =,又1c = 2413b =-=,故椭圆的方程为22143x y +=. (Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=,显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k -+=-⋅=++又||AB ==即2212(1)||34k AB k+==+, 又圆2F的半径r ==所以2221112(1)||,22347AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±,所以,r ==故圆2F 的方程为:22(1)2x y -+=. (Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ 所以12||y y -== 又圆2F的半径为r ==,所以21212121||||||27AF B S F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==2F 的方程为:22(1)2x y -+=.7-2 (Ⅰ)解 设直线PQ 的方程为)3(-=x k y .由⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得,062718)13(2222=-+-+k x k x k , 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②由直线PQ 的方程得 11(3)y k x =-,22(3)y k x =-.于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ 因为0OP OQ ⋅=,所以 02121=+y y x x . ④ 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (Ⅱ)证法1 ),3(),,3(2211y x AQ y x AP -=-=. 由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--=.而2221(2,)(,)2FQ x y y λλ-=-=,所以FM FQ λ=-. 证法2 (坐标法与几何证法结合)为使结论更具一般性,下面就椭圆方程为22221(0)x y a b a b +=>>,点A 的坐标为2(,0)a c进行证明(其中22c a b =+).如图,对三角形PHA ∆应用梅涅劳斯定理,得1AQ PM HEQP MH EA⋅⋅=,又2PM MH =, 所以,12AQ HE QP EA ⋅=, 作QD x ⊥轴于D ,则,12AD HE DH EA ⋅=, (二维问题一维化)设),(),,(2211y x Q y x P ,0(,0)E x , 将上式用坐标表示,得2201221012a x x x c a x x x c--⋅=--,整理得,2201212122[()]()2a a x x x x x x x c c-+=⋅+-. (这个过程虽然复杂,但却表现出强烈的目标意识!下面的目标是非常明确的,即用解析几何的常规方法,求出12x x +与12x x )显然,直线AP 不垂直x 轴,故可设直线AP 的方程为2()a y k x c=-,由22222(),1a y k x c x y ab ⎧=-⎪⎪⎨⎪+=⎪⎩消去y ,整理得,242622222222()0k a k a a k b x x a b c c +-+-=, 所以,24122222*********,()().()k a x x c a k b k a abc x x c a k b ⎧+=⎪+⎪⎨-⎪=⎪+⎩222422122222222222()()()a a k a ab x xc c c a k b c a k b -+=-=++ 22242622212122222222222222()2()2()()a a k a k a abc a b x x x x c c c a k b c a k b a k b-⋅+-=⋅-=+++ 所以,222220222222()2a b c a k b x c a k b a b+=⋅=+. 这说明,直线MQ 与x 轴的交点是椭圆的右焦点(,0)F c . 所以,若AP AQ λ=,即,AP AQλ=,则PH MH MFQD QD FQ λ===,即FM FQ λ=-.注:λ可以是一切正实数,当1λ=时,,P Q 重合. 8-1 解:(Ⅰ)由焦点F ( 1, 0 ) 在l 上, 得k = –21, 所以l : y = –21x +21. 设点N( m , n ) , 则有: 11()()1,12112 1.22n m m n -⎧-=-⎪-⎨++⎪+=⎩解得1,53.5m n ⎧=⎪⎨⎪=-⎩所以N (51, – 53), 因为54≠ ( –53)2 ,所以N 点不在抛物线C 上. (2) 把直线方程11--=kk y x 代入抛物线方程得: k 2y 2 + 4y + 4k +4 = 0 , 因为相交,所以△ = 16 (–k 2 – k + 1)≥ 0,解得251--≤ k ≤251+- 且k ≠ 0 . 由对称得⎪⎪⎩⎪⎪⎨⎧+++=+-=⋅--1221110000k a x k y k a x y ,解得 x 0 =12)1(222+--k k k a (2511+-≤ k ≤251+-,且k ≠ 0). 当P 与M 重合时, a = 1,所以 f ( k ) = x 0 =13122+-k k = – 3 +142+k (2511+-≤ k ≤251+-, 且k ≠ 0), 因为函数x 0 = f ( k )(k ∈R)是偶函数,且k > 0时单调递减. 所以当k =251--时, (x 0)min =5525+-, 1lim 00=→x k ,所以 x 0 ∈[5525+-,1). 8-2 解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b ,所以椭圆方程是:1322=+y x . (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由DF ED 2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y , 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),直线EF 的方程为:1-=y x 即01=+-y x .(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, 所以存在67=k ,满足题设条件. 9-1 解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===. 即2243a b =.又因为b == 所以24a =,23b =.故椭圆C 的方程为22143x y +=. (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-. ②由①得 21223243k x x k +=+,2122641243k x x k -=+代入② 整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上.由22(1),1.43y m x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+, 22943M N m y y m =-+. 则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++. 因为20m ≥,所以21133044(43)m -≤-<+. 所以5[4,)4OM ON ⋅∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是5[4,]4--.9-2 (Ⅰ)解:由题意可设抛物线的方程为22x py =(0)p ≠.因为点(,4)A a 在抛物线上,所以0p >. 又点(,4)A a 到抛物线准线的距离是5,所以452p+=,可得2p =. 所以抛物线的标准方程为24x y =.(Ⅱ)解:点F 为抛物线的焦点,则(0,1)F .依题意可知直线MN 不与x 轴垂直,所以设直线MN 的方程为1y kx =+.由21,4.y kx x y =+⎧⎨=⎩ 得2440x kx --=.因为MN 过焦点F ,所以判别式大于零. 设11(,)M x y ,22(,)N x y . 则124x x k +=,124x x =-.2121(,)MN x x y y =--2121(,())x x k x x =--.由于24x y =,所以'12y x =. 切线MT 的方程为1111()2y y x x x -=-, ① 切线NT 的方程为2221()2y y x x x -=-. ② 由①,②,得1212(,)24x x x x T + 则1212(,1)(2,2)24x x x x FT k +=-=-. 所以21212()2()0FT MN k x x k x x ⋅=---=. (Ⅲ)证明:2222(2)(2)44FTk k =+-=+.由抛物线的定义知 11MF y =+,21NF y =+.则12(1)(1)MF NF y y ⋅=++2121212(2)(2)2()4kx kx k x x k x x =++=+++244k =+.所以2FTMF NF =⋅.即FT 是MF 和NF 的等比中项.10-1 (Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PFO ∠=︒, 所以1bc . 所以 2222ab c .所以 椭圆G 的标准方程为2212x y +=. (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ∆=-+>,1122211224,1222.12km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以||AB ===同理||CD =因为 ||||AB CD =, 所以=因为 12m m ≠, 所以 120m m +=.(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则1221m m dk.因为 120m m +=, 所以 1221m dk.所以||S AB d =⋅=2221121k m m -++=≤=.(或S ==≤ 所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为10-2 (Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. 将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① 因为 2AF FB =, 所以 122y y =-. ②联立①和②,消去12,y y,得4m =±. 所以直线AB的斜率是±.(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅-==所以 0m =时,四边形OACB 的面积最小,最小值是4.11-1 解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① 又点3(1,)2M 在椭圆C 上,所以221914a b += ② 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =||OP = 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. 由于点P 在椭圆C 上,所以 2200143x y +=. 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式.又||OP =====因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. 综上,所求OP的取值范围是. (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥把④⑤⑥代入③整理得0034x ky =- 与22003412x y +=联立消0x 整理得202943y k =+.由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+, 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤. 所求OP的取值范围是. 11-2 解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+, 所以24622+=+c a ,,即c a =,所以c =,所以3a =,c =所以1b =,椭圆M 的方程为1922=+y x . (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x ,同理可得2219327n n x +-=,所以1961||22++=n n BC ,222961||nn n n AC ++=, 964)1()1(2||||212+++==∆n n n n AC BC S ABC, 设21≥+=nn t , 则22236464899t S t t t==≤++, 当且仅当38=t 时取等号, 所以ABC ∆面积的最大值为83. 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-, 得 1212(3)(3)0x x y y --+=. 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点), 所以121||||2ABC S DC y y ∆=-12== 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 12-1 解:(Ⅰ)因为四边形AMBN 是平行四边形,周长为8,所以两点,A B 到,M N 的距离之和均为4,可知所求曲线为椭圆.由椭圆定义可知,2,a c ==1b =,所求曲线方程为1422=+y x . (Ⅱ)由已知可知直线l 的斜率存在,又直线l 过点(2,0)C -,设直线l 的方程为:(2)y k x =+,代入曲线方程221(0)4x y y +=≠,并整理得2222(14)161640k x k x k +++-=, 点(2,0)C -在曲线上,所以D (228214k k -++,2414kk +),(0,2)E k ,CD =2244(,)1414kk k++,(2,2)CE k =, 因为OA //l ,所以设OA 的方程为y kx =.代入曲线方程,并整理得22(14)4k x +=,所以(A .22222228814142441414k CD CE k k k OA k k+⋅++==+++,所以2CD CE OA ⋅为定值.12-2 解:(Ⅰ)由题意得2c a =① 因为椭圆经过点)21,26(P ,所以22221()221a b += ② 又222a b c =+ ③由①②③ 解得 22=a ,122==c b .所以椭圆方程为2212x y +=. (Ⅱ)以OM 为直径的圆的圆心为(1,)2t ,半径r =方程为222(1)()124t t xy -+-=+,因为以OM 为直径的圆被直线3450x y --=截得的弦长为2, 所以圆心到直线3450x y --=的距离d 2t=. 所以32552t t--=,解得4t =. 所求圆的方程为22(1)(2)5x y -+-=.(Ⅲ)方法一:过点F 作OM 的垂线,垂足设为K ,由平几知:2ONOK OM =.则直线OM :2t y x =,直线FN :2(1)y x t=--,由,22(1),t y x y x t ⎧=⎪⎪⎨⎪=--⎪⎩得244K x t =+.所以2M ONx x =22444422=⋅+⋅+=t t . 所以线段ON方法二:设00(,)N x y ,则 ),1(00y x FN -=,),2(t OM =,),2(00t y x MN --=,),(00y x ON =.因为 OM FN ⊥,所以 0)1(200=+-ty x .所以 2200=+ty x . 又因为 ON MN ⊥,所以0)()2(0000=-+-t y y x x , 所以22002020=+=+ty x y x . 所以22020=+=y x 为定值.12-3 解:(Ⅰ)(ⅰ)因为 圆O 过椭圆的焦点,圆O :222x y b +=,所以b c =,所以2222b ac c =-=, 所以222a c =,所以e =(ⅱ)由90APB ∠=及圆的性质,可得OP =,所以2222,OP b a =≤所以222a c ≤ 所以212e ≥,12e ≤<. (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y x x x y -=--整理得220011x x y y x y +=+ 因为22211x y b +=所以PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.所以11x x y y +=22x x y y +, 所以021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,所以2222222220022442a y b x a b a b a b b bON OM ++===,所以2222a b ON OM+为定值,定值是22a b . 13-1 解:(Ⅰ)由题意可知:222,c c e a a b c ⎧=⎪⎪==⎨⎪=+⎪⎩解得 1,2==b a .所以椭圆的方程为:1422=+y x . (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(0)44)(41(4)8(222>-+-=∆m k km ,整理得01422>+-m k , 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+. 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A , 所以1212(2)(2)0x x y y --+=,2212122121)())((m x x km x x k m kx m kx y y +++=++=,即04))(2()1(221212=+++-++m x x km x x k ,也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k , 整理得:01216522=++k mk m , 解得562k m k m -=-=或均满足01422>+-m k . 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去; 当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(. 故直线l 过定点,且定点的坐标为)0,56(. 13-2 解:(I )由题意可得OP OM ⊥, 所以0OP OM ⋅=,即(,)(,4)0x y x -=,即240x y -=,即动点P 的轨迹W 的方程为24x y =.(II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 则216640k ∆=->,即||2k >.12124,16x x k x x +==.直线212221':()y y A B y y x x x x --=-+,所以212221()y y y x x y x x -=-++,2222122121()4()4x x y x x x x x -=-++,222121221444x x x x x y x x --=-+,2112y 44x x x xx -=+,即2144x x y x -=+. 所以,直线'A B 恒过定点(0,4). 13-3 解:(Ⅰ)设动点M 的坐标为(,)x y ,|1|x =+,化简得24y x =,所以点M 的轨迹C 的方程为24y x =.(Ⅱ)设,A B 两点坐标分别为11(, )x y ,22(,)x y , 则点P 的坐标为1212(,)22x x y y ++. 由题意可设直线1l 的方程为(1)y k x =- (0)k ≠,由24, (1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=. 2242(24)416160k k k .因为直线1l 与曲线C 于,A B 两点, 所以12242x x k +=+,12124(2)y y k x x k+=+-=. 所以点P 的坐标为222(1, )k k+. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为2(12,2)k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为222(12)1k y k x k k+=---, 整理得2(3)0yk x k y +--=.于是,直线PQ 恒过定点(3, 0)E ;当1k =±时,直线PQ 的方程为3x =,也过点(3, 0)E . 综上所述,直线PQ 恒过定点(3, 0)E . (Ⅲ)可求的||2EF ,所以FPQ ∆面积121||(2||)2(||)42||||S FE k k k k =+=+≥. 当且仅当1k =±时,“=”成立,所以FPQ ∆面积的最小值为4. 14-1 解:(Ⅰ)由题意知:1c .根据椭圆的定义得:22222(11)()22a ,即2a .所以 2211b.所以 椭圆C 的标准方程为2212x y +=. (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立.当直线l 的斜率为0时,(A B .则 7,0)(2,0)16m m . 解得 54m.当直线l 的斜率不存在时,(1,22A B -. 由于52527(1,)(1,)424216,所以54m . 下面证明54m时,716QA QB ⋅=-恒成立. 显然 直线l 的斜率为0时,716QA QB ⋅=-. 当直线l 的斜率不为0时,设直线l 的方程为:1xty ,1122,,,A x y B x y .由221,21x y x ty 可得:22(2)210t y ty .显然0∆.1221222,21.2t y y t y y t因为 111x ty ,221x ty ,所以 112212125511(,)(,)()()4444x y x y ty ty y y2121211(1)()416t y y t y y2221121(1)24216t t t t t22222172(2)1616t t t . 综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 14-2解:(Ⅰ)由题意可知2)(136abe -==,得 223b a =. 因为1,1B()在椭圆上11122=+b a 解得:34422==b ,a .故椭圆M 的方程为:143422=+y x . (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为k -,因此PB ,QB 的直线方程分别为(1)1y k x =-+,(1)1y k x =--+.由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k .因为点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P所以22361131P k k x k --⋅=+,即2236131P k k x k --=+,同理1316322+-+=k k k x Q .所以=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P .因为(2,0),(1,1)A C --,所以13AC k =, 即 AC PQ k k =. 所以向量AC //PQ ,则总存在实数λ使AC PQ λ=成立.15-1 解:(Ⅰ)因为ace ==22, 12122=+a b ,222c b a +=所以2=a ,2=b ,2=c所以14222=+y x . (Ⅱ)设直线BD 的方程为b x y +=2所以⎩⎨⎧=++=42222y x bx y 0422422=-++⇒b bx x所以06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----②因为12BD x =-===,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =所以2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2.(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y=]1)(2[22212121++--++x x x x x x b ------*将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0.15-2 解:(Ⅰ)设1122(,),(,)C x y D x y ,直线l 的方程为1(0)y kx k =+≠.由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)16480k k k ∆=++=+>,12224k x x k -+=+,12234x x k -=+, 由已知1(,0),(0,1)E F k-, 又CE FD =,所以11221(,)(,1)x y x y k---=- 所以121x x k --=,即211x x k+=-, 所以2214k k k-=-+,解得2k =±,符合题意, 所以,所求直线l 的方程为210x y -+=或210x y +-=. (Ⅱ)2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+,平方得 22212212(1)4(1)y x y x -=+, 又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=.假设满足条件的实数k 存在,则由(Ⅰ)得12224k x x k -+=+,12234x x k-=+. 所以231030k k -+=,解得3k =或13k =, 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以存在实数k ,使得12:2:1k k =,且3k =.16- 1 解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191,41,2.a b c a a b c ⎧+=⎪⎪⎨=⎪⎪=+⎩解得24a =,23b =,故椭圆C 的方程为22143x y +=. (Ⅱ)因为过点(2, 1)P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1,x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ① 因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=. 整理,得32(63)0k +=. 解得12k =-. 所以直线l 方程为11(2)1222y x x =--+=-+. 将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为3(1, )2. (Ⅲ)若存在直线1l 满足条件,设直线1l 的方程为1(2)1y k x =-+,代入椭圆C 的方程得22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以222111111[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>.。
压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。
2024高考数学压轴题题型总结一、函数与导数综合题。
1. 题目。
已知函数f(x)=e^x-ax 1(a∈ R)。
(1)求f(x)的单调区间;(2)若对于任意x≥slant0,f(x)≥slant0恒成立,求a的取值范围。
2. 解析。
(1)首先对函数f(x)=e^x-ax 1求导,可得f^′(x)=e^x-a。
当a≤slant0时,e^x>0,所以f^′(x)=e^x-a>0恒成立,此时f(x)在(-∞,+∞)上单调递增。
当a > 0时,令f^′(x)=0,即e^x-a = 0,解得x=ln a。
当x∈(-∞,ln a)时,f^′(x)<0,f(x)单调递减。
当x∈(ln a,+∞)时,f^′(x)>0,f(x)单调递增。
(2)由(1)可知,当a≤slant1时,因为x≥slant0,f(x)在[0,+∞)上单调递增,所以f(x)_min=f(0)=e^0-a×0 1=0,满足f(x)≥slant0恒成立。
当a > 1时,f(x)在[0,ln a)上单调递减,在(ln a,+∞)上单调递增,那么f(x)_min=f(ln a)=a aln a-1。
令g(a)=a aln a 1(a > 1),对g(a)求导得g^′(a)=-ln a<0(a > 1)。
所以g(a)在(1,+∞)上单调递减,且g(1)=0,所以g(a)<0,即f(ln a)<0,不满足f(x)≥slant0恒成立。
综上,a的取值范围是(-∞,1]。
二、圆锥曲线综合题。
1. 题目。
已知椭圆C:frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a > b > 0)的离心率e=(√(3))/(2),且过点A(2,0)。
(1)求椭圆C的方程;(2)设直线l:y = kx + m与椭圆C交于P、Q两点,且→OP·→OQ=0(O为坐标原点),求证:直线l与圆x^2+y^2=(4)/(5)相切。
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
高考数学压轴题常考题型,准高三学生按照这个复习就
对了
到了高三之后,特别是第二学期,学生们就要大量的刷题,但是有的人不管做多少题就是没有成效,主要还是因为没有抓到重点,本文分享20组高考数学压轴题常考题型,准高三学生就按照这个复习、刷题吧。
很多学生成绩不好就是因为数学拉低了分数,相对来说数学又是提分最快的一个科目,只要抓住了考点、考察形式等等,就能拿高分。
数学不好的学生能学哪些热门专业呢?这里介绍计算机专业。
计算机人才在我国是很紧缺的,像兰州北大青鸟学校的学生一般在毕业之前就会招聘进入企业工作。
兰州北大青鸟计算机学校的教学得到了社会及企业的认可,所以在该校毕业的学生,就业会轻松很多。