七年级上册数学有理数的加减混合运算典型例题的讲解与答案解析
- 格式:pdf
- 大小:590.02 KB
- 文档页数:26
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
《有理数的加减混合运算》知识点解读知识点1 将有理数的加减混合运算统一为加法运算(重点)★在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).★在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.★和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.★省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2 计算:11(0.5)(3) 3.75(8).42---+-+ 分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)97224422244-++-=--++=-+=-. 点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 有理数加减混合运算的注意事项①运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉,因为一个数包括两个方面,一方面是符号,另一方面是绝对值.例如8-5+7应变成8+7-5,而不能变成8-7+5;②应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便;③当分数、小数混在一块运算时,可以把它们统一成分数或小数再运算; ④如果有大括号和小括号应当先转化小括号里的运算,再转化大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.【例3】 计算:⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312; 分析:异分母分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312 =-837-7.5-2147+312=-837-2147-7.5+312=-30-4=-34.知识点4 既含小数又含分数的有理数加减混合运算解题时先将减法转化为加法,再按照以下的四条思路进行转化:一是将小数统一化成分数,二是将分数统一化成小数,三是将小数与小数,分数与分数分别结合,四是将各数的整数部分和分数(小数)部分分别结合.析规律 有理数加减混合运算的运算顺序 注意运算的顺序,如果是同一级的运算,可以同时完成化简绝对值符号和减法变加法的运算过程.有括号的要先计算括号里面的,有绝对值符号的也要先根据数或式的取值范围化去绝对值符号再进行运算.【例4】 计算:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8);(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13. 分析:有多重括号的,先计算小括号里面的,再计算大括号里面的,有绝对值符号的要先把绝对值符号化简.解:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8)=-4.2-[(-0.2)-(-7.1)]+(-3.8)=-4.2-[(-0.2)+(+7.1)]+(-3.8)=-4.2+(-6.9)+(-3.8)=-14.9.(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13 =(-1)-⎣⎢⎡⎦⎥⎤-2+(+4)+12+⎝ ⎛⎭⎪⎫-13 =(-1)-216=-316. 知识点5 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3 一名潜水员在水下80米处发现一条鲨鱼在离他不远处的上方25米的位置往下游追逐猎物,当它向下游42米后追上猎物,此时猎物做垂死挣扎立刻反向上游,鲨鱼紧紧尾随,又游了10米后被鲨鱼一口吞吃.(1)求鲨鱼吃掉猎物时所在的位置;(2)与刚开始潜水员发现鲨鱼的位置相比,鲨鱼的位置有什么变化?解析:本题主要考查应用有理数的加减混合运算解释实际问题,向上游与向下游是一对具有相反意义的量,可以用正数、负数来表示.若设向上游的高度为正数,则向下游的高度为负数.求出几个有理数的和,就可以判断鲨鱼吃掉猎物时所在的位置.答案:(1)设鲨鱼向上游的高度为正,潜水员在水下80米记为-80米,依据题意可得,鲨鱼吃掉猎物时所在的位置是-80+25-42+10=(-80-42)+(25+10)=-122+35=-87(米).(2)鲨鱼原来的位置是-80+25=-55(米).所以鲨鱼原来在水下55米处.所以与刚开始潜水员发现鲨鱼的位置相比,它向下游了32米.点拨:题目中已知条件给出一对具有相反意义的量,但没规定正负,解题时应先规定正、负才能解决问题.【类型突破】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.知识点6 折线统计图(难点)根据相关数据,在图中标出能反映这些数据特征的点,然后再按照事物发展的一种趋势,将标出的点连成折线,这样就得到了折线统计图.★画折线统计图的步骤:(1)首先确定题目中折线统计图的标题,即应弄清楚要画的是说明什么问题的折线统计图.(2)确定一个量或一个数值为0点,有的题目直接给出0点.(3)标出横线和竖线的单位,使看图的人能够看懂,并能正确使用.(4)恰当选择单位长度,使画出的折线统计图既不太靠上,又不太靠下,有明显的上升和下降的幅度,能清楚地看出变化的情况.(5)竖线上选取的最高点最好比实际最高值略高一些,最低点比实际最低值略低些,这样能突出最大值和最小值的变化幅度.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38 +0.63 +1.17 +1.30 +0.85 +1.21 +1.02 以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。
1.7 有理数的加减混合运算知识点 1 有理数的加减法统一成加法1.把(-3)-(-6)+(-5)-(+9)写成省略加号的形式是____________,结果读作“____________”,或读作“____________”.2.下列式子可读作“负10,负6,正3,负7的和”的是( ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7 C .-10-(-6)-3-(-7) D .-10-(-6)-(-3)-(-7) 知识点 2 有理数的加减混合运算3.计算:(-73)+9.1-(-7)+(-9),正确的结果是( ) A .-79.9 B .61.9 C .-65.9 D .65.94.计算(-9)-(+3)+(-5)-(-7)-⎝⎛⎭⎫+13,所得结果是________. 5.下面是小明同学做的一道数学题的过程: 1+45-⎝⎛⎭⎫+23-⎝⎛⎭⎫-15-⎝⎛⎭⎫+113 =145-23+15-113……① =⎝⎛⎭⎫145+15-⎝⎛⎭⎫23-113……②=2-⎝⎛⎭⎫-23……③ =2+23=223.……④ 请指出他从哪一步开始出错________(填序号),正确的结果是________. 6.计算:(1)(-20)-(-5)+(+13)-(+7);(2)35-3.7-(-25)-1.3;(3)|-3.5|-⎝⎛⎭⎫-52+⎪⎪⎪⎪-32-1;(4)635+24-18+425-16+18-6.8-3.2.知识点 3 有理数加减混合运算的应用7.某潜水艇停在海平面下500米处,先下降130米,又上升200米,这时潜水艇停在海平面下________米处.( )A .430B .530C .570D .4708.某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元9.某种粮大户共有5块小麦试验地,每块试验地今年的收成与去年相比情况如下(增产为正,减产为负,单位:kg):49,-30,12,-15,28,请你计算一下,今年的小麦产量与去年相比增产________kg.10.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2 m ,又向甲队方向移动了0.5 m ,僵持一会儿,又向乙队方向移动了0.4 m ,随后又向甲队方向移动了1.3 m ,在大家的欢呼鼓励声中,标志物又向甲队方向移动了0.9 m .若规定标志物向某队方向移动2 m ,该队即可获胜,则这次比赛谁赢了?11.若三个不相等的有理数的和为0,则下列结论正确的是()A.三个加数全是0B.至少有两个加数是负数C.至少有一个加数是负数D.至少有两个加数是正数12.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c 的值为()A.-1 B.0 C.1 D.213.分别输入-1,-2,按图1-7-1所示的程序运算,则输出的结果依次是________,________.图1-7-114.我们规定“※”是一种数学运算符号,A※B=(A+B)-(A-B),那么3※(-5)=________.15.小明的父亲上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(涨记为正,跌记为负).(1)星期三收盘时,每股是________元;(2)本周内最高价是每股________元,最低价是每股________元.16.请根据图1-7-2所示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.图1-7-217.(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0.(2)若有1,2,3,…,2007,2008共2008个数,请在每两个数之间添上“+”或“-”,使它们的和为0.(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2018,2019共2019个数的每两个数之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.教师详解详析【备课资源】【详解详析】1.-3+6-5-9 负3,正6,负5与负9的和 负3加6减5减9 2.B3.C [解析] 原式=-73+9.1+7-9=(-73-9)+(9.1+7)=-82+16.1=-65.9. 4.-10135.② 06.解:(1)原式=-20+5+13-7 =(-20-7)+(5+13)=-27+18 =-9.(2)原式=35+25-3.7-1.3=⎝⎛⎭⎫35+25-(3.7+1.3) =1-5 =-4.(3)原式=3.5+52+52=3.5+⎝⎛⎭⎫52+52 =3.5+5 =8.5.(4)原式=⎝⎛⎭⎫635+425+(24-16)+(-18+18)+(-6.8-3.2) =11+8+0-10 =9.7.A [解析] (-500)+(-130)+200=-500-130+200=-430(米),即这时潜水艇停在海平面下430米处.故选A.8.C [解析] 由题意可得该股票这天的收盘价为10-1.8+1=9.2(元).9.44 [解析] 49+(-30)+12+(-15)+28=49+12+28+[(-30)+(-15)]=89+ (-45)=44(kg).10.[解析] 设标志物向甲队方向移动为正,向乙队方向移动为负,则标志物移动数依次为-0.2 m,+0.5 m,-0.4 m,+1.3 m,+0.9 m.计算它们的和,看比2 m大还是小.解:设标志物向甲队方向移动为正,向乙队方向移动为负,则-0.2+0.5-0.4+1.3+0.9=2.1(m)>2 m,故这次比赛甲队赢了.11.C[解析] 三个不相等的数相加为0的三种情况:(1)可能是有一对相反数和一个0;(2)可能是两个正数相加等于那个负数;(3)可能是两个负数相加等于那个正数.12.D[解析] 最小的正整数是1,最大的负整数是-1,绝对值最小的有理数是0,所以a-b+c=1-(-1)+0=2.13.10[解析] 当输入-1时,输出的结果为-1+4-(-3)-5=-1+4+3-5=1;当输入-2时,输出的结果为-2+4-(-3)-5=-2+4+3-5=0.14.-10[解析] 根据规定可知:3※(-5)=[3+(-5)]-[3-(-5)]=(-2)-8=-10.15.(1)34.5(2)35.52616.解:(1)因为a的相反数是3,b的绝对值是7,所以a=-3,b=±7.(2)因为a=-3,b=±7,c和b的和是-8,所以当b=7时,c=-15;当b=-7时,c=-1.当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.综上所述,8-a+b-c的值为33或5.17.解:(1)1-2+3-4+5-6-7+8-9+10-11+12=0.(2)1-2+3-4+5-6+...+1003-1004-1005+1006-1007+1008- (2007)2008=0.(3)不能.理由:由(1)(2)可知当所有数的个数是4的整数倍时,在每两个数之间添上“+”或“-”,它们的和才能为0,2019不是4的整数倍,所以在每两个数之间添上“+”或“-”不能使它们的和为0.。
第二章有理数的加减混合运算一、单选题1.计算1﹣3+5﹣7+9=﹣1+5+9﹣+﹣﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【解析】【分析】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【点睛】考查了有理数的加减混合运算,方法指引:﹣在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.﹣转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.2.计算(-3)-(+5)+(-7)-(-5)+213所得的结果是()A.-713B.1213C.-723D.-1223【答案】C【解析】【分析】先去括号、将带分数进行拆分变形,再计算有理数的加减法即可得.【详解】 原式1357523=---+++, 183=-+, 273=-, 故选:C .【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解题关键.3.计算5372688⎛⎫-+- ⎪⎝⎭的值为( ) A .23- B .5212- C .1324- D .111424- 【答案】B【解析】【分析】可以先让同分母的分数相结合,然后按照有理数的运算法则计算即可得出答案.【详解】5372688⎛⎫-+- ⎪⎝⎭537=-+(2)68851=-36452=-12故选:B.【点睛】本题主要考查有理数的加减混合运算,掌握有理数加减混合运算顺序和法则是解题的关键.4.下列各式不成立的是()A.20+(-9)-7+(-10)=20-9-7-10B.-1+3+(-2)-11=-1+3-2-11C.-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4D.-7+(-18)+(-21)-34=-7-(18-21)-34【答案】D【解析】【分析】用验算法进行解答,要注意去括号后正负号的变化.【详解】解:A、20+(-9)-7+(-10)=20-9-7-10,其结果正确;B、-1+3+(-2)-11=-1+3-2-11,其结果正确;C、-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4其结果正确;D、-7+(-18)+(-21)-34=-7-18-21-34=-7-(18+21)-34,其结果不正确.故选:D.本题主要考查在进行有理数的加减混合运算时,去括号后是否变换运算符号.5.把1,2,3,4,…,2016的每一个数的前面任意填上“+”号或“-”号,然后将它们相加,则所得结果为( )A .偶数B .奇数C .正数D .有时为奇数,有时为偶数【答案】A【解析】【分析】因为偶数个奇数相加,故结果是偶数.【详解】因为相邻两个数的和与差都是奇数,且是从1开始到2016,共有1008对,则所得的结果肯定是偶数个奇数相加,故结果是偶数.故选:A .【点睛】本题考查了有理数的加减混合运算,本题根据相邻两个数的和与差都是奇数作为突破口:当有偶数个奇数相加时,结果是偶数. 6.现有a b c d ,,,四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a b c d ,,,这四个正整数( ) A .各不相等B .有且只有两个数相等C .有且只有三个数相等D .全部相等【答案】B【解析】设a b c d ≤≤≤,得到 6a b +=,9c d +=,分别求得a ,b ,c ,d 的值,即可判断.【详解】﹣四个正整数a ,b ,c ,d 具有同等不确定性,不妨设a b c d ≤≤≤,故 6a b +=,9c d +=,(1)当1a =时,得5b =,﹣a b c d ≤≤≤,﹣、c d 为4或5,不合题意舍去,所以1a ≠,(2)当2a =时,得4b =,﹣4c =,5d =,符合题意,四个数是:2,4,4,5;(2)当3a =时,得3b =,﹣3c =,6d =,不符合题意,两数之和不能得7;或4c =,5d =,符合题意,四个数是:3,3,4,5;综上所述:这四个数只能是:2,4,4,5或3,3,4,5.故选:B .【点睛】本题考查了以代数为背景的推理与论证.7.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A .210B .130C .390D .210- 【答案】A【解析】【分析】认真审题可以发现:A 比C 高90米,C 比D 高80米,D 比E 高60米,F 比E 高50米,F 比G 高70米,B 比G 高40米,然后转化为算式,通过变形得出A B -的关系即可.【详解】解:由表中数据可知:A C 90-=﹣,C D 80-=﹣,D E 60-=﹣,E F 50-=-﹣,F G 70-=﹣,G B 40-=-﹣,﹣+﹣+﹣+﹣+﹣+﹣,得:()()()()()()A C C D D E E F F G G B A B 908060507040210-+-+-+-+-+-=-=++-+-=. ∴观测点A 相对观测点B 的高度是210米.故选:A .【点睛】此题主要考查正负数在实际生活中的应用以及有理数加减混合运算的应用,正确理解题意、熟练掌握有理数的加法法则是关键.8.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( ). A .-1B .0C .1D .2【答案】D【解析】【分析】先分别根据正整数、负整数、绝对值的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】由题意得:1a =,1b =-,0c则1(1)0a b c -+=--+ 11=+2=故选:D .【点睛】本题考查了正整数、负整数、绝对值的定义、有理数的加减法,熟练掌握各定义与运算法则是解题关键. 9.“三个数-7,12,-2的代数和”与“它们的绝对值的和”的差为( )A .-18B .-6C .6D .18【答案】A【解析】【分析】根据题意列出算式,根据绝对值的性质和有理数的加减混合运算法则计算即可.【详解】解:(-7)+12+(-2)-(|-7|+|+12|+|-2|)=3-21=-18,故选A.【点睛】本题考查的是有理数的加减混合运算,掌握绝对值的性质以及有理数的加减混合运算法则是解题的关键.+--++--+++--值为()10.计算123456782017201820192020A.0B.﹣1C.2020D.-2020【答案】D【解析】【分析】根据加法的结合律四个四个一组结合起来,每一组的和都等于-4,共505组,计算即可.【详解】解:1+2-3-4+5+6-7-8+9+10-11-12+……+2017+2018-2019-2020=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+……+(2017+2018-2019-2020)=(-4)+(-4)+(-4)+(-4)+……+(-4)=(-4)×505=-2020.故选:D.【点睛】本题考查了有理数的加减混合运算,观察出规律是解题的关键.二、填空题11.添括号:11111236--+=-______. 【答案】111236⎛⎫+- ⎪⎝⎭ 【解析】【分析】根据有理数加减混合运算去括号法则,从而完成求解.【详解】11111236--+=-111236⎛⎫+- ⎪⎝⎭故答案为:111236⎛⎫+-⎪⎝⎭. 【点睛】本题考察了有理数加减混合运算的知识;求解的关键是熟练掌握有理数加减混合运算中去括号法则,即可完成求解.12.某天在8个不同时间测得水池中的水位情况如下(单位:cm):+3,-6,-1,+5,-4,+2,-3,-2(规定上升为正,下降为负),那么这天水池中水位的最终变化情况是____.【答案】下降了6 cm.【解析】【分析】明确上升为正,为负下降.依题意列式计算即可求解.【详解】解:依题意得:(+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2)=3-6-1+5-4+2-3-2=-6(cm),即下降了6 cm.故答案为:下降了6 cm.【点睛】本题考查正数和负数的加减混合运算,解题的关键是明确正负数代表的实际含义.13.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.【答案】-1.75【解析】【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算. 14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.【答案】155 225【解析】【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),﹣第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.15.若,a b 互为相反数,,c d 互为倒数,数轴上表示数m 的点到2-的距离是3,则323a cd b m -+-的值为_______.【答案】3-或7-.【解析】【分析】利用相反数以及互为倒数、绝对值的性质分别化简得出答案.【详解】解:﹣a ,b 互为相反数,c ,d 互为倒数,数轴上表示数m 的点到2-的距离是3,﹣0a b +=,1cd =,1m =或5-,则当1m =时,323||3()2||0213a cd b m a b cd m -+-=+--=--=-;当5m =-时,323||3()2||0257a cd b m a b cd m -+-=+--=--=-; 故323a cd b m -+-的值为3-或7-.故答案为:3-或7-.【点睛】本题主要考查了有理数的混合运算,正确分类讨论是解题关键.16.已知|a|=1,|b|=2,|c|=4,且a>b>c,则a -b+c=________ .【答案】−1或−3【解析】【分析】根据|a|=1,|b|=2,|c|=4,且a >b >c ,可得出c =−4,b =−2,a =±1,由此可得出答案.【详解】解:由题意得:a=±1,b=−2,c=−4,当a=−1,b=−2,c=−4时a−b+c=−3;当a=1,b=−2,c=−4时,a−b+c=−1;故答案为−1或−3.【点睛】本题考查有理数的加减混合运算及绝对值的意义,难度不大,根据题意确定a、b、c的值是关键.17.111111123456761220304256++++++=__________________【答案】3 288【解析】【分析】把每个分数化为“整数+分数”的形式,整数与整数部分相加,分数与分数部分相加,并把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果【详解】解:111111 1234567 61220304256 ++++++111111=()+1+2+3+4+5+6+7 61220304256+++++111111111111=()28 233445566778-+-+-+-+-+-+11=2828-+3=288【点睛】完成此题,应认真审题,运用运算技巧灵活解答.18.计算111112612209900++++⋯+的值为__________________. 【答案】99100 【解析】【分析】 根据111(1)1n n n n =-++原式的每一项都写成两项之差,然后再进行计算即可得. 【详解】原式=1-11111112233499100+-+-++- =1-1100 =99100﹣ 故答案为99100. 【点睛】本题考查了分数的运算,熟练掌握111(1)1n n n n =-++是解题的关键. 三、解答题19.计算:()()3247252410-+---+--.【答案】-40【解析】【分析】根据有理数的加、减法法则计算即可.【详解】解:原式3247252410=--++-79252410=-++-3010=--40=-.【点睛】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.20.简便运算:(1)1131130.25 3.75 4.5244-+---; (2)()()11312 1.7557.252 2.5424⎛⎫⎛⎫-+--+---- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)92-;(2)9 【解析】【分析】(1)根据加法结合律、交换律和有理数的加减法运算法则计算即可;(2)根据加法结合律、交换律和有理数的加减法运算法则计算即可.【详解】解:(1)原式35151159244442=-+--- 39151551224444⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭332=-- 92=-; (2)原式131135121572442442=-+-+- 4972911511444224⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭ 1311344=++ 9=.【点睛】此题考查的是有理数的加减法简便运算,掌握加法结合律、交换律和有理数的加减法运算法则是解决此题的关键.21.某检修小组开汽车从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下:4,7,9,8,6,7,2-+-++--.(单位:km )(1)求收工时距A 地多远?(2)在第几次纪录时距A 地最远(3)若每千米耗油0.5升,出发时油箱加满油且容量为20升,求途中还需补充多少升油?【答案】(1)收工时距A 1km ;(2)第5次纪录时距A 地最远;(3)途中还需补充1.5升.【解析】【分析】(1)由收工时距A 地的距离等于所有记录数字的和的绝对值,从而可得答案;(2)分别计算每次距A 地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.5升,就是共耗油数,再减去油箱中存油量即可得到答案.【详解】解:(1)47986721-+-++--=-,所以11,-=故收工时距离A 地1km ;(2)由题意得,第一次距A 地44-=千米;第二次距A 地473-+=千米;第三次距A 地4796-+-=千米;第四次距A 地47982-+-+=千米;第五次距A 地479868-+-++=千米;第六次距A 地4798671-+-++-=千米;第七次距A 地47986721-+-++--=千米,故第5次纪录时距A 地最远;(3)()0.5479867221.5⨯++++++=(升)所以途中还需要补充:21.520 1.5-=(升).答:途中还需补充1.5升.【点睛】本题主要考查正负数的意义,绝对值的含义,及有理数的加减运算,正确理解正负数的意义及掌握有理数的运算法则是解题的关键.22.计算:﹣1﹣(41)18(39)12-++-+ ﹣2﹣1131()(3)(2)(5)2442---++-+ ﹣3﹣[]1.4(3.6 5.2) 4.3(1.5)--+--- ﹣4﹣1312()11442---+-- 【答案】﹣1﹣50-﹣﹣2﹣ 0﹣﹣3﹣3-﹣﹣4﹣3.5【解析】【分析】依据有理数的加减混合运算和绝对值的含义即可得出正确答案.【详解】解:﹣1﹣原式=()()41183912-++-+=[()()4139-+-]+(18+12)=-50﹣﹣2﹣原式=11313252442⎛⎫⎛⎫⎛⎫⎛⎫---++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1131 3252442⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭ =[11522⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭]+(13 3244+) =0;﹣3﹣原式=()()1.4 3.6 5.2 4.3 1.5⎡⎤--+---⎣⎦=1.4 3.6 5.2 4.3 1.5+--+=-3﹣﹣4﹣原式=131211442⎛⎫---+-- ⎪⎝⎭=124+34+1-12=3.5. 故本题的正确答案为:﹣1﹣50-﹣﹣2﹣ 0﹣﹣3﹣3-﹣﹣4﹣3.5【点睛】掌握有理数的加减混合运算,以及会灵活运用加法的交换律、结合律、分配律进行简便计算是解题的关键. 23.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点. (2)求这个五个点表示的数的和.【答案】(1)见解析;(2)五个点表示的数的和为1或1-.【解析】【分析】根据甲说的可知4A =,B 4=-或4A =-,4B ,再由乙说的可得3D C -=,而根据丙说的可得0E =,据此进一步求出各点表示的数再画出数轴即可;(2)根据(1)中的数据加以计算即可.【详解】(1)﹣两点A 、B 表示的数都是绝对值是4的数,﹣4A =,B 4=-或4A =-,4B ;﹣点C 表示负整数,点D 表示正整数,且这两个数的差是3,﹣3D C -=,﹣2D =,1C =-或1D =,2C =-;﹣点E 表示的数的相反数是它本身,﹣0E =;综上所述,当4A =,B 4=-,2D =,1C =-,0E =时,数轴如下:当4A =,B 4=-,1D =,2C =-,0E =时,数轴如下:当4A =-,4B ,2D =,1C =-,0E =时,数轴如下:当4A =-,4B ,1D =,2C =-,0E =时,数轴如下:(2)由(1)可得:﹣当4A =,B 4=-,2D =,1C =-,0E =时,五个点表示数的和为:1,﹣当4A =,B 4=-,1D =,2C =-,0E =时,五个点表示数的和为:1-,﹣当4A =-,4B,2D =,1C =-,0E =时,五个点表示数的和为:1, ﹣当4A =-,4B ,1D =,2C =-,0E =时,五个点表示数的和为:1-,综上所述,五个点表示的数的和为1或1-.【点睛】本题主要考查了有理数与数轴的性质的综合运用,熟练掌握相关概念是解题关键.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下﹣﹣8﹣﹣3﹣﹣12﹣﹣7﹣﹣10﹣﹣3﹣﹣8﹣﹣1﹣0﹣﹣10﹣(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?【答案】﹣最高分:92分;最低分70分﹣﹣低于80分的学生有5人﹣所占百分比50%﹣﹣10名同学的平均成绩是80分.【解析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.25.若2=a ,3b =,6c =,()a b a b +=-+,b c b c +=+,计算a b c +-的值.【答案】-7或-11【解析】【分析】根据绝对值的性质,确定a 、b 、c 的值,从而求得所求式子的值.【详解】解:﹣2=a ,3b =,6c =﹣a=±2 , b=±3 , c=±6,又﹣()a b a b +=-+,b c b c +=+﹣a+b <0,b+c >0﹣a=±2、b=-3、c=6﹣a b c +-=-2-3-6=-11或a b c +-=2-3-6=-7【点睛】本题考查有理数的加减混合运算和绝对值的相关知识,解答本题的关键是根据绝对值的性质a、b、c的值确定.26.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:﹣|7+21|=______;﹣|﹣12+0.8|=______;﹣23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.【答案】(1)﹣7+21;﹣10.82-;﹣22.83.23+-;(2)9;(3)10012004.【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)﹣|7+21|=21+7;故答案为:21+7;﹣110.80.822 -+=-;故答案为:1 0.82-;﹣23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111 9242 33202033 -++-=9(3)原式=11111111... 23344520032004 -+-+-++-=11 22004 -=1001 2004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.。
有理数混合运算的四种考法类型一、含乘方与绝对值的混合运算【答案】3000−【分析】先计算乘方,再进行加减运算.【详解】解:()()33222313 1.26103−⎛⎫⎛⎫−⨯+−−⨯− ⎪ ⎪⎝⎭⎝⎭36271=93625100027⎛⎫⎛⎫−⨯+−−−⨯ ⎪ ⎪⎝⎭⎝⎭324274=2510003−−+ 34961=3000−【点睛】本题考查含乘方的有理数的混合运算,解题的关键是掌握运算法则并正确计算.【答案】【分析】按照先计算乘方,再计算乘除法,最后计算加减法的运算顺序求解即可.【详解】解:原式8156952⎛⎫⎛⎫=−⨯−−−÷− ⎪ ⎪⎝⎭⎝⎭ ()8692=−−⨯−8618=−+20=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.【答案】【分析】根据有理数的乘方运算可进行求解.【详解】解:原式185189=−+−⨯852=−+−=5−.【点睛】本题主要考查含乘方的有理数混合运算,熟练掌握有理数的乘方运算是解题的关键.【答案】【分析】先算乘方和绝对值,再算乘除,最后算加减,按这个运算顺序计算即可. 【详解】解:24211224125%323⎛⎫⎛⎫−÷+−⨯+ ⎪ ⎪⎝⎭⎝⎭6491516()9234=÷+−⨯+ 936451624=⨯−+953442=+−7322=−2=.【点睛】本题考查了含乘方的有理数的混合运算,掌握有理数的混合运算顺序和运算法则是解题的关键.【分析】根据有理数的混合运算法则进行计算即可. 【详解】解:()3221322334⎛⎫⎡⎤−+⨯+−−÷− ⎪⎣⎦⎝⎭ ()296343=−+⨯−+⨯9412=−−+1=−.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.【答案】94−【分析】先根据平方运算、绝对值运算、()1n−计算,再由有理数加减运算法则求解即可得到答案.【详解】解:()202322531594⎛⎫−⨯−+−−+− ⎪⎝⎭2591594=−⨯−−−52154=−−−−52154⎛⎫=−+++ ⎪⎝⎭194=−. 【点睛】本题考查有理数加减混合运算,涉及平方运算、绝对值运算、()1n−计算,熟练掌握相关运算法则是解决问题的关键. 类型二、简便运算问题【答案】(1)2495−;(2)25【分析】(1)将244925改写为15025⎛⎫− ⎪⎝⎭,再用乘法分配律进行计算即可; (2)将0.125改写为18,再根据乘法分配律的逆用,进行计算即可. 【详解】(1)解:原式()150525⎛⎫=−⨯− ⎪⎝⎭()()1505525=⨯−−⨯−12505=−+42495=−;(2)解:原式()1111752550888=⨯+−⨯+⨯ ()117525508=⨯−+ 12008=⨯25=.【点睛】本题主要考查了有理数的简便运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则,加法运算律和乘法运算律在有理数范围依然适用.【分析】根据有理数的混合运算法则,通过有理数的简便计算即可求出答案. 【详解】解:原式()13724()(24)(24)248=−⨯−+−⨯−−⨯121821=−+ 15=故答案为:15.【点睛】本题考查了用有理数的乘法分配律的简便运算解出答案.是否能熟练掌握分配律的简便计算是解这题的技巧.【答案】(1)2495;(2)3【分析】(1)根据题意24244954952525⎛⎫⨯=⨯ ⎪⎝⎭+,再根据乘法分配律2424495245255⎛⎫⨯= ⎪⎝⎭++即可解答;(2)先将1118999824142894289⎛⎫⎛⎫⎛⎫⎛⎫−−⨯−=−−⨯− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再利用乘法分配律即可解答. 【详解】(1)解:2449525⨯2449525⎛⎫=⨯ ⎪⎝⎭+ 24495525=⨯⨯+242455=+42495=;(2)解:11182414289⎛⎫⎛⎫−−⨯− ⎪ ⎪⎝⎭⎝⎭ 99984289⎛⎫⎛⎫=−−⨯− ⎪ ⎪⎝⎭⎝⎭241=−++3=.【点睛】本题考查了有理数的混合运算法则,有理数乘法的分配律,熟记有理数乘法的分配律是解题的关键.【分析】先将除法转换成乘法,然后根据利用乘法分配律计算即可.【详解】解:3571491236⎛⎫⎛⎫−−+÷− ⎪ ⎪⎝⎭⎝⎭ ()357364912⎛⎫=−−+⨯− ⎪⎝⎭272021=+−26=.【点睛】本题考查有理数的混合运算,熟练掌握运算法则及运算律是解题关键.【答案】(1) (2)28− (3)133112−(4)29− 【详解】(1)()()()()783.851313 6.150.790.791515−⨯−+−⨯−+⨯+⨯()()()7813 3.85 6.150.791515⎛⎫⎡⎤=−⨯−+−+⨯+ ⎪⎣⎦⎝⎭()()13100.791=−⨯−+⨯1300.79=+ 130.79=(2)1121111361965765353577⎛⎫⎛⎫⎛⎫−⨯+−⨯+−÷+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 112111111361967635357575⎛⎫⎛⎫⎛⎫=−⨯+−⨯+−⨯+⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111361967633775⎡⎤⎛⎫⎛⎫⎛⎫=−+−+−+⨯⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()1201205⎡⎤=−+−⨯⎣⎦()11405=−⨯28=−(3)()71913672⨯−()1923672⎛⎫=−⨯− ⎪⎝⎭()()192363672=⨯−−⨯−133122=−+133112=−(4)1314261413⎛⎫⨯− ⎪⎝⎭1314261413⎛⎫⎛⎫=+⨯− ⎪ ⎪⎝⎭⎝⎭ 14131426131413⎛⎫⎛⎫=⨯−+⨯− ⎪ ⎪⎝⎭⎝⎭281=−−29=−【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘除,后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.类型三、实际应用【分析】(1)将0.9 加上10月1,2,3的变化量可求解;(2)分别计算每天的游客数量即可求解;(3)将每天的变化量的绝对值相加可求解总游客数.【详解】解:(1)0.9+3.1+1.78-0.58=5.2(万人),故10月3日的人数为5.2万人;故答案为5.2;(2)10月1日游客人数为:0.9+3.1=4(万人);10月2日游客人数为:4+1.78=5.78(万人);10月3日游客人数为:5.78-0.58=5.2(万人);10月4日游客人数为:5.2-0.8=4.4(万人);10月5日游客人数为:4.4-1=3.4(万人);10月6日游客人数为:3.4-1.6=1.8(万人);10月7日游客人数为:1.8-1.15=0.65(万人);故七天假期里,游客人数最多的是10月2日,达到5.78万人;(3)4+5.78+5.2+4.4+3.4+1.8+0.65=25.23(万人),答:大同云冈石窟风景区在这七天内一共接待了25.23万游客.【点睛】本题主要考查有理数的加减法混合运算,读懂题意是解题的关键.【答案】(1);;(2)元;(3)每日计件工资更多,理由见解析.【分析】(1)用表中周三数据加上计划平均每天生产量,即得周三玩具生产量;表中每天增减产量相加的和,再加上周规定生产量即得周实际生产量.(2)把表中每天增减产量正的之和乘以3,负的之和乘以2,把它们相加的和再加上周实际生产量乘以5,即得小明妈妈这一周的工资总额.(3)先计算出实行每周计件工资制情况下小明妈妈的周工资与(2)中计算的实行每日计件工资制下小明妈妈的周工资相比较可得——每日计件工资更多.−=【详解】(1)30426∴小明妈妈星期三生产玩具26个,++−+−+++−+++(10)(12)(4)(8)(1)(6)0=−−+−+=101248167∴+=(个),2107217故本周实际生产玩具217个,故答案为:26,217.⨯+++⨯+++⨯−=(元)(2)2175(1086)3(1241)(2)1123答:小明妈妈这一周的工资总额是1123元⨯+⨯=元,(3)2175731106每周计件一周得1106元,>,所以每日计件工资更多.因为11231106【点睛】本题考查有理数加减混合运算的实际应用.其关键是审清题意,弄准确其中正负数及0的含义,才能列出正确算式.坐出租车.【分析】(1)由题意可知: 3<4.1<10,所以车费=3千米以内的收费+超过3千米的部分×2;(2)由于14.9>13,所以应付车费由三部分组成,即3千米以内的收费十超过起步里程的部分10千米×2 +超过起步里程13千米的里程数×3;(3) 车费=基础车费+超过起步里程10千米的车费+超过13千米的车费,再比较应付车费和他所带的钱数.【详解】解:(1) 不足1千米以1千米计算,4.1≈5,又3千米以内(含3千米) 收费11元,超过3千米的部分每千米收费2元,故车费为:11+ (5-3) ×2=15(元),∴小明乘坐出租车行驶4.1千米应付车费15元;(2)不足1千米以1千米计算,14.9≈15,又3千米以内(含3千米)收费11元,超过3千米的部分每千米收费2元,超过起步里程10千米以上的部分加收50%,即每千米3元,故车费为:11+10×2+ (15-13) ×3=37 (元),∴小明乘坐出租车行驶14.9千米应付车费37元;(3)∵不足1千米以1千米计算,13.1千米≈14千米,∴小明应付的车费是: 11+10×2+3 (14-13) ×3= 34元,∵小明带了31元钱,应付34元,34>31,∴小明带的钱不够,∵11+10×2=31,∴小明可以乘坐13千米的车,13.1-13=0.1(千米),答:小明带的钱不够乘坐13.1千米,他至少先走0.1千米再乘坐出租车.【点睛】本题考查有理数的混合运算,在计算时一定要弄清题意,特别是“不足1千米以1千米计算”这句话.类型三四、24点【答案】(1)-6、10、-60;(2)3、10、3;(3)例如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10-4)-(-6)×3或4-10×(-6)÷3等等.【详解】试题分析:(1)观察这五个数,要找乘积最小的就要找符号相反且数值最大的数,所以选﹣6和10;(2)2张卡片上数字相除的商最大就要找符号相同,且分母越小越好,分子越大越好,所以就要选10和3,且3为分母;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.试题解析:(1)﹣6×10=-60;我抽取的2张卡片是)-6、10,乘积的最大值为-60;(2)10÷3=103;我抽取的2张卡片是3、10,商的最大值为103;(3)方法不唯一,如:选-6、0、3、4;算式是-6×(0×3-4 或选-6、0、3、10;3×10-6+0或选-6、3、4、10;算式是(10- 4)-(-6)×3或4-10×(-6)÷3等等.考点:1.有理数的混合运算;2.图表型.【答案】(1)②,1−;(2)④⑤,14;(3)①④⑤,144−;(4)或(163)(8)−−÷⨯−等.【分析】(1)根据题意和题目中的卡片,可以解答本题;(2)根据题意和题目中的卡片,可以解答本题;(3)根据题意和题目中的卡片,可以解答本题;(4)根据题意可以写出相应的算式,本题答案不唯一,主要符合题意即可.【详解】(1)因为-1在全部有理数大小排列里居中,所以选②卡片,故答案为:②,-1;(2)由已知可得,当选取卡片6和−8时,差值最大,差的最大值是6−(−8)=14;故答案为:④⑤,最大值是14(3)由已知可得,当选取卡片3、6和−8时,乘积最小,积的最小值是:(−8)×6×3=−144;故答案为:①④⑤,最小值是144−(4)∵[−1−(6÷3)]×(−8)=(−1−2)×(−8)=(−3)×(−8)=24,∴算式[−1−(6÷3)]×(−8)的计算结果为24(答案不唯一).【点睛】本题考查有理数的混合运算,解答本题的关键是明确题意,写出相应的算式,注意第(4)问答案不唯一. 【变式训练2】小强有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【答案】(1)抽取4−与6−,积为24(2)抽取6−与3,商为2−(3)抽取6−与4,进行乘方运算得到最大为1296(4)()()644324−⨯⨯−+=(答案不唯一)【分析】(1)要使2张卡片的乘积最大,则取同号的两张卡片,且其绝对值最大的两张,据此可求解;(2)要使2张卡片的商最小,则取异号的两张卡片,且分子的绝对值最大,分母的绝对值最小,据此可求解(3)进行乘方的运算可使相应的值最大,可选取6−与4,据此可求解;(4)利用有理数的相应的运算进行求解,符合题意即可.【详解】(1)抽取4−与6−,则其乘积为:()4624−⨯−=;(2)抽取6−与3,则其商为:632−÷=−;(3)抽取6−与4,则有:()461296−=; (4)()()644324−⨯⨯−+=.【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握. 课后训练【答案】 【分析】根据有理数的四则混合运算的法则先计算括号里面的,再计算除法即可.【详解】解:原式83424242424⎛⎫=÷−− ⎪⎝⎭12424=÷576=. 【点睛】本题考查了有理数的四则混合运算,注意不要将乘法分配律运用到除法运算中,除法没有分配律,正确运用有理数的运算法则是解答本题的关键.【答案】(1)18(2)88(3)249【分析】(1)先计算乘法再计算除法即可;(2)提公因数即可;(3)改变计算顺序,结合乘法结合律即可. 【详解】(1)解:原式591895=⨯÷118=÷118=(2)解:原式41888855=⨯+⨯418855⎛⎫=⨯+ ⎪⎝⎭88=(3)解:原式2527393927=⎪⨯⨯⎛⎫ ⎝⎭+ 25273927393927=⨯⨯+⨯⨯25273927393927⎛⎫⎛⎫=⨯⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭272539=⨯+⨯54195=+249=【点睛】本题考查有理数的混合运算.观察式子形式,合理使用运算法则是解题的关键.【答案】(1)-3;(2)1510−;(3)2−;(4)-1;(5)2;(6)3832− 【分析】(1)根据加法结合律直接求解即可;(2)根据有理数的加法交换律及结合律进行运算即可;(3)根据加法交换律及结合律进行有理数的加减混合运算即可;(4)根据加法交换律及结合律进行有理数的加减混合运算即可;(5)根据乘法交换律及结合律进行运算即可;(6)先对带分数进行拆解,然后根据有理数的乘法分配律进行求解即可.【详解】解:(1)原式123=−−=−(2)原式1113733115742015152220201010⎛⎫⎛⎫⎛⎫=−++−+=+−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)原式131********22⎛⎫=−+−−=−−=− ⎪⎝⎭ (4)原式571122316622⎛⎫=++−−=−=− ⎪⎝⎭(5)原式()11106122103⎛⎫=−⨯−⨯⨯=⨯= ⎪⎝⎭(6)原式()()11110041282040016383822⎛⎫=−⨯−−−−=−++=− ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,熟练掌握利用运算律进行有理数的简便运算是解题的关键.【答案】 【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式()116227896⎡⎤=−−⨯⨯−−−−−⎣⎦1251=−−−27=−.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.【分析】先计算绝对值,乘方运算和小括号里面的,再进行乘除运算,最后再加减即可.【详解】解:212|9|(3)(12)23⎫⎛−−÷−+−⨯− ⎪⎝⎭199126()()=−÷+−⨯−12=−+1=.【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数混合运算法则且准确的计算是解题的关键. 6.出租车司机李师傅从上午8: 00~9:15在厦大至会展中心的环岛路上营运,共连续运载十批乘客.若规定向东为正,向西为负,李师傅营运十批乘客里程如下:(单位:千米)8,6,3,7,8,4,7,4,3,4+−+−++−−++(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8: 00~9:15李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8: 00~9:15一共收入多少元?【答案】(1)距离第一批乘客出发地的东方,距离是6千米;(2)43.2千米/小时;(3)128元【分析】(1)将所有数据相加得出结果后,即可作出判断;(2)将所有数据的绝对值相加,可得出路程,然后求出时间,根据速度=路程÷时间即可得出答案;(3)分别计算起步价,及超过3公里的收入,然后相加即可.【详解】解:(1)由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(-6)+(+3)+(-7)+(+8)+(+4)+(-7)+(-4)+(+3)+(+4)=6(千米), 所以,将最后一批乘客送到目的地时,李师傅在距离第一批乘客出发地的东方,距离是6千米;(2)上午8:00~9:15李师傅开车的距离是:|+8|+|-6|+|+3|+|-7|+|+8|+|+4|+|-7|+|-4|+|+3|+|+4|=54(千米),上午8:00~9:15李师傅开车的时间是:1小时15分=1.25小时;所以,上午8:00~9:15李师傅开车的平均速度是:54÷1.25=43.2(千米/小时);(3)一共有10位乘客,则起步费为:8×10=80(元).超过3千米的收费总额为:[(8-3)+(6-3)+(3-3)+(7-3)+(8-3)+(4-3)+(7-3)+(4-3)+(3-3)+(4-3)]×2=48(元).则李师傅在上午8:00~9:15一共收入:80+48=128(元).【点睛】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 7.红红有5张写着以下数字的卡片,请你按要求抽出卡片,解决下列问题:(1)从中取出2张卡片,使这2张卡片上的数字相乘的积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,最小值是________.(3)从中取出0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方、取相反数或取绝对值等混合运算,使结果为24,(注:每个数字只能对用一次,如()342122⨯−−⎡⎦=⎤⎣).请另写出一种符合要求的运算式子.【答案】(1)6(2)2−(3)()()3212−−⨯+(答案不唯一)【分析】(1)根据题意列出算式,找出积最大值即可;(2)根据题意列出算式,找出商最小值即可;(3)利用“24点”游戏规则列出算式即可.【详解】(1)解:根据题意得20123−<<+<+<+,积的最大值为()()326+⨯+=,故答案为:6;(2)解:商的最小值为()()212−÷+=−,故答案为2−;(3)解:()()342122−−⨯+=∵;()232124⎡⎤⎣−−−=⎦等,∴算式可以为:()()3212−−⨯+(答案不唯一).【点睛】此题考查有理数的混合运算,有理数大小比较,解题关键在于掌握各性质和运算法则.。
2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题01 有理数的加减混合运算一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( )A .411B .910C .19D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭91123722182218=+-+92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭7111=-+411=.故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号,去掉括号和负号,括号内各项都要变号”先去括号,再利用加法的交换律和结合律,将分母相同的加数结合在一起,进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃,中午上升了7°C ,半夜又下降了8℃,则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B 【思路引导】根据题意可得算式:-3+7-8,计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( )A.111324234⎛⎫⎛⎫--+-⎪ ⎪⎝⎭⎝⎭B.11133234⎛⎫--+⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412-+=+-++=;A、1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭;B、1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭;C、1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭;D、1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭,故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
第 2 讲有理数的加减知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数的加法,有理数的减法;核心部分是有理数加减法的混合运算。
知识梳理讲解用时:20分钟有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.课堂精讲精练【例题1】我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2 C.5+(﹣2)D.5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.讲解用时:3分钟解题思路:由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.教学建议:引导学生读懂题目信息是解题的关键.1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.()a b a b-=+-有理数的减法难度: 3 适应场景:当堂练习例题来源:无【练习1.1】在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【答案】D【解析】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.讲解用时:2分钟解题思路:根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而判断即可.教学建议:强调有理数加减法的运算法则难度: 3 适应场景:当堂例题例题来源:无【例题2】如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3【答案】C【解析】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.讲解用时:3分钟解题思路:根据三个数的和为依次列式计算即可求解.教学建议:根据表格,先求出三个数的和是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括整数和分数;④两数相加,和一定大于任意一个加数.()A.3个B.2个C.1个D.0个【答案】B【解析】解:①所有有理数都能用数轴上的点表示,正确;②符号不同的两个数互为相反数,相加为零此时互为相反数,故此选项错误;③有理数包括整数和分数,正确;④两数相加,和一定大于任意一个加数,两负数相加则不同,故此选项错误,故选:B.讲解用时:2分钟解题思路:直接利用互为相反数以及有理数的定义和有理数加减运算法则分别判断得出答案.教学建议:此题主要考查了有理数的加法运算以及相反数的定义等知识,正确掌握运算法则是解题关键.难度: 3 适应场景:当堂练习例题来源:无【例题3】计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【答案】0【解析】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.讲解用时:3分钟解题思路:原式结合后,相加即可求出值.教学建议:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂练习例题来源:无【练习3.1】已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【答案】﹣2【解析】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.讲解用时:3分钟解题思路:先依据绝对值的性质求得a、b的值,最后依据加法法则进行计算即可.教学建议:巩固有理数的加法、绝对值的性质,熟练掌握相关法则是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【例题4】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14【答案】(1)现在纽约时间是晚上7点;(2)不合适.【解析】解:(1)现在纽约时间是晚上7点;(2)现在巴黎时间是凌晨1点,不合适.讲解用时:3分钟解题思路:(1)根据时差求出纽约时间即可;(2)计算出巴黎的时间,即可做出判断.教学建议:熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习4.1】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【答案】(1)(2)x+y=13【解析】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.讲解用时:4分钟解题思路:(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y的值.教学建议:根据表格,先求出三个数的和是解题的关键,也是本题的突破口.难度: 3 适应场景:当堂练习例题来源:无【例题5】列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【答案】(1)﹣2013;(2)﹣3【解析】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.讲解用时:3分钟解题思路:(1)根据题意知乙数为﹣2020﹣(﹣7),计算可得;(2)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.教学建议:本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.难度: 3 适应场景:当堂例题例题来源:无【练习5.1】已知有理数a,b,c在数轴上的位置如图所示,且|a|=1,|b|=2,|c|=4.求3b+2a ﹣c的值.【答案】8.【解析】解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴3b+2a﹣c=6﹣2+4=8.讲解用时:3分钟解题思路:根据a 、b 、c 在数轴上的位置可知b >0,c <0,a <0,再根据|a|=1,|b|=2,|c|=4可求出a 、b 、c 的值,代入3b+2a ﹣c 进行计算即可. 教学建议:这题考查的是数轴的特点及绝对值的性质,属较简单题目. 难度: 3 适应场景:当堂练习 例题来源:无【例题6】某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】()524.5++()490+()+29.7=1044.2+解:共收入为:元,()274.3+-()100-()+123.6-()+232.1730-=- 共支出为:元()2.3147302.1044=-+ 收支相抵为:元.讲解用时:3分钟解题思路:利用收入与支出的概念和有理数的混合运算即可解决教学建议:引导学生理解有理数的加法的实际应用.难度: 3 适应场景:当堂例题 例题来源:无【练习6.1】(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)8;(2)0;(3) 6.1-.【解析】()()()()()178961417896148------+--=-++-+=(1);215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2); ()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式(3).讲解用时:4分钟 解题思路:利用有理数减法的运算法则即可解决,括号前面是负号时,去括号要注意变号.教学建议:注意跟学生强调变号问题难度: 3 适应场景:当堂练习 例题来源:无【例题7】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【答案】322=x 或223x =-. 【解析】2113x ⎛⎫+-= ⎪⎝⎭解:因为,2211233x ⎛⎫=--= ⎪⎝⎭所以, 322=x 223x =-所以或.讲解用时:3分钟解题思路:利用绝对值的代数意义和有理数的加减法运算法则即可求出结果 教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题 例题来源:无【练习7.1】若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求m+cd+的值.【答案】(1)a+b=0,cd=1,m=±2.(2)3或﹣1.【解析】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3; 当m=﹣2时,m+cd+=﹣2+1+0=﹣1. 讲解用时:4分钟解题思路:(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.教学建议:解决本题的关键是熟记倒数、相反数、绝对值的意义.难度: 3 适应场景:当堂练习 例题来源:无课后作业【作业1】如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【答案】1253- 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 讲解用时:4分钟难度: 2 适应场景:练习题 例题来源:无【作业2】计算:123456789101112201720182019+--++--++--+++-.【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号 45042016=-⨯+20162016=-+0=.讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无【作业3】 计算:21150543236-+---. 【答案】31. 【解析】211521154543236322=-+--=-+--原式2111543223=-+-= 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无。
1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的. 解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312);(2)⎪⎪⎪⎪5111-3417+4417-111. 分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。
有理数的加减法(提高)2019-2020 年七年级数学上册:有理数的加减法(提高)知识讲解(含答案与解析)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化的思想;3.熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并且会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同 0 相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号 ( 是“ +”还是“-” ) .( 加数的绝对值是相加还是相减(3) 求各加数的绝对值,并确定和的绝对值) .3.运算律:加法文字语言两个数相加,交换加数的位置,和不变a+b= b+a有理交换符号语言数加律法运加法三个数相加,先把前两个数相加,或者先把后两个数相加,文字语言算律结合和不变律符号语言(a+b)+c =a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1. 定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+? =7,求?,减法是加法的逆运算.要点诠释: (1)任意两个数都可以进行减法运算.( 2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2. 法则: 减去一个数,等于加这个数的相反数,即有:a b a ( b) .要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:( 1) 3 21 ( 2) ( 6 1) (2 3)5834( 3) 1.12532( 4) 0 ( 5 2)( 5) 31( 3.5)532【思路点拨】 ( 1)( 2)属于同一类型,用的是加法法则的第一条:;( 3)( 5)属于同一类,用的是加法法则的第二条;(4)用的是法则的第三条.【答案与解析】(1)321(321) 321;5 8 5 840(2) 1 31 3 13 1( 6 ) ( 2 )(62 ) 8934 3412 12(3) 1.125321.125( 3.4)(3.41.125)2.2755(4) 0 ( 5 2) 52(5) 313 3( 3.5)3.5 3.52【总结升华】 绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时, 一定要先确定符号,再计算绝对值.举一反三:【高清课堂:有理数的加减法382681 有理数的加法例 2】【变式 1】计算: (1) -71 +10 1;(2) (-1)+(-7.3); (3) 11+(-2 1 ); (4)26 2437 1+(-3.8)+(-7.2)5(1017 1)(11 1)2 2;【答案】 (1)原式 =(9 7)6 26 2 3(2)原式 = (0.57.3)7.8 ;( 3)原式 = (2 11 1)1 1;3412(4)原式 = 7.2 7.2 3.8 0 3.83.8【变式 2】计算:11 51162 3【答案】11 1151 1 1 1 5 ( 1 1)11 5 12 3623 6236【变式 3】计算:( 6)1 ( 3.3) ( 3) ( 6) ( 0.3) ( 8) ( 6) ( 16) 61.44【答案】 解法一:( 6)1 ( 3.3) ( 3) ( 6) ( 0.3) ( 8) ( 6) ( 16)1464( 6)1 ( 3)( 0.3) ( 8) ( 6)( 3.3) ( 6) ( 16)61→同号44的数一起先加( 23.55) ( 31.55)8.解法二: ( 6)1 ( 3.3) ( 3) ( 6) ( 0.3) ( 8) ( 6)( 16)1 464( 6)161[( 3.3) ( 3) ( 0.3)] [( 6) ( 6)] [( 16) ( 8)]44→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加0 0 0 ( 8) 8 .类型二、有理数的减法运算2. (1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)4 3 1 .7 3【思路点拨】 此题是有理数的减法运算, 先按照减法法则将减法转化为加法, 再按照有理数的加法进行计算.【答案与解析】 本题可直接利用有理数的减法法则进行计算.(1)2-(-3) = 2+3= 5 (2) 原式= 0+3.72+(-2.72)+4 =(0+4)+(3.72-2.72) = 4+1=5(3)原式 =4( 3 1)(314) 2 16733 721【总结升华】 算式中的“ +”或“ - ”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.类型三、有理数的加减混合运算3.计算:( 1)-3.72-1.23+4.18-2.93-1.25+3.72;( 2) 11-12+13-15+16-18+17; (3) 3.76 39 5168 4.76 21 114 512 13 36 2( 4) 3.463.87 1.543.376 3 44( 5) 3153 4 56 5; ( 6) 2.25 3 1 2 31.875246 18 8 4【答案与解析】( 1)观察各个加数,可以发现 -3.72 与 3.72 互为相反数,把它们分为一组;4.18 、-2.93 与-1.25 的和为 0,把它们分为一组可使计算简便.解: -3.72-1.23+4.18-2.93-1.25+3.72= (-3.72+3.72)+(4.18-2.93-1.25)-1.23= 0+0-1.23 = -1.23( 2)把正数和负数分别分为一组.解: 11-12+13-15+16-18+17= (11+13+16+17)+(-12-15-18)= 57+(-45) = 12( 3)仔细观察各个加数,可以发现两个小数的和是-1 ,两个整数的和是 29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组. 解: 3.7639 5168 4.76 2111311 1 62(3.764.76)2 ) ( 39 68)1( 6) 29 22 (5613 2(4)3.46 和 1.54的和为整数 , 把它们分为一组; -3.87 与 3.37 的和为 -0.5 ,把它们分为一组; 4 5与1 易于通分,把它们分为一组;2 1 与 3同分母,把它们分为一组.63 4 4解: 3.46451 3.87 211.54 3.37 36 34 4(3.461.54) (3.87 3.37) (45 1) ( 2 13)6 3 4 45 ( 0.5) 4 1 ( 1 1) 4.53 7.52 2( 5)先把整数分离后再分组.解: 3153 456 5246 1831 3 4 5 65256 184( 3 5 4 6) (1 3 5 5)24 6 1818 27 30 10362936注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如3 131.22( 6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解: 2.2531231.87584(2.25 2.75) (3.125 1.875)0.5 5 4.5【总结升华】 计算多个有理数相加时,必须先审题, 分析特点, 寻找规律, 然后再去计算. 注意在交换加数的位置时,要连同符号一起交换.举一反三:【变式 】( 1)( 2)【答案】 (1)= 4 2( 7 3) (3 2) ( 4 3) (3 2) (7 2) 1 11175 957 977559 955(2)(13 5 7 9) (11 1 11 ) 25 ( 1 3 1 ... 1 )3 15 35 63 99 1 3 5 9 11251(1152 ) 2511 11类型四、有理数的加减混合运算在实际中的应用【高清课堂:有理数的加减法382681 有理数加减的应用 】4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10, -3 , +4, +2, -8 , +13, -2 , +12,+8, +5.( 1)问收工时距 A 地多远?( 2)若每千米路程耗油 0.2 升,问从 A 地出发到收工时共耗油多少升?【答案与解析】 (1)求收工时距 A 地多远,应求出已知 10 个有理数的和,若和为正数,则在 A 地前面,若和为负数,则在A 地后面;距 A 地的路程均为和的绝对值 .解: (1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3)=0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2 升即可.(|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)× 0.2=67 × 0.2=13.4 (升) .答:收工时在A 地前面41 千米,从A 地出发到收工时共耗油13.4 升 .【总结升华】 利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.举一反三:【变式 】某产粮专业户出售粮食8 袋,每袋重量( 单位:千克) 如下:197, 202, 197, 203, 200, 196,201, 198.计算出售的粮食总共多少千克 ?【答案】法一:以 200( 千克 ) 为基准,超过的千克数记作正数,不足的千克数记作负数,则这 8 个数的差的累计是: (-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+ (-2) = -6 200× 8+(-6) = 1594( 千克 )答:出售的粮食共1594 千克.法二: 197+202+197+203+200+196+201+198= 1594( 千克 )答:出售的粮食共1594 千克.。