统计概率北京高考(理)历年真题
- 格式:docx
- 大小:174.06 KB
- 文档页数:5
2024年普通高等学校招生全国统一考试(北京卷)数学第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.18. 已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元赔偿次数01234单数800100603010在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i)毛利润是保费与赔偿金额之差.设毛利润为X,估计X的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D【9题答案】【答案】A【10题答案】【答案】C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.【11题答案】4,0【答案】()【12题答案】【答案】【13题答案】【答案】1 2【14题答案】【答案】【15题答案】【答案】①③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】【17题答案】【答案】(1)证明见解析【18题答案】。
专题12 概率和统计1. 【20xx 高考北京理第2题】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-【答案】D考点:几何概型概率.2. 【20xx 高考北京理第8题】某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高m 值为( )A.5B.7C.9D.11 【答案】C考点:平均数.3. 【20xx 高考北京理第11题】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =__________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.【答案】0.030 3考点:频率分布直方图.4. 【2005高考北京理第17题】(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为.32(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (Ⅱ)求乙至多击中目标2次的概率; (Ⅲ)求甲恰好比乙多击中目标2次的概率. 【答案】5. 【2006高考北京理第18题】(本小题共13分)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.a b c,且三门课程考试是否及格相互之间没假设某应聘者对三门指定课程考试及格的概率分别是,,有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)6. 【2007高考北京理第18题】(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.7. 【2008高考北京理第17题】(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.123(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.8. 【2009高考北京理第17题】(本小题共13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.∴()()441220,1,2,3,433k kkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,w.w.w.zxxk.c.o.m∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=9. 【20xx 高考北京理第17题】(13分) 某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p 、q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p ,q 的值; (3)求数学期望E ξ.10. 【20xx 高考北京理第17题】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。
高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。
在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。
为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。
1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。
2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。
连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。
3) 某音乐社有男生40人,女生60人。
从中随机抽取一人,求抽到女生的概率。
2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。
现从中不放回地连续抽取3个产品,求至少有一个次品的概率。
2) 某餐厅的饭菜有4个主食和6个副食。
现从中选择2个饭菜,求至少有一个主食的概率。
3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。
求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。
现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。
(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。
在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。
祝同学们取得优异的高考成绩!。
(2016)16.(13分)(2016?北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【分析】(I)由已知先计算出抽样比,进而可估计C班的学生人数;(Ⅱ)根据古典概型概率计算公式,可求出该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)根据平均数的定义,可判断出μ0>μ1.【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K==,故C班有学生8÷=40人,(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,共有5×8=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ1.【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.(2015)16.(本小题13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a=,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)16. 解:(Ⅰ) 设甲的康复时间不少于14天记为事件A所以甲的康复时间不少于14天的概率为3 . 7(Ⅱ) 因为25a=,假设乙康复的时间为12天,则符合题意的甲有13天、14天、15天、16天,共4人。
历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1.(2022高考北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25; 乙:9.78,9.56,9.51,9.36,9.32,9.23; 丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X ); (3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)2.(2023年全国乙卷理科)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545 533 551 522 575 544 541 568 596 548 伸缩率i y536 527 543 530 560 533 522 550 576 536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果的z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)3.(2020年高考课标Ⅰ卷理科·)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.4.(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S . (1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).5.(2021年新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由.6.(2022新高考全国II 卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).2.(2019·全国Ⅲ·理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:的记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).考点02 随机事件分布列1.(2022年高考全国甲卷数学(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.(2021高考北京)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为111.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)3.(2020江苏高考)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q . (1)求11p q 和22p q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).4.(2019·全国Ⅱ·理)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.()1求()2P X =;()2求事件“4X =且甲获胜”的概率.5.(2019·天津·理·)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.考点03 相关关系与回归分析1.(2022年高考全国乙卷数学(理))某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样12345678910总本号i 和根部横截面积i x0.04 0.06 0.04 0.08 0080.05 0.05 0.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.2.(2020年高考课标Ⅱ卷理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,.的202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((≈1.414.考点04 独立性检验1.(2023年全国甲卷理科·)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).(1)设X 表示指定的两只小白鼠中分配到对照组的只数,求X 的分布列和数学期望; (2)实验结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1 32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2对照组的小白鼠体重的增加量从小到大排序为:7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2 19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(i )求40只小鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于的数据的个数,完成如下列联表:m <m ≥对照组 实验组(ii )根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.附:()()()()22(),n ad bc K a b c d a c b d -=++++ 0k0.100 0.050 0.010 ()20P k k ≥2.7063.8416.6352.(2021年高考全国甲卷理科)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8283.(2020年高考课标Ⅲ卷理科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级[0,200](200,400](400,600]1(优) 2 16 25 2(良) 5 10 12 3(轻度污染) 6 7 8 4(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400 人次>400 空气质量好 空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k ) 0.050 0.010 0.001 k 38416.63510.8284.(2020年新高考全国Ⅰ卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32184.(35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8285.(2020年新高考全国卷Ⅱ数学)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:的(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,考点05 概率统计综合应用1.(2023年新高考全国Ι卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2(2023年新课标全国Ⅱ卷).某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率. (1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的【解析】式,并求()f c 在区间[]95,105的最小值.3.(2021年新高考全国Ⅱ卷)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <; (3)根据你的理解说明(2)问结论的实际含义.4.(2019·全国Ⅰ·理·)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定,对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则08110,1,i i i i p p p ap bp cp -+===++(1,2,,7i = ),的其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. (i )证明:1{}(0,1,2,,7)i i p p i +-= 为等比数列; (ii )求4p ,并根据4p 的值解释这种试验方案的合理性.参考答案考点01:统计案例及应用1.(2022高考北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】【答案解析】:(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 31233(0)()0.60.50.520P X P A A A ===⨯⨯=, 123123123(1)()()()P X P A A A P A A A P A A A ==++80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 123123123(2)()()()P X P A A A P A A A P A A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 1232(3)()0.40.50.520P X P A A A ===⨯⨯=.∴X 的分布列为∴38727()0123202020205E X =⨯+⨯+⨯+⨯= (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.2.(2023年全国乙卷理科)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率ix 545 533 551 522 575 544 541 568 596 548 伸缩率i y536 527 543 530 560 533 522 550 576 536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】(1)11z =,261s =;(2)认为甲工艺处理后橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 【答案解析】:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =- 的值分别为: 9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==的的(2)由(1)知:11z =,==z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.3.(2020年高考课标Ⅰ卷理科·)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 【答案】(1)116;(2)34;(3)716. 【答案解析】:”(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等, 所以丙赢的概率为()97123216P N =-⨯=.4.(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有的无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S . (1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y SS ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==.(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高. 5.(2021年新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由. 【答案】【答案解析】:(1)由题可知,X 的所有可能取值为0,20,100. ()010.80.2P X ==-=;的()()P X==-=;200.810.60.32()1000.80.60.48P X==⨯=.所以X的分布列为X020100P0.20.320.48E X=⨯+⨯+⨯=.(2)由(1)知,()00.2200.321000.4854.4若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=;()()P Y==-=;800.610.80.12()P X==⨯=.1000.80.60.48E Y=⨯+⨯+⨯=.所以()00.4800.121000.4857.6<,所以小明应选择先回答B类问题.因为54.457.66.(2022新高考全国II卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)47.9岁;(2)0.89;(3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.2.(2019·全国Ⅲ·理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70. (1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)4.05,6.00. 【官方【答案解析】】(1)由已知得0.70=0.200.15a ++,故0.35a =,b 10.050.150.700.10=---=. (2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.【点评】本题考查频率分布直方图的相关概念和频率分布直方图中平均数法人计算,属于基础题.考点02 随机事件分布列1.(2022年高考全国甲卷数学(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.E X=.【答案】(1)0.6; (2)分布列见【答案解析】,()13A B C,所以甲学校获得冠军的概率为【【答案解析】】(1)设甲在三个项目中获胜的事件依次记为,,()()()()=+++P P ABC P ABC P ABC P ABC=⨯⨯+⨯⨯+⨯⨯+⨯⨯0.50.40.80.50.40.80.50.60.80.50.40.2=+++=.0.160.160.240.040.6(2)依题可知,X的可能取值为0,10,20,30,所以,()00.50.40.80.16P X==⨯⨯=,()100.50.40.80.50.60.80.50.40.20.44P X==⨯⨯+⨯⨯+⨯⨯=,()200.50.60.80.50.40.20.50.60.20.34P X==⨯⨯+⨯⨯+⨯⨯=,()300.50.60.20.06P X==⨯⨯=.即X的分布列为X 0 10 20 30P 0.16 0.44 0.34 0.06E X=⨯+⨯+⨯+⨯=.期望()00.16100.44200.34300.06132.(2021高考北京)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;。
十年高考分类北京高考数学试卷精校版含详解14概率统计期望方差部分一、选择题(共5小题;共25分)1. 从长度分别为1,2,3,4的四条线段中,任取三条的不同取法有n种.在这些取法中,以取出的三条线段为边,可组成的三角形的个数为m,则mn等于 A. 0B. 14C. 12D. 342. 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为 A. 15B. 25C. 825D. 9253. 从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则b>a的概率是 A. 45B. 35C. 25D. 154. 设不等式组0≤x≤2,0≤y≤2表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 A. π4B. π−22C. π6D. 4−π45. 从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则mn等于 A. 110B. 15C. 310D. 25二、解答题(共16小题;共208分)6. 某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“ √”表示购买,“ ×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?7. A,B,C 三班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A6 6.577.58B6789101112C3 4.567.5910.51213.5(1)试估计 C 班的学生人数;(2)从 A 班和 C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A,B,C 三班中各随机抽取一名学生,设新抽取的同学该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格构成的新样本的平均数记为μ1,表格中的数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)8. 某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(1)这6位乘客在互不相同的车站下车的概率;(2)这6位乘客中恰有3人在终点站下车的概率;9. 为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“∗”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望Eξ;(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)10. 甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.11. 下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)12. A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a.假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)13. 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.x1−x2+x2−x2+⋯+x n−x2,其中x为数据x1,x2,⋯,x n的平均数)(注:s2=1n14. 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):"厨余垃圾"箱"可回收物"箱"其他垃圾"箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.x1−x2+x2−x2+⋯+x n−x2,其中x为数据x1,x2,⋯,x n的平均数)(注:s2=1n15. 以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.甲组乙组990X891110x1−x2+x2−x2+⋯+x n−x2,其中x为x1,x2,⋯,x n的平均数)(注:方差s2=1n(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.16. 以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(注:方差s2=1n(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.17. 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:(1)该应聘者用方案一考试通过的概率;(2)该应聘者用方案二考试通过的概率.18. 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程考试是否及格相互之间没有影响.(1)分别求该应聘者用方案一和方案二时考试通过的概率;(2)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)19. 某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.20. 某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q p>q,且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123P 6a b24(1)求该生至少有1门课程取得优秀成绩的概率;(2)求p,q的值;(3)求数学期望Eξ.21. 某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)这名学生在上学路上因遇到红灯停留的总时间至多是4 min的概率.答案第一部分1. B2. B 【解析】记5名同学为甲,乙,A,B,C,从中抽两个人的所有可能结果如下:甲,乙,甲,A ,甲,B ,甲,C ,乙,A ,乙,B ,乙,C ,A,B,A,CB,C共10种,其中还有甲的有4种,所以P=25.3. D4. D5. B【解析】提示:当取出的线段长为2、3、4或2、4、5时,可组成钝角三角形.第二部分6. (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2.顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.7. (1)由表可得,A班,B班,C班各抽取5,7,8;设 C 班的学生人数为N,则N100=85+7+8,解得N=40.(2)记该周甲的锻炼时间比乙的锻炼时间长为事件A,由题可知,从 A 班和 C 班抽出的学生中,各随机选取一人,共有C51×C81=40种.满足条件的有6,3,6,4.5,6.5,3,6.5,4.5,6.5,6,7,3,7,4.5,7,6,7.5,3,7.5,4.5,7.5,6,8,3,8,4.5,8,6,8,7.5共15种.所以P A=1540=38.(3)μ0>μ1.(提示:新选出7,9,8.25的平均数约为8.08;A,B,C 的三组数据均为等差数列,平均数分别为7,9,8.25,整体平均数显然大于8.08).8. (1)这6位乘客在互不相同的车站下车的概率为P=A106=151200≥0.1512.(2)这6位乘客中恰有3人在终点站下车的概率为P =C 63×93106=14580106=0.01458.9. (1)由图知:在50名服药患者中,有15名患者指标y 的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p =1550=310. (2)由图知:A ,C 两人指标x 的值大于1.7,而B ,D 两人则小于1.7, 可知在四人中随机选出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, P ξ=0 =1C 42=16,P ξ=1 =C 21C 21C 42=23,P ξ=2 =1C 42=16,所以ξ的分布列如下:ξ012P162316E ξ =0×16+1×23+2×16=1.(3)由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大. 10. (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P E A =A 33C 52A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P E =A 445244=1,所以,甲、乙两人不在同一岗位服务的概率是P E =1−P E =9.(3)随机变量ξ可能取的值为1,2.事件" ξ=2 "是指有两人同时参加A 岗位服务,则P ξ=2 =C 52A 33C 52A 44=14.所以P ξ=1 =1−P ξ=2 =34,ξ的分布列是:ξ12P341411. (1)设B 为事件"此人到达当日空气重度污染",则B =A 5∪A 8.所以P B =P A 5∪A 8=P A 5 +P A 8=213.(2)由题意可知,X 的所有可能取值为0,1,2,且P X =1 =P A 3∪A 6∪A 7∪A 11=P A 3 +P A 6 +P A 7 +P A 11 =413,P X =2 =P A 1∪A 2∪A 12∪A 13=P A 1 +P A 2 +P A 12 +P A 13 =413,P X =0 =1−P X =1 −P X =2=5. 所以X 的分布列为:X 012P513413413 故X 的数学期望EX =0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大. 12. (1)设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2,⋯,7. 由题意可知P A i =P B i =17,i =1,2,⋯,7.由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P A 5∪A 6∪A 7 =P A 5 +P A 6 +P A 7 =37. (2)设事件C 为“甲的康复时间比乙的康复时间长”. 由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6,因此P C =P A 4B 1 +P A 5B 1 +P A 6B 1 +P A 7B 1 +P A 5B 2 +P A 6B 2+P A 7B 2 +P A 7B 3 +P A 6B 6 +P A 7B 6=10P A 4B 1 =10P A 4 P B 1=10.(3)a =11或a =18.13. (1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400=2.(2)设生活垃圾投放错误为事件A,则事件A表示生活垃圾投放正确.事件A的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P A =400+240+60=0.7,所以P A=1−0.7=0.3.(3)当a=600,b=c=0时,s2取得最大值.因为x=1a+b+c=200,所以s2=13600−2002+0−2002+0−2002=80000.即s2的最大值为80000.14. (1)由题意可知:400600=23.(2)由题意可知:200+60+401000=310.(3)由题意可知:s2=13a2+b2+c2−120000,因此当a=600,b=0,c=0时,s2取得最大值,且此时s2=80000.15. (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为x=8+8+9+104=354;方差为s2=18−352+8−352+9−352+10−352=11.(2)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:A1,B1,A1,B2,A1,B3,A1,B4,用C表示:"选出的两名同学的植树总棵数为19 "这一事件,则C中的结果有4个,它们是A1,B4,A2,B4,A3,B2,A4,B2,故所求概率为P C=416=14.16. (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为8+8+9+10=35;方差为s2=148−3542+8−3542+9−3542+10−3542=1116.(2)当X=9时,由茎叶图可知,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21.事件“ Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P Y=17=216=18.同理可得P Y=18=1;P Y=19=1;P Y=20=1;P Y=21=1.所以随机变量Y的分布列为Y1718192021P11111所以数学期望为EY=17×1+18×1+19×1+20×1+21×1=19.17. (1)记该应聘者对三门指定课程考试及格的事件分别为A,B,C,则P A=0.5,P B=0.6,P C=0.9.应聘者用方案一考试通过的概率:P1=P A·B·C +P A·B·C +P A·B·C +P A·B·C=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9=0.03+0.27+0.18+0.27=0.75.(2)应聘者用方案二考试通过的概率:P 2=1P A ·B +1P B ·C +1P A ·C =1× 0.5×0.6+0.6×0.9+0.5×0.9 =13×1.29=0.43.18. (1)设A 、B 、C 分别表示第一、二、三门课程考试通过.应聘者用方案一考试通过的概率p 1=P A ⋅B ⋅C +P A ⋅B ⋅C +P A ⋅B ⋅C +P A ⋅B ⋅C=ab 1−c +bc 1−a +ac 1−b +abc=ab +bc +ca −2abc .应聘者用方案二考试通过的概率p 2=1P A ⋅B +1P B ⋅C +1P A ⋅C =1 ab +bc +ca . (2)因为a ,b ,c ∈ 0,1 ,所以p 1−p 2=2 ab +bc +ca −2abc =2 ab 1−c +bc 1−a +ca 1−b ≥0.故p 1≥p 2. 即采用第一种方案,该应聘者考试通过的概率较大.19. (1)由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.该合唱团学生参加活动的人均次数为1×10+2×50+3×40=230=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为P 0=C 102+C 502+C 402C 1002=4199.(3)从合唱团中任选两名学生,记"这两人中一人参加1次活动,另一人参加2次活动"为事件A ,"这两人中一人参加2次活动,另一人参加3次活动"为事件B ,"这两人中一人参加1次活动,另一人参加3次活动"为事件C .易知P ξ=1 =P A +P B =C 101C 5011002+C 501C 4011004=50;P ξ=2 =P C =C 101C 4011002=8. 所以ξ的分布列ξ012P 41995099899所以ξ的数学期望Eξ=0×4199+1×5099+2×899=23.20. (1)事件A i表示“该生第i门课程取得优秀成绩”,i=1,2,3,由题意知P A1=45,P A2=p,P A3=q.由于事件“该生至少有1门课程取得优秀成绩”与事件“ ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1−Pξ=0=1−6=119.(2)由题意知Pξ=0=P A1A2A3=151−p1−q=6125,Pξ=3=P A1A2A3=45pq=24125,整理得pq=625,p+q=1.由p>q,可得p=35,q=25.(3)由题意知a=Pξ=1=P A1A2A3+P A1A2A3+P A1A2A3=41−p1−q+1p1−q+11−p q=37 125.b=Pξ=2=1−Pξ=0−Pξ=1−Pξ=3=58 125,Eξ=0×Pξ=0+1×Pξ=1+2Pξ=2+3Pξ=3=9 .21. (1)设"这名学生在上学路上到第三个路口时首次遇到红灯"为事件A.因为事件A等价于事件"这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯",所以事件A的概率为P A=1−1×1−1×1=4 27.(2)设"这名学生在上学路上因遇到红灯停留的总时间至多为是4 min " 为事件B,这名学生在上学路上遇到k次红灯为事件B k k=0,1,2.由题意得P B0=24=16 81,P B1=C411123=32,P B2=C42132232=24 81.由于事件B等价于事件"这名学生在上学路上至多遇到2次红灯",所以事件B的概率为P B=P B0+P B1+P B2=8 .。
(2016)16 .( 13 分)(2016?北京) A, B, C 三个班共有100 名学生,为检查他们的体育锻炼状况,经过分层抽样获取了部分学生一周的锻炼时间,数据如表(单位:小时):A 班678B 班67 8910 11 12C班36912(Ⅰ)试预计 C 班的学生人数;(Ⅱ)从 A 班和 C 班抽出的学生中,各随机选用一个人, A 班选出的人记为甲, C 班选出的人记为乙.假定所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从 A, B, C三班中各随机抽取一名学生,他们该周锻炼时间分别是7, 9,(单位:小时),这 3 个新数据与表格中的数据构成的新样本的均匀数记为μ 1,表格中数据的均匀数记为μ 0,试判断μ 0 和μ 1 的大小.(结论不要求证明)【剖析】( I )由已知先计算出抽样比,从而可预计 C 班的学生人数;(Ⅱ)依据古典概型概率计算公式,可求出该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)依据均匀数的定义,可判断出μ 0>μ 1.【解答】解:( I )由题意得:三个班共抽取20 个学生,此中 C 班抽取8 个,故抽样比 K==,故 C 班有学生 8÷=40 人,(Ⅱ)从从 A 班和 C班抽出的学生中,各随机选用一个人,共有 5×8=40 种状况,并且这些状况是等可能发生的,当甲锻炼时间为 6 时,甲的锻炼时间比乙的锻炼时间长有 2 种状况;当甲锻炼时间为时,甲的锻炼时间比乙的锻炼时间长有 3 种状况;当甲锻炼时间为 7 时,甲的锻炼时间比乙的锻炼时间长有 3 种状况;当甲锻炼时间为时,甲的锻炼时间比乙的锻炼时间长有 3 种状况;当甲锻炼时间为 8 时,甲的锻炼时间比乙的锻炼时间长有 4 种状况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ 1.【评论】此题考察的知识点是用样本的频次散布预计整体散布,古典概型,难度中档.(2015)16 .(本小题 13 分) A , B 两组各有 7 位病人,他们服用某种药物后的痊愈时间(单位:天)记录以下:A组: 10, 11, 12, 13, 14, 15, 16B组: 12, 13, 15,16, 17, 14, a假定所有病人的痊愈时间相互独立,从 A , B 两组随机各选 1 人, A 组选出的人记为甲, B 组选出的人记为乙.( Ⅰ) 求甲的痊愈时间许多于14 天的概率;( Ⅱ) 假如a 25,求甲的痊愈时间比乙的痊愈时间长的概率;( Ⅲ) 当 a 为什么值时, A , B 两组病人痊愈时间的方差相等?(结论不要求证明)16. 解: ( Ⅰ) 设甲的痊愈时间许多于14 天记为事件 APC313. A7C71所以甲的痊愈时间许多于14天的概率为3 . 7( Ⅱ) 因为a25 ,假定乙痊愈的时间为12 天,则切合题意的甲有13 天、 14 天、 15 天、16 天,共 4 人。
2011(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解:(Ⅰ)由实验结果知,用A配方生产的产品中优质的平率为228=0.3100+,所以用A配方生产的产品的优质品率的估计值为0.3。
由实验结果知,用B配方生产的产品中优质品的频率为32100.42100+=,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[)[)[]90,94,94,102,102,110的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42, 即X 的分布列为X 的数学期望值EX=2×0.04+2×0.54+4×0.42=2.68 201218.(本小题满分12分) 某花店每天以5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;日需求量n 14 15 16 17 18 19 20 频数10201616151310(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解析】(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80 (60)0.1,(70)0.2,(80)0.7P X P X P X ====== X 60 70 80 P0.10.20.7600.1700.2800.776EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯=(ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4 y=⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476>得:应购进17枝201319.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=41113161616264⨯+⨯=.(2)X可能的取值为400,500,800,并且P(X=400)=41111161616--=,P(X=500)=116,P(X=800)=14.所以X的分布列为EX=111400+500+80016164⨯⨯⨯=506.25.201418. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(I)求这500件产品质量指标值的样本平均数x和样本方差2s(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布2(,)Nμδ,其中μ近似为样本平均数x,2δ近似为样本方差2s.(i)利用该正态分布,求(187.8212.2)P Z<<;(ii)某用户从该企业购买了100件这种产品,学科网记X表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.150若Z~2(,)Nμδ,则()P Zμδμδ-<<+=0.6826,(22)P Zμδμδ-<<+=0.9544.【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x和样本方差2s分别为1700.021800.091900.222000.332100.242200.082300.02200x=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02s=-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=…………6分(Ⅱ)(ⅰ)由(Ⅰ)知Z~(200,150)N,从而(187.8212.2)P Z<<=(20012.220012.2)0.6826P Z-<<+=………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B:,所以1000.682668.26EX=⨯=………12分2015(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。
为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。
1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。
2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。
A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。
2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。
2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。
今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。
解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。
根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。
历年(2019-2023)高考数学真题专项(概率与统计选择题及填空题)汇编考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________. 2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 ..的考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.4.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.的2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.参考答案考点01:排列组合与二项式定理一选择题:1.(2023年新课标全国Ⅰ卷)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答). 【答案】64【答案解析】:(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种; (2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种; ②若体育类选修课2门,则不同的选课方案共有2144C C 24=种; 综上所述:不同的选课方案共有16242464++=种. 故答案为:64.2.(2020年高考课标Ⅱ卷理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36【答案解析】: 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C = 现在可看成是3组同学分配到3个小区,分法有:336A = 根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36. 二、填空题1.(2023年天津卷)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.【答案】60【答案解析】:展开式的通项公式()()6361841661C 212C kkk kk kk k T x x x ---+⎛⎫=-=-⨯⨯⨯ ⎪⎝⎭, 令1842k -=可得,4k =,则2x 项的系数为()4644612C 41560--⨯⨯=⨯=.故答案为:60.2.(2021年高考浙江卷·)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1). 5; (2). 10.【答案解析】:332(1)331x x x x -=-+-, 4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=故答案为5,10.3.(2020年高考课标Ⅲ卷理科)262()x x+的展开式中常数项是__________(用数字作答).【答案】240【答案解析】: 622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项: ()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.4.(2020年浙江省高考数学试卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】(1).80 (2).122【答案解析】:5(12)x +的通项为155(2)2rr r r r r T C x C x +==,令4r =,则444455280T C x x ==,580a ∴=;113355135555222122a a a C C C ∴++=++=5.(2022新高考全国I 卷·)81()y x y x ⎛⎫-+ ⎪⎝⎭展开式中26x y 的系数为________________(用数字作答). 【答案】‐28【答案解析】:因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭, 所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为‐28故答案为:‐28 6.(2021高考天津)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.【答案】160.的【答案解析】:6312x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()636184166122rrrr r r r T C x C x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭, 令1846r -=,解得3r =, 所以6x 的系数是3362160C =.故答案:160.7.(2021高考北京)在341()x x-的展开式中,常数项为__________.【答案】4- 【答案解析】:的展开式的通项令1240r -=,解得, 故常数项为.8.(2020天津高考)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【答案解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r rr r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.9.(2019·浙江·)在二项式9)x +的展开式中,常数项是 ,系数为有理数的项的个数是 .【答案】,5【答案解析】9)x展开式的通项为919(0,1,2,,9)r r r r T C x r -+== ,当0r =时,可得二项式9)x +展开式的常数项是0919T C =.若系数为有理数,则(9)r -为偶数即可,故r 可取1,3,4,5,7,9,即246810,,,,T T T T T 共5项.10.(2019·天津·理·)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为 .【答案】28【答案解析】:83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为2268311(2)286428864C x x ⎛⎫⋅⋅-=⨯⨯= ⎪⎝⎭. 考点02 事件概率1.(2023年天津卷)甲乙丙三个盒子中装有一定数量黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.为的【答案】①. 0.05 ②.35##0.6 【答案解析】:设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 甲盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 甲盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==.故答案为:0.05;35. 2.(2022年高考全国甲卷数学(理)·)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【答案解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.3.(2022年高考全国乙卷数学(理))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310【答案解析】:从5名同学中随机选3名的方法数为35C 10= 甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P = 故答案为:3104.(2021高考天津·)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】①.23 ②. 2027【答案解析】:由题可得一次活动中,甲获胜的概率为564253⨯=; 则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+=⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.5.(2020天津高考·)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】 (1).16 (2). 23【答案解析】甲、乙两球落入盒子的概率分别为11,23,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为111236⨯=,甲、乙两球都不落入盒子的概率为111(1(1)233-⨯-=,所以甲、乙两球至少有一个落入盒子的概率为23.故答案为:16;23.6.(2020江苏高考·)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【答案解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19.7.(2019·上海·)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.【答案】27100【答案解析】法一:100271031923110=⋅⋅=C C C P (分子含义:选相同数字×选位置×选第三个数字) 法二:100271013310110=+-=P C P (分子含义:三位数字都相同+三位数字都不同) 8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710的【答案解析】从5名学生中抽取2名学生,共有10种方法,其中不含女生的方法有3种,因此所求概率为371=1010-.考点03 随机事件分布列1.(2020年浙江省高考数学试卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______. 【答案】(1).13(2). 1 【答案解析】:因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球, 所以1111(0)4433P ξ==+⨯=, 随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.2.(2022年浙江省高考数学试题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________. 【答案】 ①.1635, ②. 127##517【答案解析】:从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===,由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=,故答案为:1635,127.3.(2019·全国Ⅰ·理·)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主” .设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .【答案】0.18 【答案解析】:因为甲队以4:1获胜,故一共进行5场比赛,且第5场为甲胜,前面4场比赛甲输一场,若第1场或第2场输1场,则12120.60.40.50.60.072P C =⨯⨯⨯⨯=, 若第3场或第4场输1场,则21220.60.50.50.60.108P C =⨯⨯⨯⨯=,所以甲以4:1获胜的概率是120.18P P +=.4.(2021年高考浙江卷)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】 (1). 1 (2). 89【答案解析】:2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=. 由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为1;89.5.(2022新高考全国II 卷).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14 【答案解析】 因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=. 故答案为:0.14.。
(2016)16.(13分)(2016•北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班 6 6.5 7 7.5 8B班 6 7 8 9 10 11 12C班 3 4.5 6 7.5 9 10.5 12 13.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)【分析】(I)由已知先计算出抽样比,进而可估计C班的学生人数;(Ⅱ)根据古典概型概率计算公式,可求出该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)根据平均数的定义,可判断出μ0>μ1.【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K==,故C班有学生8÷=40人,(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,共有5×8=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼时间比乙的锻炼时间长的概率P==;(Ⅲ)μ0>μ1.【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.(2015)16.(本小题13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(Ⅱ) 如果25(Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)16. 解:(Ⅰ) 设甲的康复时间不少于14天记为事件A()13173.7C P A C ==所以甲的康复时间不少于14天的概率为3.7(Ⅱ) 因为25a =,假设乙康复的时间为12天,则符合题意的甲有13天、14天、15天、16天,共4人。
若乙的康复时间为13天,则符合题意的甲有14天、15天、16天,共3人。
若乙的康复时间为14天,则符合题意的甲有15天、16天,共2人。
若乙的康复时间为15天,则符合题意的甲有16天,共1人。
当乙的康复时间为其它值时,由于甲的康复时间为16天,均不符合题意。
所以符合题意的甲、乙选择法师共计4+3+2+1=10种而所有甲、乙组合情况共117749C C =种因为所有情况都是等可能的,所以甲的康复时间比乙的康复时间长的概率1049P =(Ⅲ) 11a =或18a =(2014) 13.把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 36 种。
16.(本小题共13分)李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立)。
⑴从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率;⑵从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一场不超过6.0的概率;⑶记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较()E X 与x 的大小(只需写出结论)。
16.解:⑴根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4。
所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5;⑵设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。
则C AB AB =,,A B独立。
据统计数据,()35P A =,()25P B =,()()()332213555525P C P AB P AB =+=⋅+⋅=,所以,所求概率为1325;⑶EX x =。
(2013)(12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是__________4 _.(2013)(16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) (16)(共13分)解:设A i 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,()113i P A =,且().i j A A i j =∅≠(Ⅰ)设B 为事件“此人到达当日空气重度污染”,则58.B A A =所以()()582.13P B P A A ==(Ⅱ)由题意可知,X 的所有可能取值为0,1,2,且()()367111P X P A A A A ==空气污染指数14日13日12日11日9日日期()()()()367114,13P A P A P A P A =+++=()()1212132P X P A A A A ==()()()()1212134,13P A P A P A P A =+++=()()()51112.13P X P X P X ==-=-==所以X 的分布列为:故X 的期望54412012.13131313EX =⨯+⨯+⨯= (Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.(2012)2.设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )(B ) (C ) (D )【解析】题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D 。
【答案】D(2012)6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。
【答案】B(2012)17.(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了⎩⎨⎧≤≤≤≤20,20y x 4π22π-6π44π-⎩⎨⎧≤≤≤≤2020y x 4422241222ππ-=⨯⋅-⨯=P X 0 1 2 P513413413该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨): “厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱厨余垃圾400 100 100 可回收物30 240 30 其他垃圾20 20 60 (Ⅰ)试估计厨余垃圾投放正确的概率;(Ⅱ)试估计生活垃圾投放错误额概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a >0,=600。
当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。
(注:,其中为数据的平均数) 解:(1)由题意可知:。
(2)由题意可知:。
(3)由题意可知:,因此有当,,时,有.c b a ,,c b a ++c b a ,,2s c b a ,,2s ])()()[(1222212x x x x x x ns n -++-+-=x n x x x ,,,21 4002=6003200+60+403=10001022221(120000)3s a b c =++-600a =0b =0c =280000s =。