统计学方法的正确抉择
- 格式:doc
- 大小:86.50 KB
- 文档页数:8
如何选择合适的统计分析方法在当今数据驱动的时代,统计分析成为了我们理解和解释各种现象的重要工具。
无论是科研工作、市场调研、医学研究还是社会科学领域,正确选择合适的统计分析方法对于得出准确、可靠且有意义的结论至关重要。
然而,面对繁多的统计方法和复杂的数据特点,如何做出恰当的选择并非易事。
首先,我们需要明确研究的目的。
是要描述数据的基本特征,比如均值、中位数、标准差等?还是要检验某种假设,比如两组数据之间是否存在显著差异?或者是要探索变量之间的关系,例如是否存在线性相关或因果关系?不同的研究目的会引导我们走向不同的统计分析路径。
如果研究目的是描述性的,那么常用的方法包括计算集中趋势(如均值、中位数)和离散程度(如标准差、四分位距)。
比如,在调查一个城市居民的收入水平时,我们可以计算平均收入来了解整体情况,同时用标准差来反映收入的分布离散程度。
当我们的目的是进行假设检验时,就要根据数据的类型和研究设计来选择具体的方法。
如果是比较两组独立样本的均值,比如比较男性和女性的平均体重,可能会用到 t 检验。
而如果是比较多组独立样本的均值,例如比较不同年级学生的平均成绩,可能就需要使用方差分析(ANOVA)。
在探索变量之间的关系方面,相关性分析和回归分析是常用的手段。
相关性分析可以告诉我们两个变量之间的线性关联程度,例如身高和体重之间的相关性。
而回归分析则能进一步建立变量之间的数学模型,预测一个变量如何随着另一个变量的变化而变化。
接下来,要考虑数据的类型。
数据大致可以分为定量数据(如年龄、身高、体重等可以用数值表示的数据)和定性数据(如性别、职业、颜色等分类数据)。
对于定量数据,如果符合正态分布,那么很多参数检验方法都是适用的,如上述提到的 t 检验和方差分析。
但如果数据不符合正态分布,可能就需要使用非参数检验方法,如 Wilcoxon 秩和检验、KruskalWallis 检验等。
对于定性数据,常常使用卡方检验来分析不同类别之间的差异。
医学研究中统计学方法抉择医学研究中,统计学方法的选择对于研究结果的准确性和可靠性至关重要。
在医学研究中,统计学方法可以帮助研究者对数据进行分析和解释,从而使得研究结论更具说服力和可信度。
统计学方法的选择要根据研究设计、数据类型和研究问题的特点来决定。
本文将从几个方面介绍医学研究中的统计学方法的抉择。
首先,研究设计是决定统计学方法选择的关键因素之一、在医学研究中常见的研究设计包括观察研究和实验研究。
观察研究是通过观察已经发生的现象来推测其原因与结果之间的关系,而实验研究则是通过人为干预来观察其对结果的影响。
在观察研究中,常用的统计学方法包括相关分析和回归分析。
相关分析可以用来研究两个变量之间的关系,而回归分析可以用来预测一个变量对另一个变量的影响。
在实验研究中,常用的统计学方法包括方差分析和t检验。
方差分析可以用来比较多个组之间的差异,而t检验可以用来比较两个组之间的差异。
其次,数据类型也是决定统计学方法选择的重要因素之一、医学研究中的数据类型可以分为定量数据和定性数据。
定量数据是用数字表示的数据,可以进行数值计算和统计分析,如血压、体重等。
统计学方法选择包括描述统计和推断统计。
描述统计是用来描述和总结数据的方法,包括平均数、标准差、频率等指标。
推断统计是用来推断总体参数的方法,包括抽样分布、置信区间和假设检验等。
定性数据是用描述性词语表示的数据,通常不能进行数值计算和统计分析,如性别、疾病类型等。
对于定性数据的分析,常用的统计学方法包括卡方检验和Fisher精确检验。
最后,研究问题的特点也会影响统计学方法的选择。
在医学研究中,常见的研究问题包括比较两个或多个组之间的差异、关联性研究、预测模型建立等。
对于比较两个或多个组之间的差异的问题,可以使用方差分析、t检验、非参数检验等统计学方法。
对于关联性研究的问题,可以使用相关分析、回归分析等统计学方法。
对于预测模型建立的问题,可以使用Logistic回归、Cox回归等统计学方法。
统计学方法的分类和选择一、描述统计方法描述统计方法用于总结和概括数据的定量和定性特征,主要包括以下几种方法:1.频数统计:对数据进行分类,计算各类别的频数或频率。
2.平均数和标准差:计算数据的平均值和离均差的度量,用于描述数据的集中趋势和分散程度。
3.分位数和百分位数:计算数据按大小排序后的位置,用于描述数据的位置和分布。
4.统计图表:如直方图、饼图、散点图等,用于直观地展示数据的分布和关系。
二、推断统计方法推断统计方法用于从样本数据中推断总体的特征和进行假设检验,主要包括以下几种方法:1.参数估计:根据样本数据估计总体的参数,包括点估计和区间估计。
2.假设检验:根据样本数据判断总体参数的假设,包括一般假设检验和相关性检验。
3.方差分析:用于比较多个总体的均值是否有显著差异。
4.回归分析:建立变量之间的数学模型,用于预测因变量。
5.方差分析:用于比较多个总体的均值是否有显著差异。
三、统计学方法的选择选择适当的统计学方法应考虑以下几个方面:1.数据类型:根据数据的类型(定量或定性)选择合适的描述统计和推断统计方法。
2.研究目的:根据研究的目的和问题选择合适的统计学方法。
如果是描述总体特征,可以使用描述统计方法;如果需要推断总体特征或进行假设检验,则需要使用推断统计方法。
3.样本容量:样本容量的大小会影响统计学方法的选择。
当样本容量较大时,可以使用参数估计和假设检验方法;当样本容量较小时,可以使用非参数统计方法。
4.数据分布:数据的分布特征对统计学方法的选择也有影响。
当数据服从正态分布时,可以使用参数统计方法;当数据不服从正态分布时,可以使用非参数统计方法。
5.数据关系:如果数据之间存在关联或依赖关系,可以使用回归分析等方法来研究变量之间的影响。
总之,统计学方法的分类和选择应考虑数据的类型、研究目的、样本容量、数据分布和数据关系等因素。
选用合适的统计学方法能够提供准确的分析结果和科学的结论,从而对问题的解决和决策的制定有着重要的意义。
统计方法的选择统计方法的选择是数据分析中至关重要的一步,它涉及到如何收集、处理和解释数据,以及如何使用适当的统计方法来分析数据。
在本文中,我们将探讨如何选择适当的统计方法,以便更好地理解数据并得出结论。
1. 确定研究目的和问题在开始数据分析之前,我们需要明确研究目的和问题。
这有助于我们选择最合适的统计方法,以回答我们的问题。
例如,如果目的是评估某个产品在市场上的竞争地位,那么可以使用回归分析方法来研究该产品的质量和价格之间的关系。
2. 确定数据类型和缺失值在选择统计方法时,我们需要了解数据类型和缺失值。
有些统计方法适用于所有数据,而有些方法只适用于某些数据类型。
例如,对于离散型数据,可以使用插值法或离散化方法,而对于连续型数据,可以使用t检验或方差分析。
3. 考虑数据分布和抽样方式数据分布和抽样方式也会对选择统计方法产生影响。
例如,如果数据具有高斯分布,则使用t检验可能比使用方差分析更为合适。
如果数据是随机抽样的,则使用方差分析可能比使用t检验更为合适。
4. 考虑方法和数据量数据量也会影响选择统计方法。
有些统计方法可能适用于少量的数据,而另一些方法可能适用于大量的数据。
例如,对于小型研究,使用t检验可能比使用方差分析更为合适。
5. 参考相关文献和指南最后,参考相关文献和指南也是选择统计方法时需要考虑的因素之一。
这些文献和指南可以提供有关特定统计方法的详细信息,以及如何应用这些方法的指导。
统计方法的选择是一个复杂的过程,需要考虑多个因素。
通过明确研究目的和问题、了解数据类型和缺失值、考虑数据分布和抽样方式、考虑方法和数据量,以及参考相关文献和指南,我们可以选择合适的统计方法,从而更好地理解数据并得出结论。
如何合理选择统计方法——常用统计学方法汇总推荐文档在科学研究和数据分析中,合理选择统计方法是非常重要的。
统计学方法涉及到数据的收集、整理、描述和分析,能够帮助我们得出准确的结论和有效的推断。
本文将介绍一些常用的统计学方法,并给出一些建议来合理选择适当的统计方法。
一、描绘性统计方法描绘性统计方法用于对数据进行整理和描述,以便更好地了解数据的分布、中心趋势和变异程度。
常用的描绘性统计方法包括:均值、中位数、众数、方差、标准差、百分位数等。
在选择描绘性统计方法时,需要根据数据的类型和分布特征来决定使用哪种方法。
如果数据呈正态分布,可以使用均值和标准差进行描述;如果数据分布严重偏斜,可以使用中位数和百分位数。
二、推断统计方法推断统计方法用于对整体的特征进行推断和估计,基于样本数据来推断总体的参数和特征。
常用的推断性统计方法包括:假设检验和置信区间估计。
假设检验用于测试关于总体特征的假设,例如比较两个总体均值是否有显著差异;而置信区间估计用于给出总体参数的估计范围。
在选择推断统计方法时,需要考虑研究问题的特点和数据的类型。
如果对总体均值或比例是否有显著性差异感兴趣,可以选择假设检验方法;如果对总体参数的估计范围感兴趣,可以选择置信区间估计方法。
三、回归分析方法回归分析是一种用于研究变量之间关系的统计方法,常用于预测和解释变量之间的关系。
回归分析方法包括线性回归、多元回归、逻辑回归等。
在选择回归分析方法时,需要考虑自变量和因变量的类型和分布特征,以及变量之间是否存在线性关系。
如果自变量和因变量均为连续变量,并且存在线性关系,可以选择线性回归方法;如果因变量为二分类变量,可以选择逻辑回归方法。
四、方差分析方法方差分析是一种比较多个样本均值是否存在显著差异的统计方法,常用于实验设计和因素分析。
方差分析方法包括单因素方差分析和多因素方差分析。
在选择方差分析方法时,需要考虑自变量的类型和水平数目,以及因变量的类型和数据分布特征。
统计学方法的正确抉择一.统计方法抉择的条件在临床科研工作中,正确地抉择统计分析方法,应充分考虑科研工作者的分析目的、临床科研设计方法、搜集到的数据资料类型、数据资料的分布特征与所涉及的数理统计条件等。
其中任何一个问题没考虑到或考虑有误,都有可能导致统计分析方法的抉择失误。
此外,统计分析方法的抉择应在科研的设计阶段来完成,而不应该在临床试验结束或在数据的收集工作已完成之后。
对临床科研数据进行统计分析和进行统计方法抉择时,应考虑下列因素:1.分析目的对于临床医生及临床流行病医生来说,在进行统计分析前,一定要明确利用统计方法达到研究者的什么目的。
一般来说,统计方法可分为描述与推断两类方法。
一是统计描述(descriptive statistics),二是统计推断(inferential statistics)。
统计描述,即利用统计指标、统计图或统计表,对数据资料所进行的最基本的统计分析,使其能反映数据资料的基本特征,有利于研究者能准确、全面地了解数据资料所包涵的信息,以便做出科学的推断。
统计表,如频数表、四格表、列联表等;统计图,如直方图、饼图,散点图等;统计指标,如均数、标准差、率及构成比等。
统计推断,即利用样本所提供的信息对总体进行推断(估计或比较),其中包括参数估计和假设检验,如可信区间、t检验、方差分析、 2检验等,如要分析甲药治疗与乙药治疗两组的疗效是否不相同、不同地区某病的患病率有无差异等。
还有些统计方法,既包含了统计描述也包含了统计推断的内容,如不同变量间的关系分析。
相关分析,可用于研究某些因素间的相互联系,以相关系数来衡量各因素间相关的密切程度和方向,如高血脂与冠心病、慢性宫颈炎与宫颈癌等的相关分析;回归分析,可用于研究某个因素与另一因素(变量)的依存关系,即以一个变量去推测另一变量,如利用回归分析建立起来的回归方程,可由儿童的年龄推算其体重。
2.资料类型资料类型的划分现多采用国际通用的分类方法,将其分为两类:数值变量(numerical variable)资料和分类变量(categorical variable)资料。
统计学方法的选择及应用统计学是一种研究数据收集、整理、分析和解释的科学方法。
在现代社会,统计学方法被广泛应用于各个领域,包括社会科学、自然科学、医学、经济学等等。
选择合适的统计学方法对于研究的结果和结论至关重要。
本文将就统计学方法的选择及应用进行探讨。
首先,统计学方法的选择需要根据研究问题的性质和研究设计的要求。
如果研究问题是描述性的,即对某个现象的特征进行描述和总结,可以使用描述性统计学方法,如频数分布、中心趋势和离散程度等。
如果研究问题是关于两个或多个变量之间的关系,可以使用相关分析或回归分析等方法来探究变量之间的关联程度和因果关系。
其次,在应用统计学方法时,需要考虑数据的类型和分布。
根据数据的类型,可以选择不同的统计学方法。
如果数据是定量型的,即可以进行数值计量和比较的数据,一般可以使用t检验、方差分析、相关分析等方法。
而如果数据是定性型的,即不能进行明确的数值比较的数据,可以选择卡方检验、秩和检验等非参数方法来分析数据。
此外,还可以将定性数据转化为定量数据进行分析,例如使用1表示是,0表示否,然后通过计算得到具体的数值,并应用相应的统计学方法进行分析。
此外,统计学方法的选择还需考虑数据的分布情况。
如果数据服从正态分布,即呈钟形曲线分布,一般可以使用参数统计学方法,如t检验、方差分析、回归分析等。
而如果数据不服从正态分布,可以使用非参数统计学方法,如秩和检验、卡方检验等。
还可以通过对数据进行转换(如对数变换、平方根变换等)来使其符合正态分布的假设,以便使用参数统计学方法。
此外,统计学方法的选择还需考虑样本大小。
如果样本量较小,一般使用非参数统计学方法,因为参数统计学方法对样本量的要求较高,需要满足一些假设条件才能得到可靠的结果。
而非参数统计学方法对样本量的要求较低,可以更好地处理小样本和异常值的问题。
最后,选择合适的统计学方法还需考虑研究问题的目的和假设。
例如,如果研究的目的是比较两个或多个组之间的差异,可以使用方差分析或多重比较等方法。
如何正确选择统计方法选择正确的统计方法对于进行准确的数据分析是至关重要的。
统计方法是根据所需数据的类型和实验设计来选择的,能够帮助我们回答研究问题,并得出有意义的结论。
本文将介绍如何正确选择统计方法。
首先,确定研究问题。
在选择统计方法之前,我们需要明确自己研究的问题是什么。
例如,我们是想了解两组数据之间的差异还是寻找数据之间的关联性。
基于问题的不同,我们可以选择不同的统计方法。
其次,了解数据类型。
了解数据的类型对于选择统计方法至关重要。
数据可以分为连续型和离散型两种类型。
连续型数据可以是像温度和身高这样的测量值,而离散型数据可以是像性别和是否患有其中一种疾病这样的分类变量。
对于连续型数据,我们通常会使用t检验、方差分析和回归分析等方法;对于离散型数据,我们可以使用卡方检验和逻辑回归等方法。
然后,分析样本大小。
样本大小是选择统计方法的重要考虑因素之一、当样本大小较小时,我们可能需要使用非参数方法,如 Mann-Whitney U检验和 Wilcoxon 符号秩和检验。
这些方法不要求样本满足正态分布假设。
当样本大小较大时,我们可以使用正态分布相关的参数方法,如 t 检验和方差分析。
在样本较大的情况下,参数方法通常比非参数方法更准确。
接下来,确定实验设计。
实验设计也是选择统计方法的一个重要因素。
常见的实验设计包括配对设计和独立设计。
对于配对设计,我们可以使用配对 t 检验或 McNemar 检验等方法;对于独立设计,我们可以使用独立样本 t 检验或卡方检验等方法。
此外,了解数据分布特征也是选择统计方法的关键。
如果我们的数据满足正态分布,我们可以使用参数方法,如 t 检验和方差分析。
如果数据不满足正态分布,我们可以使用非参数方法,如 Mann-Whitney U 检验和 Kruskal-Wallis 检验。
最后,借助统计软件进行分析。
在选择了合适的统计方法后,我们需要借助统计软件进行数据分析。
常见的统计软件如 SPSS、R 和 Python 等都具有丰富的功能和方法,能够帮助我们进行数据统计和分析。
统计学方法的选择和应用一、引言统计学是处理数据、解释数据和研究数据内在规律性的方法论科学,它广泛应用于各个领域,如社会科学、医学、经济学和生物学等。
在数据分析中,选择合适的统计学方法至关重要,它直接影响到结果的准确性和可靠性。
本文将探讨统计学方法的选择和应用,以帮助读者更好地理解和应用这一学科。
二、统计学方法的选择选择合适的统计学方法需要考虑数据类型、研究目的和研究问题等因素。
以下是选择统计学方法的几个关键因素:1. 数据类型:数据类型是选择统计学方法的基础。
例如,对于定距数据和定比数据,可以使用参数检验;对于定类数据和定序数据,可以使用非参数检验。
2. 研究目的:研究目的是选择统计学方法的导向。
例如,如果目的是描述数据特征,可以使用描述性统计方法;如果目的是比较不同组之间的差异,可以使用推断性统计方法。
3. 研究问题:研究问题是选择统计学方法的依据。
例如,如果问题是“两个总体均值是否存在显著差异”,可以使用t检验;如果问题是“多个总体均值是否存在显著差异”,可以使用方差分析。
三、统计学方法的应用统计学方法的应用广泛,以下是一些常见的应用场景:1. 描述性统计:描述性统计用于描述数据的基本特征,如均值、中位数、众数、标准差等。
这些统计量可以帮助我们了解数据的分布情况,从而为进一步的数据分析提供基础。
2. 推断性统计:推断性统计用于从样本数据推断出总体特征。
例如,我们可以通过样本均值和标准差来估计总体均值和标准差。
此外,推断性统计还可以用于检验假设、估计参数和预测未来趋势等。
3. 方差分析:方差分析用于比较不同组之间的差异。
例如,我们可以使用方差分析来比较不同地区的销售额是否存在显著差异。
通过方差分析,我们可以了解各组之间的差异是否显著,从而为进一步的数据解释提供依据。
4. 回归分析:回归分析用于探索变量之间的关系。
例如,我们可以使用线性回归分析来预测房价,通过分析房价与各个因素之间的关系,为房地产市场的决策提供依据。
统计学方法的正确抉择一.统计方法抉择的条件在临床科研工作中,正确地抉择统计分析方法,应充分考虑科研工作者的分析目的、临床科研设计方法、搜集到的数据资料类型、数据资料的分布特征与所涉及的数理统计条件等。
其中任何一个问题没考虑到或考虑有误,都有可能导致统计分析方法的抉择失误。
此外,统计分析方法的抉择应在科研的设计阶段来完成,而不应该在临床试验结束或在数据的收集工作已完成之后。
对临床科研数据进行统计分析和进行统计方法抉择时,应考虑下列因素:1.分析目的对于临床医生及临床流行病医生来说,在进行统计分析前,一定要明确利用统计方法达到研究者的什么目的。
一般来说,统计方法可分为描述与推断两类方法。
一是统计描述(descriptive statistics),二是统计推断(inferential statistics)。
统计描述,即利用统计指标、统计图或统计表,对数据资料所进行的最基本的统计分析,使其能反映数据资料的基本特征,有利于研究者能准确、全面地了解数据资料所包涵的信息,以便做出科学的推断。
统计表,如频数表、四格表、列联表等;统计图,如直方图、饼图,散点图等;统计指标,如均数、标准差、率及构成比等。
统计推断,即利用样本所提供的信息对总体进行推断(估计或比较),其中包括参数估计和假设检验,如可信区间、t检验、方差分析、 2检验等,如要分析甲药治疗与乙药治疗两组的疗效是否不相同、不同地区某病的患病率有无差异等。
还有些统计方法,既包含了统计描述也包含了统计推断的内容,如不同变量间的关系分析。
相关分析,可用于研究某些因素间的相互联系,以相关系数来衡量各因素间相关的密切程度和方向,如高血脂与冠心病、慢性宫颈炎与宫颈癌等的相关分析;回归分析,可用于研究某个因素与另一因素(变量)的依存关系,即以一个变量去推测另一变量,如利用回归分析建立起来的回归方程,可由儿童的年龄推算其体重。
2.资料类型资料类型的划分现多采用国际通用的分类方法,将其分为两类:数值变量(numerical variable)资料和分类变量(categorical variable)资料。
数值变量是指其值是可以定量或准确测量的变量,其表现为数值大小的不同;而分类变量是指其值是无法定量或不能测量的变量,其表现没有数值的大小而只有互不相容的类别或属性。
分类变量又可分为无序分类变量和有序分类变量两小类,无序分类变量表现为没有大小之分的属性或类别,如:性别是两类无序分类变量,血型是四类无序分类变量;有序分类变量表现为各属性或类别间有程度之分,如:临床上某种疾病的“轻、中、重”,治疗结果的“无效、显效、好转、治愈”。
由此可见,数值变量资料、无序分类变量资料和有序分类变量资料又可叫做计量资料、计数资料和等级资料。
资料类型的划分与统计方法的抉择有关,在多数情况下不同的资料类型,选择的统计方法不一样。
如数值变量资料的比较可选用t检验、u检验等统计方法;而率的比较多用 2检验。
值得注意的是,有些临床科研工作者,常常人为地将数值变量的结果转化为分类变量的临床指标,然后参与统计分析,如患者的血红蛋白含量,研究者常用正常、轻度贫血、中度贫血和重度贫血来表示,这样虽然照顾了临床工作的习惯,却损失了资料所提供的信息量。
换言之,在多数情况下,数值变量资料提供的信息量最为充分,可进行统计分析的手段也较为丰富、经典和可靠,与之相比,分类变量在这些方面都不如数值变量资料。
因此,在临床实验中要尽可能选择量化的指标反映实验效应,若确实无法定量时,才选用分类数据,通常不宜将定量数据转变成分类数据。
3.设计方法在众多的临床科研设计方法中,每一种设计方法都有与之相适应的统计方法。
在统计方法的抉择时,必须根据不同的临床科研设计方法来选择相应的统计分析方法。
如果统计方法的抉择与设计方法不一致,统计分析得到的任何结论都是错误的。
在常用的科研设计方法中,有成组设计(完全随机设计)的t检验、配对t检验、成组设计(完全随机设计)的方差分析、配伍设计(随机区组设计)的方差分析等,都是统计方法与科研设计方法有关的佐证。
因此,应注意区分成组设计(完全随机设计)与配对和配伍设计(随机区组设计),在成组设计中又要注意区别两组与多组设计。
最常见的错误是将配对或配伍设计(随机区组设计)的资料当做成组设计(完全随机设计)来处理,如配对设计的资料使用成组t检验、配伍设计(随机区组设计)使用成组资料的方差分析;或将三组及三组以上的成组设计(完全随机设计)资料的比较采用多个t检验、三个或多个率的比较采用四格表的卡方检验来进行比较,都是典型的错误。
如下表:表1 常见与设计方法有关的统计方法抉择错误设计方法错误的统计方法正确统计方法两个均数的比较(成组设计、完全随机设计)成组设计的t检验、成组设计的秩和检验多个均数的比较(成组设计、完全随机设计)多个成组设计的t检验完全随机设计的方差分析及q检验、完全随机设计的秩和检验及两两比较数值变量的配对设计成组设计的t检验配对t检验、配对秩和检验随机区组设计(配伍设计)多个成组设计的t检验、完全随机设计的方差分析随机区组设计的方差分析及q 检验、随机区组设计的秩和检验及两两比较交叉设计成组设计的t检验、配对t检验、配对秩和检验交叉设计的方差分析、交叉设计的秩和检验4.分布特征及数理统计条件数理统计和概率论是统计的理论基础。
每种统计方法都要涉及数理统计公式,而这些数理统计公式都是在一定条件下推导和建立的。
也就是说,只有当某个或某些条件满足时,某个数理统计公式才成立,反之若不满足条件时,就不能使用某个数理统计公式。
在数理统计公式推导和建立的条件中,涉及最多的是数据的分布特征。
数据的分布特征是指数据的数理统计规律,许多数理统计公式都是在特定的分布下推导和建立的。
若实际资料服从(符合)某种分布,即可使用该分布所具有的数理统计规律来分析和处理该实际资料,反之则不能。
在临床资料的统计分析过程中,涉及得最多的分布有正态分布、偏态分布、二项分布等。
许多统计方法对资料的分布有要求,如:均数和标准差、t和u检验;方差分析都要求资料服从正态分布,而中位数和四分位数间距、秩和检验等,可用于不服从正态分布的资料。
所以,临床资料的统计分析过程中,应考虑资料的分布特征,最起码的要求是熟悉正态分布与偏态分布。
例如:在临床科研中,许多资料的描述不考虑资料的分布特征,而多选择均数与标准差。
如某妇科肿瘤化疗前的血象值,资料如下表:某妇科肿瘤化疗前的血象值指标名例数均数标准差偏度系数 P值峰度系数P值血红蛋白(g/L) 98 111.99 18.82 0.180 0.459 0.025 0.958 血小板(×109/L) 98 173.58 87.11 1.353 0.000 1.843 0.000 白细胞(×109/L) 98 6.7930 2.767 1.207 0.000 1.202 0.013从上结果可见,若只看三项指标的均数和标准差,临床医生也许不会怀疑有什么问题。
但是经正态性检验,病人的血红蛋白服从正态分布,而血小板和白细胞两项指标的偏度和峰度系数均不服从正态分布(P<0.05)。
因此,描述病人的血小板和白细胞平均水平正确的指标是中位数,而其变异程度应使用四分位数间距。
除了数据的分布特征外,有些数理统计公式还有其它一些的条件,如t检验和方差分析的方差齐性、卡方检验的理论数(T)大小等。
总之,对于临床科研工作者来说,为正确地进行统计方法的抉择,首先要掌握或熟悉上述影响统计方法抉择因素;其次,还应熟悉和了解常用统计方法的应用条件。
二.数据资料的描述统计描述的内容包括了统计指标、统计图和表,其目的是使数据资料的基本特征更加清晰地表达。
本节只讨论统计指标的正确选用,而统计图表的正确使用请参阅其他书籍。
1.数值变量资料的描述描述数值变量资料的基本特征有两类指标,一是描述集中趋势的指标,用以反映一组数据的平均水平;二是描述离散程度的指标,用以反映一组数据的变异大小。
各指标的名称及适用范围等见表2。
表2 描述数值变量资料的常用指标指标名称用途适用的资料均数(X-)描述一组数据的平均水平,集中位置正态分布或近似正态分布中位数(M)与均数相同偏态分布、分布未知、两端无界几何均数(G)与均数相同对数正态分布,等比资料标准差(S)描述一组数据的变异大小,离散程度正态分布或近似正态分布四分位数间距(Q U-Q L)与标准差相同偏态分布、分布未知、两端无界极差(R)与标准差相同观察例数相近的数值变量变异系数(CV)与标准差相同比较几组资料间的变异大小从表中可看出,均数与标准差联合使用描述正态分布或近似正态分布资料的基本特征;中位数与四分位数间距联合使用描述偏态分布或未知分布资料的基本特征。
这些描述指标应用时,最常见的错误是不考虑其应用条件的随意使用,如:用均数和标准差描述偏态分布、分布未知或两端无界的资料,这是目前在临床研究文献中较为普遍和典型的错误。
2.分类变量资料的描述描述分类变量资料常用的指标有死亡率、患病率、发病率等。
临床上,这类指标的应用较多,出现的错误也较多。
这些错误归纳起来大致有两类:一是以比代率,即误将构成比(proportion)当做率(rate)来描述某病发生的强度和频率,如用某病的病人数除以就诊人数(或人次)得到“某病患病率”或“某病发病率”,就是典型的以比代率的例子。
二是把各种不同的率相互混淆,如把患病率与发病率、死亡率与病死率等概念混同。
需要指出的是,单纯利用医院常规资料,最易得到的指标是构成比。
而描述疾病发生强度和频率的指标的率反映如患病率、发病率、死亡率等,很难利用医院的常规资料(如医院医院的病例档案)获得。
因为,医院常规资料无法得到计算这些率所需的分子和分母的资料。
所以,一旦研究者利用的是医院常规资料,则无法衡量疾病对人群的危害程度。
常用描述指标如表3。
表3 描述分类变量资料的常用指标指标名称计算公式意义率发生某现象的观察单位数可能发生某现象的观察单位总数×K 描述事件发生的强度和频率构成比AA+B+…×100% 事物内部各组成部分所占的比重相对比 ABA指标为B指标的若干倍或百分之几三.数据资料的比较在众多的科研研究方法中,归纳起来最基本的手段有两种,一是对研究对象的全体进行研究,在实际工作中往往难以实现;二是从总体中抽取一定数量的样本进行抽样研究,但要考虑抽样误差对结果的影响。
因此,若用样本信息去推断其所代表的总体间有无差别时,需要使用假设检验(hypothesis testing)或称显著性检验(significance test)。
1.假设检验的基本步骤(1)建立检验假设。
建立假设的过程应有三个内容。
即无效假设H0 (null hypothesis)、备择假设H1 (alternative hypothesis)和检验水准α (size of test)。