一元一次方程的应用 流水行船问题
- 格式:ppt
- 大小:271.00 KB
- 文档页数:13
应用题—风速、流水问题自主学习:飞行问题中的基本等量关系:航行问题中的基本等量关系:①顺风速度=机速+风速①顺水速度=船速+水速②逆风速度=机速-风速②逆水速度=船速-水速∴顺风速度-逆风速度=2×风速∴顺水速度-逆水速度=2×水速顺风速度+逆风速度=2×机速顺水速度+逆水速度=2×船速填空:1、一艘船的速度为20千米/时,水流速度为3千米/时,则船在逆水的速度为千米/时,船在顺水的速度为千米/时。
2、一架飞机的速度为x千米/时,风速为y千米/时,则飞机在顺风的速度为千米/时,飞机在逆风速度为千米/时。
3、甲、乙两地相隔80千米,一船往返两地,顺流用4小时,逆流5小时,那么这只船在静水中的速度,水流速度。
4、一艘船航行在重庆与武汉之间,从重庆到武汉用了5小时,从武汉到重庆用了20小时,已知船在静水中的速度为30千米/小时,则水流速度为多少?(只列方程)合作探究:1、汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时。
已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?2、船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
已知水流的速度是3千米/时,求船在静水中的速度。
3、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
【达标测评】:1、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
2、轮船顺水由A地航行到B地后,立即 A地共用了398小时,已知水流速度为3千米/时,轮船在静水中的速度为21千米/时。
求A、B两地之间的路程。
一元一次方程应用题(行程问题行船问题环形跑道问题)[5篇材料]第一篇:一元一次方程应用题(行程问题行船问题环形跑道问题) 一元一次方程行程问题一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
一、一般行程问题例1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
※※问题2:顺、逆行程
常用的关系式
顺流时的速度=静水中的速度+水流的速度
逆流时的速度=静水中的速度—水流的速度
例3.一小船由A港口顺流需行驶6小时,由B港口到A港口需行驶8小时,一天,小船由A港口出发顺流到达B港口,发现一救生圈中途落水,立即返回,1小时后找到救生圈,若水流速度是2千米/时。
★(1)小船在静水中的速度是多少?
★★(2)救生圈是何时掉入水中的?
★1、一轮船往返于甲、乙两码头之间,顺水航行需要3h, 逆水航行比顺水航行多用30min,若轮船在静水中的速度为26km/h,求水流的速度。
★2、一艘轮船从甲地顺流而下6小时到达乙地,原路返回需用10个小时才能到达甲地,已知水流的速度是每小时3千米,求甲、乙两地的距离.
★3、船在静水中的速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,若要船在3h30min内返回,则船最远能开出多远?
★4、某船从A码头顺流而下到B码头,然后逆流返回到C码头,共行9h.已知船在静水中速度为
7。
5km/h,水流速度是2.5km/h,A,C两码头相距15km,求A,B间的距离。
★★★9、一架飞机在甲、乙两城之间飞行,一日从甲城顺风飞行到乙城要2小时,从乙城逆风回航到甲城要3小时,则无风时飞机在甲乙两城之间往返飞行一趟要几小时。
一元一次方程解水流问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度基本公式:船速+水速=顺水船速船速-水速=逆水船速(顺水船速+逆水船速)÷2=船速(顺水船速-逆水船速)÷2=水速顺水船速=船速+水速=逆水船速+水速×2【例一】一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。
已知水流速度是每小时3千米,求甲、乙两码头之间的距离?【分析】顺水航行8小时,比逆水航行8小时可多行6×8=48(千米),而这48千米正好是逆水(10-8)小时所行的路程,可求出逆水速度4 8÷2=24 (千米),进而可求出距离。
解:3×2×8÷(10-8)=3×2×8÷2=24(千米)24×10=240(千米)答:甲、乙两码头之间的距离是240千米。
【例二】一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2. 5小时到达。
已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米?【分析】逆水每小时行24千米,水速每小时3千米,那么顺水速度是每小时24+3×2=30(千米),比逆水提前2. 5小时,若行逆水那么多时间,就可多行30×2. 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是逆水时间。
解:24+3×2=30(千米)24×[ 30×2. 5÷(3×2)]=24×[ 30×2. 5÷6 ]=24×12. 5=300(千米)答:甲、乙两地间的距离是300千米。