第1章 管理运筹学绪论
- 格式:ppt
- 大小:645.00 KB
- 文档页数:50
管理运筹学(一)管理运筹学绪论线性规划(运输问题)整数规划动态规划存储论排队论对策论决策分析第一章绪论运筹学(Operational Research) 直译为“运作研究”运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
运筹学有广泛应用运筹学的产生和发展§1 决策、定量分析与管理运筹学决策过程(问题解决的过程):1)提出问题:认清问题2)寻求可行方案:建模、求解3)确定评估目标及方案的标准或方法、途径4)评估各个方案:解的检验、灵敏性分析等5)选择最优方案:决策6)方案实施:回到实践中7)后评估:考察问题是否得到完满解决1)2)3):形成问题;4)5)分析问题:定性分析与定量分析。
构成决策。
§2 运筹学的分支线性规划非线性规划整数规划图与网络模型存储模型排队论排序与统筹方法决策分析动态规划预测§3运筹学在工商管理中的应用生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等库存管理:多种物资库存量的管理,库存方式、库存量等运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度以及建厂地址的选择等人事管理:对人员的需求和使用的预测,确定人员编制、人员合理分配,建立人才评价体系等市场营销:广告预算、媒介选择、定价、产品开发与销售计划制定等财务和会计:预测、贷款、成本分析、定价、证券管理、现金管理等*** 设备维修、更新,项目选择、评价,工程优化设计与管理等运筹学方法使用情况(美1983)运筹学的推广应用前景据美劳工局1992年统计预测: 运筹学应用分析人员需求从1990年到2005年的增长百分比预测为73%,增长速度排到各项职业的前三位.结论:运筹学在国内或国外的推广前景是非常广阔的工商企业对运筹学应用和需求是很大的在工商企业推广运筹学方面有大量的工作要做第二章线性规划的图解法在管理中一些典型的线性规划应用合理利用线材问题:如何下料使用材最少配料问题:在原料供应量的限制下如何获取最大利润投资问题:从投资项目中选取方案,使投资回报最大产品生产计划:合理利用人力、物力、财力等,使获利最大劳动力安排:用最少的劳动力来满足工作的需要运输问题:如何制定调运方案,使总运费最小线性规划的组成:目标函数 Max f 或 Min f约束条件 s.t. (subject to) 满足于决策变量用符号来表示可控制的因素§1问题的提出例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗以及资源的限制,如下表:问题:工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?线性规划模型一般形式目标函数: Max (Min) z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn ≤( =, ≥)b1a21 x1 + a22 x2 + … + a2n xn ≤( =, ≥)b2…………am1 x1 + am2 x2 + … + amn xn≤( =, ≥)bmx1 ,x2 ,…,xn ≥ 0标准形式目标函数: Max z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn = b1a21 x1 + a22 x2 + … + a2n xn = b2…………am1 x1 + am2 x2 + … + amn xn = bmx1 ,x2 ,…,xn ≥ 0§2 图解法例1.目标函数:Max z = 50 x1 + 100 x2约束条件:s.t.x1 + x2 ≤ 300 (A)2 x1 + x2 ≤ 400 (B)x2 ≤ 250 (C)x1 ≥ 0 (D)x2 ≥ 0 (E)得到最优解:x1 = 50, x2 = 250最优目标值 z = 27500进一步讨论线性规划的标准化内容之一:——引入松驰变量(含义是资源的剩余量)例1 中引入 s1, s2, s3 模型化为目标函数:Max z = 50 x1 + 100 x2 + 0 s1 + 0 s2 + 0 s3约束条件:s.t. x1 + x2 + s1 = 3002 x1 + x2 + s2 = 400x2 + s3 = 250x1 , x2 , s1 ,s2 , s3 ≥ 0对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0说明:生产50单位甲产品和250单位乙产品将消耗完所有可能的设备台时数及原料B,但对原料A则还剩余50千克。
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。
《管理运筹学》课程教学大纲【课程编码】181****0016【课程类别】专业必修课程【学时学分】36学时,2学分【适用专业】物流管理专业一、课程性质和目标课程性质:本课程是为物流管理专业本科生开设的专业必修课程。
管理运筹学是管理科学的重要分支。
主要内容包括线性规划、整数规划、运输问题、图论、网络计划技术、存储论、对策论、决策分析等内容。
课程目标:通过本课程的教学达成如下教学目的:1.使学生系统掌握若干运筹学的重要模型和基本分析方法,并理解它们所包含的优化决策思想。
2.使学生了解管理工作中使用运筹学模型和数量分析方法对于解决实际问题和提高效益所起的作用。
3.能初步运用运筹学方法分析和解决实际问题,培养和提高学生解决实际问题的能力。
其中,课程目标1.达成《物流管理专业人才培养方案》中的基本规格1.2.3;课程目标2达成《物流管理专业人才培养方案》中的基本规格4.5;课程目标3达成《物流管理专业人才培养方案》中的基本规格6.二、教学内容、要求和学时分配(一)第一章绪论2学时(理论讲授)教学内容:1.运筹学2.管理决策与管理运筹学教学要求:1.了解运筹学的产生和发展2.了解运筹学的主要内容3.了解运筹学在管理中的应用重点:运筹学的主要内容难点:运筹学在管理中的应用其它教学环节:结合课后习题讲解,进一步了解运筹学、管理决策及管理运筹学的应用。
(二)第二章线性规划3学时(理论讲授)教学内容:1线性规划概述2.线性规划的数学模型3.线性规划问题的图解法4.图解法的灵敏度分析教学要求:1掌握线性规划的数学模型5.掌握线性规划问题的图解方法6.掌握图解法的灵敏度分析方法重点:1线性规划的数学模型7.线性规划问题的图解方法难点:线性规划的图解法的灵敏度分析其它教学环节:结合课后习题讲解,进一步理解掌握线性规划的数学模型及其图解方法(三)第三章线性规划问题的单纯形法3学时(理论讲授)教学内容:1.一般最大值问题的求解法2.一般最小值问题的求解法3.线性规划应用示例教学要求:1.掌握一般最大值问题的求解法2.掌握一般最小值问题的求解法重点:一般最大值问题、最小值问题的求解法难点:线性规划应用其它教学环节:结合课后习题讲解,进一步理解掌握线性规划问题的单纯形法(四)第四章整数规划4学时(理论讲授)教学内容:1.整数规划的图解法2.整数规划的分枝定界法3.整数规划的应用教学要求:1理解整数规划的分枝定界法4.掌握整数规划的图解法重点:整数规划的图解法难点:如何用整数规划的图解法和分枝定界法求解实际问题其它教学环节:结合课后习题讲解,进一步理解掌握整体规划的方法(五)第五章运输问题4学时(理论讲授)教学内容:1.运输模型2.运输问题的表上作业法3.运输问题的应用教学要求:1.理解运输问题模型2.理解掌握表上作业法重点:表上作业法难点:利用运输问题解决一些实际问题其它教学环节:结合课后习题讲解,进一步理解掌握整体规划的方法(六)第六章图论4学时(理论讲授)教学内容:1.图的基本概念2.图在管理实践中的应用教学要求:1.理解图的基本概念2.理解图在管理实践中的应用重点:图的概念,中国邮路问题,求图的最小生成树的方法,用标号算法求最大流难点:理解反向弧的概念,寻找流量可增链,会用求最小生成树的方法解决相应的实际问题其它教学环节:结合课后习题讲解,进一步理解掌握图论有关概念和应用(七)第七章网络计划技术4学时(理论讲授)教学内容:1.网络计划技术概述2.网络图的绘制3.网络图时间值的计算4.网络计划优化教学要求:4.了解网络计划技术的概念5.掌握网络图的绘制方法3.理解掌握网络图时间值的计算4.掌握网络计划优化的方法重点:网络图时间值的计算难点:网络计划优化其它教学环节:结合课后习题讲解,进一步理解掌握网络计划技术有关概念和应用(八)第八章存储论4学时(理论讲授)教学内容:1存储2.确定型存储模型3.随机型存储模型教学要求:1.理解存储有关概念2.理解掌握确定型存储模型3.理解掌握随机型存储模型重点:确定型存储模型难点:随机型存储模型其它教学环节:结合课后习题讲解,进一步理解掌握存储论有关概念和应用(九)第九章对策论4学时(理论讲授)教学内容:1对策论的基本概念2.矩阵对策的最优纯策略3.矩阵对策的混合策略教学要求:1了解决策轮的基本概念4.理解矩阵对策的最优纯策略5.掌握矩阵对策的混合策略重点:矩阵对策的最优纯对策难点:矩阵对策的混合策略其它教学环节:结合课后习题讲解,进一步理解掌握对策论有关概念和应用。
“管理运筹学”教学大纲一、课程简介“管理运筹学”是一门研究企业管理中决策与优化问题的课程。
本课程旨在让学生掌握运筹学的基本理论和方法,学会运用运筹学工具解决企业管理中的实际问题,提高决策效率和创新能力。
二、课程目标1、掌握运筹学的基本概念和原理,了解运筹学在企业管理中的应用。
2、掌握线性规划、整数规划、动态规划等常用运筹学方法,能够运用相关软件进行求解和分析。
3、理解运筹学在决策分析、资源优化配置、风险管理等方面的应用,能够运用运筹学方法解决实际问题。
4、培养学生的创新思维和综合分析能力,提高其在实际工作中运用运筹学的能力。
三、课程内容1、运筹学概述:介绍运筹学的定义、发展历程和应用领域,阐述运筹学在企业管理中的重要性。
2、线性规划:介绍线性规划的基本概念、数学模型、求解方法和实际应用,重点讲解线性规划在生产计划、资源分配等问题中的应用。
3、整数规划:介绍整数规划的基本概念、数学模型、求解方法和实际应用,重点讲解整数规划在排班安排、仓库管理等问题中的应用。
4、动态规划:介绍动态规划的基本概念、数学模型、求解方法和实际应用,重点讲解动态规划在最优路径选择、生产策略制定等问题中的应用。
5、决策分析:介绍决策分析的基本概念和方法,包括风险决策、不确定决策和多目标决策等,重点讲解如何运用运筹学方法进行决策分析。
6、资源优化配置:介绍资源优化配置的基本概念和方法,包括供应链优化、库存管理和排班安排等,重点讲解如何运用运筹学方法进行资源优化配置。
7、风险管理:介绍风险管理的基本概念和方法,包括风险识别、评估和控制等,重点讲解如何运用运筹学方法进行风险管理。
本课程总计36学时,分为理论授课和实践操作两个环节。
理论授课主要讲解运筹学的基本理论和常用方法,实践操作则通过案例分析和软件操作等方式加深学生对运筹学应用的理解和实践能力。
具体安排如下:1、理论授课:32学时,每周2学时,共16周。
2、实践操作:4学时,集中安排在学期末进行。