根据电偶极子辐射场公式
- 格式:ppt
- 大小:2.03 MB
- 文档页数:66
6.5 天线的基本参数自强●弘毅●求是●拓新(1)天线的基本参数电偶极子、小电流圆环和半波振子天线辐射场具有共 同的基本特性。
对于一般的天线,无论其结构如何复 杂,它们都有与电偶极子相类似的辐射场结构,即:电偶 极子E ˆ1 0 2 0I0L1 sin jexp jkr r任意 天线= 极化·幅度·电流·结构·距离·方向性·相位(1)天线的基本参数其中 极化因子:表示天线辐射场的偏振方向 幅度因子:表示辐射场的常数因子 电流:为馈电点的电流幅度,与发射功率相联系 结构因子:天线体空间几何结构 距离因子:是指天线相位中心点到场点的距离, 表征球面波能量的扩散 方向因子:表示天线辐射场的空间分布的特性 相位因子:表示天线与场点之间的相位差(2)天线的方向性函数天线在空间辐射电磁波具有方向特性,在某些方向上辐射能力强,而在另外一些方向上,辐射能力弱。
利用天线的这一特点实现电磁波信号的定向传输。
天线的方向性函数D 定义为:单位立体角辐射功率与单位立体角平均辐射功率之比。
PdP4πdΩdP S ( , )r 2 d d sin dd(2)天线的方向性函数D , dP PdΩ 4π4πS , r 2 S , r 2sindd4πF 2 , F 2 , sinddF 2 , ss归一化的方向性图表征天线在空间不同方向上辐射电磁能量强弱程度方向性系数F4π2 , sindds方向性系数是天线在空间辐射电磁波能量最强的方向在单 位立体角所辐射电磁波能量与单位立体角平均辐射电磁波 能量之比 .(3)天线的增益函数对理想天线,输入功率也等于天线的辐射功率。
但在实际工程应用上,输入能量并不完全被天线辐射出去,真正用于电磁波辐射的能量是输入功率的一部分。
如果天线的效率为 ,天线辐射的功率为 P Pin ,天线的增益函数G定义为G , dP Pind 4π D , F2 , Pin是输入功率D P dP / d Pin P / 4(3)天线的增益函数天线输入功率不完全被辐射的主要原因有:① 天线阻抗与发射机不匹配,导致电磁波被反射回 发射机; ② 部分变为天线近场的电磁能量; ③ 部分被天线体的非理想导体而热耗散;P辐射电磁波总功率 Pin 发射机输入总功率 (4)波束宽度波束宽度天线的方向性图呈现许多 花瓣形状,一般由主波束和 若干个副波束组成。
电偶极子的辐射场引言电偶极子是一种重要的物理模型,用于描述具有正负电荷分布的物体。
当电偶极子受到外界作用力时,它会产生辐射场。
本文将详细介绍电偶极子的辐射场特性及其相关理论。
电偶极子模型电偶极子是由两个相等但异号电荷构成的系统,它们之间的距离远小于与其它物体的距离。
通常情况下,我们可以将这两个点电荷看作在一条直线上,并定义一个矢量p表示两个电荷之间的间距乘以正负电荷大小之差,即p=qd。
辐射场理论根据经典电动力学理论,加速运动的带电粒子会辐射出能量。
同样地,当外界力矩作用于电偶极子时,它也会发射辐射场。
根据辐射场理论和多极展开方法,我们可以得到以下关于电偶极子辐射场的一些重要结论。
辐射功率对于一个加速运动的点电荷,在单位时间内向外辐射的功率可以由Larmor公式给出:P = (2/3) * (q^2 * a^2)/(4πε₀c³)其中,P表示辐射功率,q表示电荷大小,a表示加速度,ε₀表示真空介电常数,c表示光速。
对于电偶极子而言,它的辐射功率可以通过将两个点电荷的辐射功率相加得到:P = (2/3) * ((qd)² * a²)/(4πε₀c³)辐射场强度辐射场强度可以通过引入辐射因子来描述。
对于电偶极子而言,辐射因子可以通过以下公式计算:R = (k²/(4πε₀c⁴)) * |(p·n)̂|²其中,k表示波数,n表示单位矢量指向观察点与电偶极子之间的方向。
辐射场分布根据辐射场强度的表达式,我们可以推导出电偶极子的辐射场强度在空间中的分布。
一般来说,在远离电偶极子的区域内,辐射场呈现出球面扩散性质。
在不同角度方向上,辐射场强度也会有所不同。
实际应用电偶极子的辐射场理论在许多领域有着重要的应用,例如天线工程、核磁共振成像等。
以下是一些实际应用的例子:天线工程天线是一种能够将电信号转换为电磁波并进行辐射传播的装置。
在天线工程中,我们可以利用电偶极子的辐射场特性来设计和优化天线结构,以达到更好的信号传输效果。
收稿日期:2003-06-14作者简介:吕宽州(1963-),男,河南扶沟人,郑州经济管理干部学院讲师。
文章编号:1004-3918(2003)05-0512-03电偶极子的场及辐射吕宽州1,姜俊2(1.郑州经济管理干部学院,河南郑州450053;2.河南省科学院,河南郑州450002)摘要:采用了镜像法等方法对电偶极子及其产生的静电场、电磁场及辐射等做了较系统和深入的分析、研究,使分析方便、简化,推出的结论有一定实际指导意义。
关键词:电偶极子;电场;磁场;辐射中图分类号:0442文献标识码:A在很多文献上,缺乏对电偶极子及其产生的静电场、电磁场及辐射等较系统和深入的分析、研究。
本文参考有关文献给出或分析、推出了重要结论,部分内容采用了镜像法,使分析更方便。
!电偶极子及其产生的静电场电偶极子由一对正、负点电荷组成,电量为l ,相距为l ,如图1所示。
其电偶极矩p =l l ,l 的方向由~l 指向+l ,在T 处产生的电场的电势为:#(r )=l 4L e 0T +_l4L e 0T _当T !l 时,#(r )=l l cOs 64L e 0T 2=p ·e r 4L e 0T2(1)电场强度为:E =_"@=e r P cOs 62L e 0T 3+e !P si n 64L e 0T3(2)以上结果表明,电偶极子的电势及电场强度的大小分别与距离的平方、三次方成反比,既存在于近区,且与方位角有关,这些特点都与点电荷的电场显著不同。
图2绘出了电偶极子的电力线与等位面。
图1电偶极子F i g .1E lectric d i p O le图2电偶极子的电力线与等位线F i g .2E lectric p Ow er li ne and e C ui p Otential p laneOf e lectric d i p O le第21卷第5期2003年10月河南科学HENAN SC I ENCEV O l.21N O.50ct .2003!电偶极子产生的电磁场及辐射当P =P 0e -j G t 时,为谐振电偶极子,P 0为常矢,则在近区,即l H T 时,主要地一方面将感应如上所述的静电场,另一方面,相当于I =j G C 、长为l 的电流元还将产生一稳恒磁场,其规律可用毕萨定律描述,且电场与磁场的相位相差为90 ,即电场能量与磁场能量相互转换,而平均波印亭矢量为零,故不产生辐射。
电偶极子的辐射功率电偶极子是指由两个相等但异号电荷构成的系统,它们之间的距离远小于它们到观察点的距离。
当电偶极子加速运动时,会产生辐射功率。
本文将从电偶极子的辐射机制、辐射功率的计算以及辐射功率的应用等方面进行探讨。
我们来了解一下电偶极子的辐射机制。
电偶极子的加速运动会导致电磁辐射的产生,这是由于加速运动的电荷会产生变化的电场和磁场。
根据麦克斯韦方程组,变化的电场和磁场会互相激发,形成电磁波的传播。
这就是电偶极子辐射的基本原理。
接下来,我们来看一下如何计算电偶极子的辐射功率。
根据经典电动力学理论,电偶极子辐射的辐射功率与加速度的平方成正比。
具体地,辐射功率可以通过以下公式计算:P = (2/3) * e^2 * a^2 / (4πε₀c^3)其中,P表示辐射功率,e表示电荷的电量,a表示电偶极子的加速度,ε₀表示真空介电常数,c表示光速。
需要注意的是,这个公式只适用于电偶极子的加速度远小于光速的情况。
当加速度接近光速时,需要采用相对论性的辐射功率计算公式。
然后,我们来看一下电偶极子辐射功率的应用。
电偶极子辐射功率的研究在无线通信、雷达、天线等领域具有重要的应用价值。
例如,在通信系统中,我们常用天线来发送和接收无线信号。
电偶极子辐射功率的计算可以帮助我们优化天线的设计,以提高信号传输的效率和距离。
此外,电偶极子辐射功率的研究还有助于理解电磁辐射的物理机制,进而推动电磁学和无线通信技术的发展。
总结起来,电偶极子的辐射功率是由电偶极子的加速度决定的。
加速度越大,辐射功率越大。
我们可以通过计算辐射功率来优化天线设计,提高无线通信的效率。
电偶极子辐射功率的研究对于电磁学和通信技术的发展具有重要意义。
希望本文对读者对电偶极子的辐射功率有所了解,并对相关领域的研究和应用提供一定的帮助。