混凝土结构设计受压构件的截面承载力
- 格式:ppt
- 大小:6.92 MB
- 文档页数:48
4钢筋混凝土受压构件承载力计算钢筋混凝土受压构件的承载力计算是建筑结构设计中非常重要的一个步骤。
本文将围绕钢筋混凝土受压构件的承载力计算进行详细介绍。
首先,我们需要了解一些与承载力计算相关的基本概念。
1.构件尺寸和几何性质:构件的尺寸和几何性质,如截面面积、高度、宽度等,是计算承载力的基础。
这些参数可以通过结构设计的过程或者实际测量获得。
2.受力分析:在进行承载力计算之前,我们需要对受力分析进行准确的估计。
受力分析包括水平力、垂直力、弯矩和剪力等。
3.材料性能:钢筋混凝土由钢筋和混凝土组成,每种材料都具有其特定的力学性能。
钢筋的弹性模量、屈服强度和抗压强度是承载力计算的关键参数。
混凝土的抗压强度也是一个重要的参数。
计算步骤如下:1.根据结构设计图,确定所需计算的受压构件的几何尺寸。
通常情况下,我们可以使用截面面积来计算构件的承载力。
2.判定构件的计算长度。
构件的计算长度取决于构件的支撑条件和构件的几何形状。
常见的计算长度包括等于构件高度的长度、2倍构件高度的长度和4倍构件高度的长度等。
$$R_c = \phi \cdot A_c \cdot f_{cd}$$其中,$R_c$为构件的抗压承载力(kN),$\phi$为构件的抗压承载力系数(通常为0.65),$A_c$为构件的截面面积(m²),$f_{cd}$为混凝土的抗压强度(MPa)。
4.计算钢筋的抗拉强度。
根据人民共和国行业标准GB1499.2-2024《钢筋机械连接的技术规定》,钢筋的抗拉强度可以通过以下公式计算:$$R_s = A_s \cdot f_{yd}$$其中,$R_s$为钢筋的抗拉承载力(kN),$A_s$为钢筋的截面面积(m²),$f_{yd}$为钢筋的屈服强度(MPa)。
5.比较构件的抗压强度和钢筋的抗拉强度。
如果构件的抗压强度大于钢筋的抗拉强度,则构件的承载力为钢筋的抗拉强度;如果构件的抗压强度小于钢筋的抗拉强度,则构件的承载力为构件的抗压强度。
混凝土结构局部受压承载力计算
首先,需要确定混凝土的强度。
混凝土强度的计算通常由试验数据得到,可以通过试验中所获得的标准立方体抗压强度值与试验结果进行对比,从而得出混凝土的抗压强度。
在局部受压承载力计算中,一般采用混凝土
的设计抗压强度作为计算的基准值。
其次,需要确定钢筋的强度。
钢筋的强度主要通过试验获得,一般采
用屈服强度和抗拉强度两种指标。
在局部受压承载力计算中,需要确定钢
筋的屈服强度,以及受压构件中钢筋的应变状况。
然后,需要确定构件的截面形状和尺寸。
局部受压承载力计算中,构
件的截面形状和尺寸直接影响到受压区的稳定性和抗压能力。
一般来说,
截面形状越规则,受压区越充分,局部受压承载力越大。
截面尺寸越大,
受压构件的受力面积越大,承载能力越大。
最后,需要确定受力方式。
局部受压承载力计算中,受力方式可以分
为直接受压、间接受压和承压传递三种形式。
直接受压是指受压构件直接
受到外部压力作用;间接受压是指受压构件由于受到相邻构件的压力作用
而产生受压状态;承压传递是指压力通过其他构件传递到受压构件上。
在
局部受压承载力计算中,需要根据不同的受力方式,采用不同的计算方法。
总之,混凝土结构的局部受压承载力计算是一个综合考虑材料的强度、结构的形状和尺寸、受力的方式等因素的过程。
通过准确计算和评估局部
受压承载力,可以确保混凝土结构在承受压力时的安全性和稳定性。
第6 章受压构件的截面承载力思考题6.1 轴心受压普通钢筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数? 如何确定?轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。
而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
l s l s 《混凝土结构设计规范》采用稳定系数? 来表示长柱承载力的降低程度,即? =N u / N u ,N u 和N u 分别为长柱和短柱的承载力。
根据试验结果及数理统计可得? 的经验计算公式:当l0/b=8~34 时,? =1.177-0.021l0/b;当l0/b=35~50 时,? =0.87-0.012l0/b。
《混凝土结构设计规范》中,对于长细比l0/b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,的? 取值比按经验公式所得到的? 值还要降低一些,以保证安全。
对于长细比l0/b 小于20 的构件,考虑到过去使用经验,? 的取值略微抬高一些,以使计算用钢量不致增加过多。
6.2 简述偏心受压短柱的破坏形态。
偏心受压构件如何分类?钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
受拉破坏形态又称大偏心受压破坏,它发生于轴向力N 的相对偏心距较大,且受拉钢筋配置得不太多时。
随着荷载的增加,首先在受拉区产生横向裂缝;荷载再增加,拉区的裂缝随之不断地开裂,在破坏前主裂缝逐渐明显,受拉钢筋的应力达到屈服强度,进入流幅阶段,受拉变形的发展大于受压变形,中和轴上升,使混凝土压区高度迅速减小,最后压区边缘混凝土达到极限压应变值,出现纵向裂缝而混凝土被压碎,构件即告破坏,破坏时压区的纵筋也能达到受压屈服强度,这种破坏属于延性破坏类型,其特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第六章偏心受压构件承载力计算题1. (矩形截面大偏压)已知荷载设计值作用下的纵向压力N 600KN ,弯矩M 180KN • m,柱截面尺寸b h 300mm 600mm,a$ a$ 40mm,混凝土强度等级为 C30, f c=14.3N/mm2,钢筋用HRB335级,f y=f y=300N/mm2,b 0-550,柱的计算长度I。
3.0m,已知受压钢筋A 402mm2(£尘1&|),求:受拉钢筋截面面积A s。
2. (矩形不对称配筋大偏压)已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN- m,截面尺寸b h 300mm 500m , a s a s40mm ,计算长度 l° = 6.5m,混凝土等级为C30 ,f c=14.3N/mm 2,钢筋为 HRB335 , , f y f y300N/mm2,采用不对称配筋,求钢筋截面面积。
3. (矩形不对称配筋大偏压)已知偏心受压柱的截面尺寸为b h 300mm 400mm ,混凝土为C25级, f c=11.9N/mm 2,纵筋为HRB335级钢,f y f y300N / mm2,轴向力N,在截面长边方向的偏心距e。
200mm。
距轴向力较近的一侧配置4「16纵向钢筋A'S804mm2,另一侧配置2十20纵向钢筋A S628mm2,a s a s' 35mm,柱的计算长度1。
= 5m。
求柱的承载力N。
4. (矩形不对称小偏心受压的情况)某一矩形截面偏心受压柱的截面尺寸b h 300mm 500mm,计算长度I0 6m, a s a s 40mm,混凝土强度等级为 C30, f c=14.3N/mm2, 1 1.0 ,用 HRB335 级钢筋,f y=f y =300N/mm 2,轴心压力设计值 N = 1512KN,弯矩设计值 M = 121.4KN • m,试求所需钢筋截面面积。
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
第五章受压构件的截面承载力(一)1.轴心受压普通箍筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数是如何确定的?答:(1)短柱与长柱的破坏形态是:①轴心受压普通箍筋短柱是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子破坏;②而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
(2)《混凝土结构设计规范》采用稳定系数来表示长柱承载力的降低程度,即=N l u/N s u,N l u和N s u分别为长柱和短柱的承载力。
根据试验结果及数理统计可得的经验计算公式:当l0/b=8~34时,=1.177-0.021l0/b;当l0/b=35~50时,=0.87-0.012l0/b。
2.轴心受压普通箍筋柱与螺旋箍筋柱的正截面受压承载力计算有何不同?答:(1)轴心受压普通箍筋柱的正截面受压承载力计算公式为:轴心受压螺旋箍筋柱的正截面受压承载力计算公式为:(2)螺旋箍筋柱的正截面受压承载力计算中考虑了螺旋箍筋对柱的受压承载力的有利影响,采用了间接钢筋的换算截面面积和构件的核心截面面积,并引入螺旋箍筋对混凝土约束的折减系数α。
3.受压构件的纵向钢筋与箍筋有哪些主要的构造要求?答:(1)受压构件的纵向钢筋的构造要求有:①柱中纵向钢筋直径不宜小于12mm;全部纵向钢筋的配筋率不宜大于5%;全部纵向钢筋配率不应小于附表4-5中给出的最小配筋百分率ρmin(%),且截面一侧纵向钢筋配筋率不应小于0.2%。
②轴心受压构件的纵向受力钢筋应沿截面的四周均匀放置,钢筋根数不得少于4根。
钢筋直径通常在16~32mm范围内选用。
③圆柱中纵向钢筋宜沿周边均匀布置,根数不宜少于8根,且不应少于6根。
④偏心受压构件的纵向受力钢筋应放置在偏心方向截面的两边。
当截面高度h≥600mm时,在侧面应设置直径为不小于10mm的纵向构造钢筋,并相应地设置附加箍筋或拉筋。