(5,6)
t (10,7) v4
附程序
min
( i,j ) A
bij f ij
jV ( j,i ) A
MODEL: s.t f ij sets: jV nodes/s,1,2,3,4,t/:d; ( i,j ) A arcs(nodes,nodes)/ s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f; 0 f ij endsets data: d=14 0 0 0 0 -14; 其中 di b=2 8 5 2 3 1 6 4 7 ; c= 8 7 5 9 9 2 5 6 10; enddata min=@sum(arcs:b*f); @for(nodes(i)|i #ne# 1 #and# i #ne#@size(nodes): @sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=d(i)); @sum(arcs(i,j)|i #eq# 1:f(i,j)) = d(1); @for(arcs:@bnd(0,f,c)); END
规定了费用的网络称作带费用的网络,
A 记作 D {V , A, c, b, v s , v t } ,其中 V 是顶点集合,
是弧集合,
v c 是容量集合, b 是费用函数, s 为发
点, v t 为收点。
3、可行流 f 的费用 设 f 是 D上的可行流,称 b( f ) b(a ) f (a ) 为可 a A 行流 f 的费用。 4、流量为v 的最小费用流 把D上所有流量等于v 的可行流中费用最小的可行 流称作流量为v 的最小费用流。
假设1月初的库存量为零,要求6月底的库存量也为 零,不允许缺货。试做出6个月的订货计划,使成 本最低。