当前位置:文档之家› 求解积分因子的方法整理

求解积分因子的方法整理

求解积分因子的方法整理
求解积分因子的方法整理

求解积分因子的方法整理

一、恰当微分方程与积分因子

1、对于一阶微分方程

M(x,y)dx+N(x,y)dy=0 (1) 其左端恰好是某个二元函数u(x,y)的全微分,即 P(x,y)dx+Q(x,y)dy=du(x,y)

则称方程(1)为恰当微分方程。容易得到方程(1)的通解为u(x,y)=c (这里的c 为任意常数)。可是若(1)不是恰当微分方程,如果存在连续可微的函数

u=u(x,y)

≠0,使得

u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0为恰当微分方程,则称u(x,y)为方程(1)的积分因子。

2、恰当微分方程的判定 对于一阶微分方程

M(x,y)dx+N(x,y)dy=0 它为恰当微分方程的必要条件为: 二、几种常见的积分因子的类型及求法

1、存在只与x 有关的积分因子 (1)充要条件:

()M N y

x

x N

ψ????-=

(2)形式:u=()x dx e ψ? 2、存在只与y 有关的积分因子

(1)充要条件:

()M N y x

y M

?????-=-

(2)形式:()y dy e ??

这里的

().()x y ψ?分别是只关于x 、y 的函数。

3、方程(1)有形如u(x,y)=F(x,y)的积分因子,充要条件:

4、方程(1)有形如u[p(x)+f(x)g(y)+q(y)]的积分因子,充要条件:

它的积分因子为:

5、方程(1)有形如u[f(x)g(y)+q(y)]的积分因子,充要条件:

它的积分因子为:

6、方程(1)有形如的积分因子,充要条件:

其中

7、方程(1)有形如的积分因子,充要条件:

它的积分因子为:

8、方程有形如的积分因子,充要条件:

它的积分因子为:

其中这里的

结束语:

对于一阶微分方程,不同的形式有不同的积分因子,积分银子一般不会太容易求得,很多时候需要根据方程的特点进行判断,以上的一些情况是参考了一些文献后,整理而得到的一些特殊情况,对求解一些特殊方程有很大的帮助。

参考文献:

1、张新丽、王建新.一类积分因子存在的充要条件.科学与技术工程.第11卷.第16期.2011.6

2、陈星海等.三类复合型积分因子的充要条件及其应用.湖南师范学院学报.第32卷.第2期.2010.4

3、高正晖.一阶微分方程三类积分因子的计算.衡阳师范学院学报.2002

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

方程求积分因子的一个定理及其应用

玉溪师范学院学报第20卷2004年第12期 JournalofYuxiTeachersCollegeV01.20No.12Dec.2004 常微分方程求积分因子的一个定理及其应用 赵凯宏李晓飞米 (玉溪师范学院数学系,云南玉溪653100) [关键词]全微分方程;积分因子;首次积分 [摘要]将积分因子满足的偏微分方程改写成其特征方程,从而与常微分方程组的首次积分相联系.利用“可积组合法”来求积分因子,从而使所求常微分方程化成全微分方程.[中图分类号]0175[文献标识码]A[文章编号]1009—9506(2004)12—0031—04TheTheoremandItsApplicationforSolving IntegratingFactorsofOrdinaryDifferentialEquitions ZHAOKai—hongLIXiao—fei (DepartmentofMathematics,YuxiTeachers’College,Yuxi,Yunnan653100)KeyWords:completedifferentialequations;integratingfactors;Firstintegral Abstract:Thepartialdifferentialequitionssatisfiedwithintegralfactorsrewritetoitscharacteristicequitions.Hence,Itisrelatedtothefirstintegralofthesystemofordinarydifferentialequations.The integratingfactors are eaculatedbytheintegralcombinatorialmethod.Therefore,theordinarydifferential equitions becomethecompletedifferentialequations.1定理推导 满足设常微分方程 M(石,),)dx+N(x,),)咖=0 OM,ON 百≠面 (1) (2) 若存在函数肛(戈,Y)使得 It(x,Y)M(石,Y)dx+肛(戈,Y)N(戈,Y)dy=0(3) 成立 虫盟:业盟 (4) dydx 此时,方程(3)就变成了一个全微分方程,其通解为 I肛(戈,Y)M(戈,Y)dx+I肛(xo,Y)N(‰,Y)dy=c(5) 这里(z。,Yo)是肛(戈,Y)M(戈,Y),肛(戈,Y)N(戈,Y)公共定义域内的任意一固定点.C为积分常数.由于方程(3)与方程(1)是同解方程,所以(5)也是方程(1)的通解. 可见,要求解方程(1)关键是求积分因子肛(戈,Y),而要求p(z,Y)关键是解偏微分方程(4).方程(4)可化成如下的等价形式 N01_.业一M挚:巡一型(6) dxdVdyOx 若记 瓤收稿日期]2004一08—06 [作者简介]赵凯宏(1974一),男,甘肃泾川人,硕士,讲师,主要从事微分方程方面的研究  万方数据

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一?不定积分的概念与性质 定义1如果F (x)是区间I上的可导函数,并且对任意的x I,有F'(x)=f(x)dx则称F (x)是f(x)在区间I上的一个原函数。 定理1 (原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数 F (x),使得F (x) =f(x) (x I) 简单的说就是,连续函数一定有原函数 定理2设F (x)是f(x)在区间I上的一个原函数,贝U (1) F (x) +C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2 设F (x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数 F (x) +C称 为f(x)在区间I上的不定积分,记为f(x)d(x),即f(x)d(x)=F(x)+C 其中记号称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则[f(x) g(x)]dx= f(x)dx g(x)dx. 性质2 设函数f(x)存在原函数,k为非零常数,贝U kf(x)dx=k f(x)dx. 二.换元积分法的定理 如果不定积分g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[ (x)] ( (x).做变量代换u= (x),并注意到’(x) dx=d (x),则可将变量x的积分转化成变量u的积分,于是有 g(x)dx= f[ (x)] ( (x)dx= f(u)du. 如果f(u)du 可以积出,则不定积分g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

一道非常难的不定积分题目的解法

求∫arcsinx * arccosx dx的不定积分 解题思路:反复运用换元,将arcsinx 换成sinx的形式,将arccox 换成cosx的形式,最终简化题目的难度! 解题过程:第一步换元:将arccosx=t (xε[0,1],tε[0,π/2]),从而得出cost=x.将∫arcsinxarccosx dx换成∫t arcsin(cost) d(cost)。接下来怎么解呢? 先看看∫arcsinx dx=arcsinx *x- ∫xd(arcsinx) 从而简化题目的难度!那么你是否会产生一个想法,上面那条题目是否可以转化呢! 于是∫t* arcsin(cost)* d(cost)= ∫ td(arcsin(cost)cost+sint)= t(arcsin(cost)cost+sint)- ∫(arcsin(cost)cost+sint)dt 从而求∫ arcsin(cost)cost dt 第二步换元:将arcsin(cost)=p ,从而 sinp=cost,t=arccos(sinp).最终∫arcsin(cost)cost dt=∫psinp d(arccos(sinp))= ∫p sinp *(-1/√ 1-(sinp)^2)*cosp dp=∫p sinp*(-1/cosp)*cosp dp=-∫psinp dp=∫p dcosp=pcosp-∫cosp dp=pcosp-sinp+c 第三步:总结出答案,表示成x的形式。 ∫arcsin(cost)cost dt= arcsin(cost)(√ 1-cos^t)-cost+c

∫(arcsin(cost)cost+sint)dt= arcsin(cost)(√ 1-cos^t)-cost-cost+c= arcsin(cost)(√ 1-cos^t)-2cost+c ∫arcsinxarccosx dx=arcsinx(√1-x^2)-2x+c 这条题目很难,但是换元转化的思想很重要!!! 淮师 3/25/2010

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△3 2()i i i S f x x n ξ??=?=? ??? (3)求和:33111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ???????∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ????????? ?? =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ? =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++. 所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原 函数. 三、几何意义法 例3 求定积分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯 形的 面积,只要作出图形就可求出. 解:1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所以1 1)d x -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函 数,所以在对称区间的积分值均为零.

积分因子的求法及简单应用

积分因子的求法及简单应用 数学科学学院 摘 要:积分因子是常微分方程中一个很基本但却又非常重要的概念,本文在介绍了恰当微分方程与积分因子的概念以及相关定理的基础上,归纳总结了求解微分方程积分因子的几种方法,并利用积分因子理论证明了初等数学体系中的对数公式与指数公式,提供了一种新的解决中学数学问题的途径,体现了积分因子的简单应用价值。 关键词:恰当微分方程;积分因子;对数公式;指数公式 1. 恰当微分方程的概念及判定 恰当微分方程的概念 我们可以将一阶方程 () ,dy f x y dx = 写成微分形式 (),0 f x y dx dy -= 或把x,y 平等看待,写成下面具有对称形式的一阶微分方程 ()(),,0 M x y dx N x y dy += ⑴ 这里假设M(x,y),N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶偏导数,如果方程⑴的左端恰好是某个二元函数u(x,y)的全微分. 即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== + ?? 则称方程⑴为恰当微分方程. [] 1 恰当微分方程的判定 定理1 [] 2 假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具

有连续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒 有M N y x ??=??. 利用定理1我们就可以判定出一个微分方程是否是恰当微分方程. 2. 积分因子 如果对于方程⑴在某矩形域内M N y x ??≠??,此时方程⑴就称为非恰当微分方 程。对于非恰当微分方程,如果存在某个连续可微的函数u(x,y)≠0,使得 ()()()(),,,,0u x y M x y d x u x y N x y d y += 为恰当微分方程,则称u(x,y)为方程⑴ 的1个积分因子. 注[] 1 可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的. 定理2 []2 函数u(x,y)是方程⑴的积分因子的充要条件是 u u M N N M u x y y x ?? ????-=- ??????? 3. 积分因子求法举例 观察法 对于一些简单的微分方程,用观察法就可以得出积分因子 如: ⑴ 0ydx xdy +=有积分因子1 xy ⑵ ydx xdy -=有积分因子 2 1x -,2 1 y ,1 xy ,2 2 1 x y +,2 2 1 x y - 例1 找出微分方程 ()()110xy ydx xy xdy ++-=的一个积分因子.

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

微分方程积分因子的求法

微分方程积分因子的求法 何佳 【摘要】 利用积分因子,可以对一个一阶微分方程的求解进行统一处理。因此,如何求解积分因子就成为解一阶微分方程的一个重点了。但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。但是,对于某些特殊的情况,却可以简单地得出积分因子。通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。所以我们在这里来讨论一下关于求解()x y αβμ和 ()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式 相近的积分因子。如:通过x y μ=+,可以得到x y μ=-的积分因子。如此举一反三,力求使得求积分因子的问题变的简便易行。同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。 【关键字】 微分方程 , 积分因子 , 求解方法

【目录】 引言 (1) 目录 (2) 一、()x y αβμ和()m n ax by μ+两类积分因子 § 1、 与()x y αβμ有关的积分因子 …………………………………………… 3 § 2、 与()m n ax by μ+有关的积分因子 …………………………………………… 4 二、微分方程积分因子求法的推广 § 1、 满足条件 ()P Q P Qf x y x y ??-=-??的积分因子求法 (7) § 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-????++++++=????积 分因子 (10) § 3、 方程13()30m m m x m x y x dx x dy -??+++=?? 积分因子 (12) § 4、 方程1(4)4450m m m m x mx y y dx x x y dy -????++++++=????积分因子 …………………………………………… 13 参考文献 (15)

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

微分方程的积分因子求解法

创作编号:BG7531400019813488897SX 创作者:别如克* 常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词:全微分方程,积分因子。 一、基本知识 定义1.1 对于形如 dx y N M(1.1) x ),( ),(= +dy x y 的微分方程,如果方程的左端恰是x,y的一个可微函数),(y x U的全微分,即d),(y y x M),( dx ),(+,则称(1.1)为全微分方程. x U= dy y N x 易知,上述全微分方程的通解为),(y U=C, (C为任意常数). x 定理1.1 (全微分方程的判别法)设),(y x N在x,y平面上 M,),(y x 的单连通区域G内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为

x y x N y y x M ??=??) ,(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??) ,(ln ) ,(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得: x y x y x N ??) ,() ,(μ-y y x y x M ??),(),(μ=),(),(),(y x x y x N y y x M μ??? ? ????-??. 上式整理即得(1.4). 证毕 注1.1 若),(y x μ0≠,则(1.3)和(1.1)同解。所以,欲求(1.1)的通解,只须求出(1.3)的通解即可,而(1.3)是全微分方程,故关键在于求积分因子),(y x μ。 为了求解积分因子),(y x μ,必须求解方程(1.4)。一般来说,偏微分方程(1.4)是不易求解的;但是,当),(y x μ具有某种特殊形式时还是较易求解的。

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 This model paper was revised by LINDA on December 15, 2012.

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 2 2csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

积分因子法在常微分方程中的应用 开题报告

积分因子法在常微分方程中的应用开题报告 开题报告 积分因子法在常微分方程中的应用 一、选题的背景、意义 在许多科学领域中,常常需要研究常微分方程的理论和其解是否存在.常微分方程的理论包括解的存在性和唯一性、奇解、定性理论等等.其中解的讨论也尤为重要,求解方法有很多种,例如,常数变易法、叠加法、积分因子法.求得常微分方程的解能使常微分方程在其他的科学领域有更好的应用. 常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为以下几个阶段. 发展初期是针对具体的常微分方程,希望能用初等函数或超越函数表示其解,属于“求通解”的时代. 刘维尔在1841年证明了里卡蒂方程不存在一般的初等解,同时柯西又提出了初值问题.因此,早期的常微分方程的求解热潮中断了,而常微分方程从“求通解”时代转向“求定解”时代. 19世纪末,常微分方程的研究从“求定解”时代转向“求所有解”的新时代.那是由天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态引起的. 20世纪末六七十年代以后,常微分方程在计算机技术发展的促进下,从“求所有解”时代转入“求特殊解”时代.

求常微分方程的通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就能容易地求出问题所需要的特解;根据通解的表达式可以了解其对某些参数的依赖情况,便于参数取值,使它对应的解具有所需要的性能,也有助于解的其他研究.虽然通过求通解的方法可以求出方程的解,但是有些时候会比较复杂.因此,我们要寻找更为简便的求解方法.对常微分方程的求解.积分因子法是一种很好的求解方法,它能将复杂的计算简单化. 二、研究的基本内容与拟解决的主要问题 本课题主要对积分因子法进行归纳总结,旨在应用积分因子法来求解常微分方程. 本课题的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解用积分因子法求解常微分方程的一些计算技巧,达到化难为易的目的. 先从定义出发,介绍相关的一些基本概念,如微分方程、常微分方程、全微分方程、解、积分因子等以及一些相关的定理和充要条件. 接着归纳总结积分因子法: 积分因子的求法 在求积分因子之前,要对常用的一些简单函数的全微分形式比较熟悉,这样能更快地求出积分因子. (1)观察法求积分因子 对于一些形式比较简单的微分方程,可以直接观察出方程的积分因子. 如:方程,根据,可以直接观察出它的积分因子为. (2)分组凑微分法对于一些相对复杂的微分方程,可以对其进行分组,然后根据一些简单函数的全微分形式对其进行凑微分,得到其积分因子.

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

常微分方程积分因子法的求解

用积分因子法解常微分方程 摘要:每一个微分方程通过转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此非恰当微分方程转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要.此论文主要研究几类微分方程积分因子,从而使微分方程的求解变得较简便. 关键词:微分方程恰当微分方程积分因子通解 Abstract:After each differential equation through into the appropriate equation, can use the appropriate equations for solving non appropriate formula, the differential equation is transformed into an appropriate equation is an important step in solving differential equations, into the appropriate equation requires the solution of the integral factor, thus solving the integral factor becomes very important. This paper mainly research for several kinds of differential equation of integral factor, to make it easy for solving differential equations. Key Words:Differential equation Exact differential equation Integrating factor General solution 自变量只有一个的微分方程称为常微分方程.常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置.本文通过运用求微分方程的积分因子来将微分方程转化为恰当微分方程求解.常微分方程是解决实际问题的重要工具[1]. 1 恰当微分方程 1.1 常微分方程 联系自变量、未知函数以及未知函数的某些导数(或微分)之间的关系式称为微分方程. 未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.

积分因子法在常微分方程中的应用-[开题报告]

毕业论文开题报告 数学与应用数学 积分因子法在常微分方程中的应用 一、选题的背景、意义 在许多科学领域中,常常需要研究常微分方程的理论和其解是否存在.常微分方程的理论包括解的存在性和唯一性、奇解、定性理论等等.其中解的讨论也尤为重要,求解方法有很多种,例如,常数变易法、叠加法、积分因子法.求得常微分方程的解能使常微分方程在其他的科学领域有更好的应用. 常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为以下几个阶段. 发展初期是针对具体的常微分方程,希望能用初等函数或超越函数表示其解,属于“求通解”的时代. 刘维尔在1841年证明了里卡蒂方程不存在一般的初等解,同时柯西又提出了初值问题.因此,早期的常微分方程的求解热潮中断了,而常微分方程从“求通解”时代转向“求定解”时代. 19世纪末,常微分方程的研究从“求定解”时代转向“求所有解”的新时代.那是由天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态引起的. 20世纪末六七十年代以后,常微分方程在计算机技术发展的促进下,从“求所有解”时代转入“求特殊解”时代. 求常微分方程的通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就能容易地求出问题所需要的特解;根据通解的表达式可以了解其对某些参数的依赖情况,便于参数取值,使它对应的解具有所需要的性能,也有助于解的其他研究.虽然通过求通解的方法可以求出方程的解,但是有些时候会比较复杂.因此,我们要寻找更为简便的求解方法.对常微分方程的求解.积分因子法是一种很好的求解方法,它能将复杂的计算简单化. 二、研究的基本内容与拟解决的主要问题 本课题主要对积分因子法进行归纳总结,旨在应用积分因子法来求解常微分方程. 本课题的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解用积分因子法求解常微分方程的一些计算技巧,达到化难为易的目的.

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1、1 对于形如 0),(),(=+dy y x N dx y x M (1、1) 的微分方程,如果方程的左端恰就是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1、1)为全微分方程、 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数)、 定理1、1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1、1)就是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1、2) 证明见参考文献[1]、 定义1、2 对于微分方程(1、1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1、3) 就是全微分方程,则称),(y x μ为微分方程(1、1)的积分因子、 定理1、2 可微函数),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1、4) 证明:由定理1、1得,),(y x μ为微分方程(1、1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

积分因子的求法及简单应用

积分因子的求法及简单应用 1. 恰当微分方程的概念及判定 1.1 恰当微分方程的概念 我们可以将一阶方程 (),dy f x y dx = 写成微分形式 (),0 f x y dx dy -= 或把x,y 平等看待,写成下面具有对称形式的一阶微分方程 ()(),,0 M x y dx N x y dy += ⑴ 这里假设M(x,y),N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶偏导数,如果方程⑴的左端恰好是某个二元函数u(x,y)的全微分. 即 ()()(),,,u u M x y dx N x y dy du x y dx dy x y ??+== +?? 则称方程⑴为恰当微分方程. [] 1 1.2 恰当微分方程的判定 定理1 假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具有连续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒有 M N y x ??=??. 利用定理1我们就可以判定出一个微分方程是否是恰当微分方程. 2. 积分因子 如果对于方程⑴在某矩形域内 M N y x ??≠??,此时方程⑴就称为非恰当微分方程。对于非恰当微分方程,如果存在某个连续可微的函数u(x,y)≠0,使得

()()()(),,,,0u x y M x y dx u x y N x y dy +=为恰当微分方程,则称u(x,y)为方程⑴ 的1个积分因子. 注 可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的. 定理2 函数u(x,y)是方程⑴的积分因子的充要条件是 u u M N N M u x y y x ??????-=- ??????? 3. 积分因子求法举例 3.1 观察法 对于一些简单的微分方程,用观察法就可以得出积分因子 如: ⑴ 0ydx xdy +=有积分因子1 xy ⑵ 0ydx xdy -=有积分因子21 x -,21y ,1xy ,221x y +,22 1x y - 例1 找出微分方程()()110 xy ydx xy xdy ++-=的一个积分因子. 解 将原方程各项重新组合可以写成 ()()0ydx xdy xy ydx xdy ++-= 由于1xy 是ydx xdy +的积分因子,1 xy 也是ydx xdy -的积分因子,从而原方程 有积分因子 ()2 1 xy . 观察法只运用于求解简单的微分方程的积分因子,有的可以直接看出,有的需要先将原方程重新组合,再运用观察法得出. 3.2 公式法 引理1 微分方程⑴存在形如:()u x ,()u y ,()u x y ±,()u xy ,()22 u x y ±,

相关主题
文本预览
相关文档 最新文档