【高考领航】2017届(北师大版)高三数学(理)大一轮复习....d
- 格式:doc
- 大小:7.85 MB
- 文档页数:61
1.函数的单调性如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的.2.函数的极值如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值.如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)1.函数f (x )=x 2-2ln x 的单调递减区间是( ) A.(0,1) B.(1,+∞) C.(-∞,1) D.(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.2.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为( ) A.(1,+∞) B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞) 答案 A解析 令g (x )=f (x )-2x -1,∴g ′(x )=f ′(x )-2<0, ∴g (x )在R 上为减函数,且g (1)=f (1)-2-1=0. 由g (x )<0=g (1),得x >1,故选A.3.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A.当k =1时,f (x )在x =1处取到极小值 B.当k =1时,f (x )在x =1处取到极大值 C.当k =2时,f (x )在x =1处取到极小值 D.当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2), 显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值.故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.答案 1解析 由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 5.设1<x <2,则ln x x ,(ln x x )2,ln x 2x 2的大小关系是__________________.(用“<”连接)答案 (ln x x )2<ln x x <ln x 2x2解析 令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x >0,∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln xx <1,∴(ln x x )2<ln x x. 又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0, ∴(ln x x )2<ln x x <ln x 2x2.课时1 导数与函数的单调性题型一 不含参数的函数的单调性例1 求函数f (x )=ln xx 的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln xx ,所以f ′(x )=1-ln x x2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.函数y =12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)答案 B解析 y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x(x >0). 令y ′≤0,得0<x ≤1,∴递减区间为(0,1].题型二 含参数的函数的单调性例2 已知函数f (x )=ln(e x +1)-ax (a >0). (1)若函数y =f (x )的导函数是奇函数,求a 的值; (2)求函数y =f (x )的单调区间. 解 (1)函数f (x )的定义域为R . 由已知得f ′(x )=e xe x +1-a .∵函数y =f (x )的导函数是奇函数, ∴f ′(-x )=-f ′(x ), 即e -xe -x +1-a =-e x e x +1+a ,解得a =12.(2)由(1)知f ′(x )=e xe x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴a ∈[1,+∞)时,函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0得(1-a )(e x +1)>1, 即e x >-1+11-a ,解得x >ln a1-a .由f ′(x )<0得(1-a )(e x +1)<1, 即e x <-1+11-a ,解得x <ln a1-a .∴a ∈(0,1)时,函数y =f (x )在(ln a1-a ,+∞)上单调递增,在(-∞,lna1-a )上单调递减. 综上,当a ≥1时,f (x )在R 上单调递减;当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫ln a 1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减. 思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a ,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈( 1-a2a,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围. 解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究:在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解?解 方法一 ∵g ′(x )=x 2-ax +2, 且g (x )在(-2,-1)内为减函数,∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x在(-2,-1)上恒成立,又y =x +2x ,x ∈(-2,-1)的值域为(-3,-2 2 ],∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x 的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是 (-∞,-3]∪[-22,+∞),故g (x )在(-2,-1)上不单调时,实数a 的取值范围是 (-3,-22).思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e x ln x -a e x (a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围. 解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x -a +ln x )e x ,f ′(1)=(1-a )e ,由(1-a )e·1e =-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x ,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x -a +ln x ≤0,在x >0时恒成立. 所以a ≥1x +ln x ,在x >0时恒成立.令g (x )=1x +ln x (x >0),则g ′(x )=-1x 2+1x =x -1x 2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值). 故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x -a +ln x ≥0,在x >0时恒成立,所以a ≤1x+ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (12分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图像在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图像在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,[6分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a,由g ′(x )<0,得12a <x <1,若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;[9分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[11分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[12分] 温馨提醒 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. (2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A 组 专项基础训练(时间:40分钟)1.函数f (x )=(x -3)e x 的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案 D解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.2.若f (x )=ln x x ,e<a <b ,则( )A.f (a )>f (b )B.f (a )=f (b )C.f (a )<f (b )D.f (a )f (b )>1答案 A解析 f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,f (x )为减函数.∴f (a )>f (b ).3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为() A.(-∞,2) B.(-∞,2]C.(-∞,52) D.(-∞,52] 答案 D解析 ∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立,即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2, ∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增,∴m ≤2+12=52,故选D. 4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e x f (x 1)的大小关系为( )A.1e x f (x 2)>2e x f (x 1)B.1e x f (x 2)<2e x f (x 1)C.1e x f (x 2)=2e x f (x 1)D.1e x f (x 2)与2e x f (x 1)的大小关系不确定答案 A解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即1212()()e ex x f x f x <, 所以1e x f (x 2)>2e x f (x 1).5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a=f (0),b =f (12),c =f (3),则( ) A.a <b <cB.c <b <aC.c <a <bD.b <c <a 答案 C解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数;又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f (12),即有f (3)<f (0)<f (12),c <a <b . 6.若函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________.答案 (-∞,0)解析 f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1.要使f ′(x )=0有两个不等实根,则a <0.7.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________.答案 [34,+∞) 解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x ,由题意得,当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0, 解得a ≥34. 8.已知函数f (x )=3x a-2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________________.答案 (0,25]∪[1,+∞) 解析 f ′(x )=3a -4x +1x, 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a≤h (1), 即3a ≥152或3a≤3, 又a >0,所以0<a ≤25或a ≥1. 9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5).10.已知函数f (x )=ln x ,g (x )=12ax +b . (1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x ,x ∈[1,+∞),∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].B 组 专项能力提升(时间:25分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是() A.1<a ≤2 B.a ≥4C.a ≤2D.0<a ≤3答案 A解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A.f (1)<e f (0),f (2016)>e 2016f (0)B.f (1)>e f (0),f (2016)>e 2016f (0)C.f (1)>e f (0),f (2016)<e 2016f (0)D.f (1)<e f (0),f (2016)<e 2016f (0)答案 D解析 令g (x )=f (x )e x , 则g ′(x )=(f (x )e x )′=f ′(x )e x -f (x )e x e 2x=f ′(x )-f (x )e x<0, 所以函数g (x )=f (x )e x 是单调减函数, 所以g (1)<g (0),g (2016)<g (0),即f (1)e 1<f (0)1,f (2016)e 2016<f (0)1, 故f (1)<e f (0),f (2016)<e 2016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________. 答案 (-19,+∞) 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a . 当x ∈[23,+∞)时, f ′(x )的最大值为f ′(23)=29+2a . 令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞). 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x, 由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.15.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2[f ′(x )+m 2]在区间(t,3)上总不是单调函数,求m 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a 2=1, 即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x. ∴g (x )=x 3+(m 2+2)x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧ g ′(t )<0,g ′(3)>0. 当g ′(t )<0,即3t 2+(m +4)t -2<0时对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373. 所以-373<m <-9. 即实数m 的取值范围是(-373,-9).。
【10份】2017高考数学理(北师大版)一轮复习计时双基练1-10目录计时双基练一集合 (1)计时双基练二命题及其关系、充分条件与必要条件 (6)计时双基练三简单的逻辑联结词、全称量词与存在量词 (12)计时双基练四函数及其表示 (18)计时双基练五函数的单调性与最值 (23)计时双基练六函数的奇偶性与周期性 (30)计时双基练七二次函数与幂函数 (36)计时双基练八指数与指数函数 (42)计时双基练九对数与对数函数 (48)计时双基练十函数的图像 (55)计时双基练一集合A组基础必做1.下列集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}【详细分析】选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合,选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合,选项D中的集合M是数集,而集合N是点集,故集合M与N不是同一个集合,对选项B,由集合元素的无序性,可知M,N表示同一个集合。
答案 B2.(2015·重庆卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A【详细分析】因为A={1,2,3},B={2,3},所以B A。
答案 D3.(2015·陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=() A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]【详细分析】解x2=x,得x=0或x=1,故M={0,1}。
解lg x≤0,得0<x≤1,故N=(0,1],故M∪N=[0,1],选A。
北师大版2017年高考数学(理)一轮复习测评卷一一、选择题1.已知集合M ={x |12log x <0},N ={x |x 2≤4},则M ∩N 等于( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]2.(2015·安徽)设p :x <3,q :-1<x <3,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.函数f (x )=1lg x +2-x 的定义域为( )A .(-∞,2]B .(0,1)∪(1,2]C .(0,2]D .(0,2)4.已知f (x )是定义在R 上的奇函数,对任意x >0,都有f (x +4)=f (x ),若f (-2)=2,则f (2 018)等于( ) A .2 012 B .2 C .2 013D .-25.已知函数f (x )=⎩⎨⎧-x -3a ,x <0,a x-2,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,23]B .(0,13]C .(0,1)D .(0,2]6.设a =log 32,b =ln 2,c =125-,则( ) A .a <b <c B .b <c <a C .c <a <bD .c <b <a7.已知x 0是f (x )=(12)x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>08.已知f (x )是定义在(-∞,+∞)上的偶函数,且在区间(-∞,0]上是增函数,设a =f (log 47),b =f (12log 3),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c9.设函数f (x )=⎩⎨⎧x 2+4x +6.x ≤0,-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3)10.如果一个点是一个指数函数和一个对数函数的图象的交点,那么称这个点为“好点”.下列四个点P 1(1,1),P 2(1,2),P 3(12,12),P 4(2,2)中,“好点”的个数为( ) A .1 B .2 C .3D .411.(2015·宁夏育才中学第五次月考)若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为( ) A .1 B .-1 C .0D .-212.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( ) A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23 B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13 C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32 D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 二、填空题13.(2015·湖北部分学校质检)已知集合A ={x |y =16+x -x 2},B ={x |y =log 2(2-x )},则A ∩(∁R B )=________.14.已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为______.15.(2015·福建)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.16.(2015·四川成都第七中学期中)已知指数函数y =f (x ),对数函数y =g (x )和幂函数y =h (x )的图象都过点P (12,2),如果f (x 1)=g (x 2)=h (x 3)=4,那么x 1+x 2+x 3=________. 三、解答题17.设命题p :函数f (x )=lg(ax 2-x +a 16)的定义域为R ;命题q :3x -9x <a 对一切的实数x 恒成立,如果命题“p 且q ”为假命题,求实数a 的取值范围.18.(2015·山东枣庄第八中学阶段检测)已知定义域为R 的函数f (x )=-2x +12x +1+a 是奇函数. (1)求a 的值;(2)判断函数f (x )的单调性,并求其值域; (3)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.19.已知函数f (x )=log 2(2x+1).(1)求证:函数f (x )在(-∞,+∞)内单调递增;(2)若g (x )=log 2(2x -1)(x >0),此时关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.20.(2016·山东日照校际联合检测)已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上有最小值1和最大值4,设f (x )=g xx. (1)求a ,b 的值;(2)若不等式f (2x )-k 2x ≥0在区间[-1,1]上有解,求实数k 的取值范围.21.为了净化空气,某科研单位根据实验得出:在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4毫克/立方米时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则有效净化时间可达几天?(2)若先喷洒2个单位的净化剂,6天后再喷洒a (1≤a ≤4)个单位的净化剂,要使接下来的4天能够持续有效净化空气,则a 的最小值为多少?(精确到0.1,参考数据:2取1.4)22.(2015·浙江金华艾青中学期中)已知a ∈R ,函数f (x )=x |x -a |. (1)当a =2时,写出函数y =f (x )的单调递增区间; (2)当a >2时,求函数y =f (x )在区间[1,2]上的最小值;(3)设a ≠0,函数f (x )在(m ,n )上既有最大值又有最小值,请分别求出m ,n 的取值范围(用a 表示).答案解析1.C 2.C 3.B 4.D 5.B 6.C7.C [在同一坐标系下作出函数y=(12)x,y=-1x的图象,由图象可知当x∈(-∞,x0)时,(12)x>-1x,x∈(x0,0)时,(12)x<-1x,所以当x1∈(-∞,x0),x2∈(x0,0)时,有f(x1)>0,f(x2)<0,选C.]8.B [∵f (x)是定义在(-∞,+∞)上的偶函数,且在区间(-∞,0]上是增函数,∴f(x)在(0,+∞)上单调递减.∵a=f(log47)=f(log27),b=f(12log3)=f(-12log3)=f(log23).又0<log27<log23<2,0.2-0.6=50.6>50.5>40.5=2,即0<log27<log23<0.2-0.6,∴a>b>c.]9.A10.B [设指数函数和对数函数分别为y=a x(a>0,a≠1),y=logbx(b>0,b≠1).若为“好点”,则P1(1,1)在y=a x的图象上,得a=1与a>0,且a≠1矛盾;P2(1,2)显然不在y=log b x的图象上;P 3(12,12)在y=a x,y=log b x的图象上时,a=14,b=14;易得P4(2,2)也为“好点”.] 11.B 12.B 13.[2,3)14.-34解析 首先讨论1-a,1+a 与1的关系, 当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =3a +2. 因为f (1-a )=f (1+a ), 所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1, 所以f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-3a -1. 因为f (1-a )=f (1+a ), 所以2-a =-3a -1, 所以a =-32(舍去).综上,满足条件的a =-34.15.1 16.3217.解 命题p :对于任意的x ,ax 2-x +a 16>0恒成立,则需满足⎩⎨⎧a >0,Δ=1-a24<0⇒a >2,q :g (x )=3x -9x =-(3x -12)2+14≤14⇒a >14, 因为“p 且q ”为假命题,所以p ,q 至少一假. (1)若p 真q 假,则a >2且a ≤14,a 是空集.(2)若p 假q 真,则a ≤2且a >14,得14<a ≤2.(3)若p 假q 假,则a ≤2且a ≤14,得a ≤14.所以a ≤2.18.解 (1)∵f (x )是奇函数,∴f (1)=-f (-1),即-2+14+a =--12+11+a,解得a =2.经检验,当a =2时,函数f (x )是奇函数.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.∵函数f (x )的定义域为R , ∴2x >0,2x +1>1, ∴0<12x +1<1,∴-12<-12+12x +1<12,函数f (x )的值域为(-12,12).(3)∵f (x )是奇函数,∴不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).∵f (x )是减函数,∴t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式得{t |t >1或t <-13}.19.(1)证明 任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x 1+12x 2+1, ∵x 1<x 2,∴0<2x 1+1<2x 2+1, ∴0<2x 1+12x 2+1<1,log 22x 1+12x 2+1<0,∴f (x 1)<f (x 2),即函数f (x )在(-∞,+∞)内单调递增. (2)解 方法一 m =g (x )-f (x ) =log 2(2x -1)-log 2(2x +1) =log 22x -12x +1=log 2(1-22x +1), 当1≤x ≤2时,25≤22x +1≤23,∴13≤1-22x +1≤35, ∴m 的取值范围是[log 2 13,log 2 35].方法二 解方程log 2(2x -1)=m +log 2(2x +1), 得x =log 22m +11-2m ,∵1≤x ≤2,∴1≤log 22m +11-2m ≤2,解得log 2 13≤m ≤log 2 35.∴m 的取值范围是[log 2 13,log 2 35].20.解 (1)g (x )=a (x -1)2+1+b -a . ∵a >0,∴g (x )在区间[2,3]上是增函数, 故⎩⎨⎧g=1,g=4,解得⎩⎨⎧a =1,b =0.(2)由(1)知g (x )=x 2-2x +1, ∴f (x )=x +1x-2,∴f (2x )-k ·2x ≥0可化为1+(12x )2-2·12x ≥k ,令t =12x ,则k ≤t 2-2t +1.∵x ∈[-1,1],∴t ∈[12,2].记h (t )=t 2-2t +1,∵t ∈[12,2],∴h (t )max =1,∴k 的取值范围是(-∞,1].21.解 (1)因为一次喷洒4个单位的净化剂, 所以浓度为4y =⎩⎨⎧648-x-4,0≤x ≤4,20-2x ,4<x ≤10(毫克/立方米),则当0≤x ≤4时,由648-x-4≥4,解得x ≥0,所以此时0≤x ≤4; 当4<x ≤10时,由20-2x ≥4,解得x ≤8,所以此时4<x ≤8.综上得,0≤x ≤8.故若一次喷洒4个单位的净化剂,则有效净化时间可达8天. (2)设从第一次喷洒起,经x (6≤x ≤10)天,浓度为g (x )毫克/立方米,则g (x )=2(5-12x )+a [168-x --1]=10-x +16a 14-x -a =(14-x )+16a14-x-a -4.因为x ∈[6,10],所以14-x ∈[4,8],而1≤a ≤4,所以4a ∈[4,8],当且仅当14-x =4a 时,g (x )取最小值,最小值为8a -a -4.令8a -a -4≥4,解得24-162≤a ≤4,所以a 的最小值为24-162≈1.6. 22.解 (1)当a =2时,f (x )=x |x -2|=⎩⎨⎧xx -,x ≥2,x-x,x <2.由图象可知,单调递增区间为(-∞,1]和[2,+∞). (2)因为a >2,x ∈[1,2],所以f (x )=x (a -x )=-x 2+ax =-(x -a2)2+a 24.当1<a 2≤32,即2<a ≤3时,f (x )min =f (2)=2a -4; 当a 2>32,即a >3时, f (x )min =f (1)=a -1. f (x )min =⎩⎨⎧2a -4,2<a ≤3,a -1,a >3.(3)f (x )=⎩⎨⎧xx -a ,x ≥a ,xa -x ,x <a .①当a >0时,图象如图(1)所示.由⎩⎨⎧ y =a 24,y =x x -a,得x =2+a2,∴0≤m <a2,a <n ≤2+12a . ②当a <0时,图象如图(2)所示.由⎩⎨⎧y =-a 24,y =x a -x,得x =2+2a ,∴1+22a ≤m <a ,a2<n ≤0.。
【高考领航】2017届高考数学大一轮复习第九章概率 9.1 随机事件的概率课时规范训练文北师大版[A级基础演练]1.在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件解析:由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.答案:D2.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:将同色小球编号.从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而一白一黑的共有6个基本事件,P=615=25.故选B.答案:B3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( )A.0.3 B.0.5C.0.8 D.0.7解析:由互斥事件概率公式知重量大于40克的概念为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.答案:D4.(1)某人投篮3次,其中投中4次是________事件; (2)抛掷一枚硬币,其落地时正面朝上是________事件; (3)三角形的内角和为180°是________事件. 解析:(1)共投篮3次,不可能投中4次; (2)硬币落地时正面和反面朝上都有可能; (3)三角形的内角和等于180°. 答案:(1)不可能 (2)随机 (3)必然5.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ∪B )=________(结果用最简分数表示).解析:一副扑克中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件,∴P (A ∪B )=P (A )+P (B )=152+1352=726.答案:7266.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.答案:19287.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310, P (A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.8.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人, 故由调查结果得频率为:(3)121212择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2),∴甲应选择L 1.同理,P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 1)<P (B 2),∴乙应选择L 2.[B 级 能力突破]1.(2016·黄冈模拟)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则此射手在一次射击中不够8环的概率为( )A .0.40B .0.30C .0.60D .0.90解析:依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故不够8环的概率为1-0.60=0.40.答案:A2.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.32解析:P (摸出黑球)=1-0.45-0.23=0.32. 答案:D3.(2014·高考新课标全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78解析:4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.答案:D4.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:从1,2,3,4这四个数中一次随机地取两个数的种数为6,其中一个数是另一个数的两倍的数对为1,2和2,4.故符合条件的概率为26=13.答案:135.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:解析:由表中可知这堆苹果中,质量不小于120克的苹果数为:20-1-2-3=14.故约占苹果总数的1420=0.70,即70%.答案:706.(2016·孝感模拟)已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为17+1235=1735.答案:17357.在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率; (2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A ,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B .从六种中随机选两种共有(0,1)、(0,2)、(0,3)、(0,4)、(0,5)、(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),15种.(1)“所选用的两种不同的添加剂的芳香度之和等于4”的取法有2种:(0,4)、(1,3),故P (A )=215.(2)“所选用的两种不同的添加剂的芳香度之和等于1”的取法有1种:(0,1);“所选用的两种不同的添加剂的芳香度之和等于2”的取法有1种:(0,2),故P (B )=1-⎝ ⎛⎭⎪⎫115+115=1315.。