雷尼镍催化剂产品生产工艺
- 格式:pdf
- 大小:237.12 KB
- 文档页数:17
骨架镍催化剂的制法骨架镍催化剂(Raney nickel,拉尼镍)是利用粉碎了的镍一硅合金或镍一铝合金与苛性钠水溶液反应而制得。
用这种方法制得的催化剂具有晶体骨架结构,其内外表面吸附有大量氢气,具有很高的催化活性。
在放置过程中,催化剂会慢慢失去氢,在空气中活性下降得特别快。
因此只有在密闭良好的容器中,将骨架镍催化剂放在醇或其它惰性溶剂的液面以下,隔绝空气才会保持其活性。
拉尼镍是一种应用范围广泛的催化剂,差不多对所有能进行氢化和氢解的官能团都起作用。
对烯烃或芳环的氢化相当有效,能顺利地氢解碳--硫键(脱硫作用);但对酰胺、酯的氢解效果不佳。
它的主要特点是在中性或碱性溶液中,能发挥很好的催化作用,尤其是在碱性条件下,催化作用更好。
因此在氢化时常加入少量的碱性物质,例如三乙胺、氢氧化钠和氢氧化锂等,均能明显提高活性(硝基化合物除外)。
如还原羰基化合物时,加入少量的碱,吸氢速度可以增加3~4倍。
与其它贵金属催化剂例如氧化铂、钯/炭等相比,其氢化温度和压力较高,但价格要便宜的多。
而且来源方便,制备简便。
卤素(尤其是碘),含磷、硫、砷或铋的化合物及含硅、锗、锡或铅的有机金属化合物在不同程度上可使拉尼镍中毒。
在压力下,有水蒸气存在时,拉尼镍会很快失活,使用时应予注意。
拉尼镍活性降低的主要原因是①失去氢;②催化剂表面层组成改变,⑧由于生成结晶而使催化剂表面积减少,④中毒。
镍一硅合金由于较硬,粉碎和溶解都较难,所以使用不普遍。
通常,镍一铝合金是制备各种类型拉尼镍的基本原料。
含镍一般在30~50%之间,其余为铝。
使用上述组成的镍一铝合金,均能制得具有一定活性的拉尼镍,可根据需要加以选择。
最常用的镍—铝合金是镍铝各占50﹪的微细颗粒体。
其制备过程如下。
在氧化铝或石棉坩埚内,按比例先把纯铝放入坩埚,在电炉上熔融。
待温度达到 1000℃左右时,加入纯镍粉。
这时由于有熔化热产生,使温度升到 1200~1300℃。
用石墨棒不断搅动,保温 20~30分钟。
雷尼镍催化剂的制备雷尼镍催化剂是一种十分重要的骨架镍催化剂,其发现和发展最早可以追述到1925年。
现在由于其具有的高活性、高选择性以及生产使用成本低的优点,已被广泛应用于有机还原反应,如烯烃芳香环、醛、酮、硝基、腈基等的催化加氢及脱卤反应。
本文将主要介绍W-6型拉尼镍催化剂的主要制备方法。
1.W-6型拉尼镍催化剂的制备原理雷尼镍催化剂最先由Murray Raney(1885-1966)发现,并于1925年申请专利。
制备时,先用NaOH溶液溶去镍铝合金中的Al,然后洗涤,残余物为类似海绵状的微粒,大小为25~150A0。
催化剂主要含Ni,Al(1~8%),少量NiO 和AL2O3水合物(1~20%),总表面积为50~130m2/g。
Raney-Ni催化剂一般由合金制备,分为两步,即展开和洗涤。
展开是指用碱(特别是NaOH)溶出合金中无催化活性的部分(铝),这一步称为展开操作,反应式如下:2NaOH+2 Al+2H2O→2NaAlO2+3H2研究表明合金粒度和温度对展开速度有较大的影响,温度越高,展开速度越快;粒度的增大,溶解速度则减小R.Choudary等人通过实验,得出一个展开模型:log(x/1-x)= αlog(tβ),其中α为常数,β为速率参数(单位为1m/s), t为展开时间,展开活化能为56.6Kj/mol。
洗涤展开后的Raney-Ni是类似海绵状的微粒,可用蒸馏水洗涤至中性,最后用乙醇洗涤。
由于Raney-Ni是一种易燃的催化剂,故应保存在适当的溶剂中。
2.W-6型拉尼镍催化剂的制备方法:固相分离浸取法熔融,沥滤是制备骨架催化剂的一种方法。
其制备主要分为三步:即合金的制备,合金的粉碎及合金的浸溶,其制备工艺流程及简介入下:NaOH溶液镍┓↓┃→熔融→冷却→粉碎→浸溶→洗涤→成品铝┛70年代发明的固相分离浸取法是对传统雷尼镍催化剂制备方法最近的一次突破。
原理是向回体NaOH与合金粉的混合物中加水.使其均匀润湿但不形成液相。
雷尼镍催化剂产品生产工艺及技术发展第一节质量指标情况物理化学特性:雷尼镍催化剂活化前为银灰色无定型粉末(镍铝合金粉),具有中等程度的可燃性,有水存在的情况下部分活化并产生氢气易结块,长久暴露于空气中易风化。
镍铝合金粉活化后为灰黑色颗粒,附有活泼氢,极不稳定,在空气中氧化燃烧,须浸在水或乙醇中保存。
它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。
其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很多大小不一的微孔。
这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。
由于“雷尼”是格雷斯化学品公司的注册商标,所以严格地说,仅有这个公司的戴维森化学部门生产的产品才能称作“雷尼镍”,国内除雷尼镍外,还可以称为骨架镍、海绵镍催化剂。
而“骨架金属催化剂”或者“海绵金属催化剂”被用于称呼具有微孔结构,而物理和化学性质类似于雷尼镍的催化剂,如雷尼铜、雷尼钴、雷尼铁。
用途:本产品主要应用于基本有机化工的催化加氢反应中。
可用于有机物碳碳键的加氢,碳氮键的加氢,亚硝基化合物与硝基化合物的加氢;偶氮与氧化偶氮化合物、亚胺、胺与连氮二苄的加氢,还可以用于脱氢反应等。
最典型的应用是葡萄糖加氢、脂肪腈类的加氢。
在医药、染料、油脂、香料、合成纤维等领域有广泛的应用。
例如:葡萄糖加氢生产山梨醇用于合成维生素C、树脂表面活性剂等。
苯酚催化加氢生产已二醇用于制备已二胺、油漆、涂料。
已二腈加氢生产已二胺是聚酰胺纤维的重要单体。
呋喃催化加氢生产四氢呋喃是良好的溶剂。
脂肪酸氨化后加氢生产脂肪伯胺广泛应用在有机化工生产中。
苯胺加氢制备环已胺用于合成脱硫剂、腐蚀抑制剂、硫化促进剂、乳化剂、抗静剂、杀菌剂等。
雷尼镍催化剂的使用引言:雷尼镍催化剂是一种常用的催化剂,广泛应用于化学工业领域。
本文将介绍雷尼镍催化剂的特性、制备方法以及在不同领域的应用。
一、雷尼镍催化剂的特性雷尼镍催化剂具有以下特性:1. 高活性:雷尼镍催化剂具有较高的催化活性,可以促进化学反应的进行,并提高反应速率。
2. 高选择性:雷尼镍催化剂在催化反应中具有较高的选择性,可以使反应产物得到更高的纯度。
3. 长寿命:雷尼镍催化剂具有较长的使用寿命,可以多次循环使用,减少生产成本。
4. 抗中毒性:雷尼镍催化剂对一些有毒物质具有较好的抗中毒性,能够在存在有毒物质的环境中仍然保持催化活性。
二、雷尼镍催化剂的制备方法雷尼镍催化剂的制备方法主要包括以下几个步骤:1. 原料准备:选择高纯度的镍盐和还原剂作为原料,保证催化剂的质量。
2. 催化剂的还原:将镍盐与还原剂混合,通过还原反应将镍离子还原为金属镍形成催化剂。
3. 催化剂的活化:将还原后的催化剂进行活化处理,提高催化剂的活性和选择性。
4. 催化剂的后处理:对活化后的催化剂进行后处理,包括洗涤、干燥等步骤,以获得最终的催化剂产品。
三、雷尼镍催化剂在化学工业中的应用雷尼镍催化剂在化学工业中有着广泛的应用,主要包括以下几个方面:1. 氢化反应:雷尼镍催化剂可以催化烯烃、炔烃等有机物与氢气的反应,将它们还原为相应的烃类化合物。
2. 聚合反应:雷尼镍催化剂可以催化烯烃的聚合反应,将烯烃分子连接在一起形成高分子化合物。
3. 氧化反应:雷尼镍催化剂可以催化有机物的氧化反应,将它们转化为含有氧原子的化合物。
4. 加氢脱氮反应:雷尼镍催化剂可以催化有机物中的氮原子与氢气的反应,将有机物中的氮原子去除。
5. 加氢裂化反应:雷尼镍催化剂可以催化烃类化合物的加氢裂化反应,将长链烃类分解为短链烃类。
6. 加氢酰化反应:雷尼镍催化剂可以催化醛类化合物与氢气的反应,将醛类化合物加氢生成相应的醇类化合物。
结论:雷尼镍催化剂具有高活性、高选择性、长寿命和抗中毒性等特性,制备方法简单,应用广泛。
雷尼镍加氢催化剂1. 简介雷尼镍加氢催化剂是一种常用于化学反应中的催化剂。
它由镍和少量的其他金属组成,能够在加氢反应中起到催化作用。
本文将介绍雷尼镍加氢催化剂的制备方法、催化机理以及应用领域等方面的内容。
2. 制备方法雷尼镍加氢催化剂的制备方法主要包括物理法和化学法两种。
2.1 物理法物理法制备雷尼镍加氢催化剂主要通过合成气还原法。
具体步骤如下:1.首先,将镍和其他金属(如铝、铜等)按一定比例混合。
2.然后,将混合物置于高温高压条件下与合成气(氢气和一氧化碳的混合物)反应。
3.反应完成后,将产物冷却、过滤、洗涤等步骤,最终得到雷尼镍加氢催化剂。
2.2 化学法化学法制备雷尼镍加氢催化剂主要通过沉淀法。
具体步骤如下:1.首先,将镍盐和其他金属盐按一定比例溶解于适量的溶剂中。
2.然后,加入适量的沉淀剂,使溶液中的金属离子沉淀成固体颗粒。
3.沉淀完成后,将固体颗粒收集、洗涤、干燥等步骤,最终得到雷尼镍加氢催化剂。
3. 催化机理雷尼镍加氢催化剂在加氢反应中起到催化作用的机理主要包括吸附、解离和表面反应等过程。
3.1 吸附在加氢反应中,气体分子首先通过物理吸附或化学吸附的方式吸附到催化剂表面。
物理吸附是指气体分子与催化剂表面之间的范德华力作用,而化学吸附则是指气体分子与催化剂表面发生化学键的形成。
3.2 解离吸附到催化剂表面的气体分子在解离的作用下,将分解成更小的反应物或中间体。
解离过程可以通过热解、光解或电解等方式进行。
3.3 表面反应解离产生的反应物或中间体在催化剂表面进行进一步的反应,形成产物。
这些反应可以是氧化、还原、加氢、脱氢等多种类型的化学反应。
4. 应用领域雷尼镍加氢催化剂在许多化学反应中广泛应用,主要包括以下几个领域:4.1 石油化工在石油化工领域,雷尼镍加氢催化剂常用于石油加氢裂化、石油加氢脱硫、石油加氢脱氮等反应中。
它能够去除石油中的杂质,提高燃料的质量和环境友好性。
4.2 化学合成在化学合成领域,雷尼镍加氢催化剂常用于有机物的加氢反应中。
雷尼镍催化剂产品生产工艺及技术趋势第一节质量指标情况物理化学特性:雷尼镍催化剂活化前为银灰色无定型粉末(镍铝合金粉),具有中等程度的可燃性,有水存在的情况下部分活化并产生氢气易结块,长久暴露于空气中易风化。
镍铝合金粉活化后为灰黑色颗粒,附有活泼氢,极不稳定,在空气中氧化燃烧,须浸在水或乙醇中保存。
它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。
其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很多大小不一的微孔。
这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。
由于“雷尼”是格雷斯化学品公司的注册商标,所以严格地说,仅有这个公司的戴维森化学部门生产的产品才能称作“兰尼镍”。
而“金属骨架催化剂”或者“海绵-金属催化剂”被用于称呼具有微孔结构,而物理和化学性质类似于雷尼镍的催化剂。
用途:本产品主要应用于基本有机化工的催化加氢反应中。
可用于有机物碳氢键的加氢,碳氮键的加氢,亚硝基化合物与硝基化合物的加氢;偶氮与氧化偶氮化合物、亚胺、胺与连氮二苄的加氢,还可以用于脱水反应、成环反应、缩合反应等。
最典型的应用是葡萄糖加氢、脂肪腈类的加氢。
在医药、染料、油脂、香料、合成纤维等领域有广泛的应用。
例如:葡萄糖加氢生产山梨醇用于合成维生素C、树脂表面活性剂等。
苯酚催化加氢生产已二醇用于制备已二胺、油漆、涂料。
已二腈加氢生产已二胺是聚酰胺纤维的重要单体。
呋喃催化加氢生产四氢呋喃是良好的溶剂。
脂肪酸氨化后加氢生产脂肪伯胺广泛应用在有机化工生产中。
苯胺加氢制备环已胺用于合成脱硫剂、腐蚀抑制剂、硫化促进剂、乳化剂、抗静剂、杀菌剂等。
图表雷尼镍催化剂RTH—211、RTH—311、RTH—411系列(QB/TH08-1997)*备注:活性测定采用丙酮常压加氢法图表催化剂RTH—311系列应用情况资料来源:相关资料整理图表雷尼镍催化剂RTH—411系列应用情况资料来源:相关资料整理图表雷尼镍催化剂RTH—511、RTH—611、RTH—711、RTH—811系列资料来源:相关资料整理图表雷尼镍催化剂RTH—511、RTH—611、RTH—711、RTH—811系列应用情况资料来源:相关资料整理第二节国外主要生产工艺1897年法国化学家保罗·萨巴捷发现了痕量的镍可以催化有机物氢化过程。
雷尼镍催化剂性质雷尼镍催化剂性质、用途与生产工艺雷尼镍雷尼镍是一种由镍铝合金细晶粒组成的固体催化剂,用于众多工业过程。
典型的催化剂是按质量计约85%的镍,相当于每个铝原子约有两个镍原子。
雷尼镍是一种历史悠久,应用广泛的加氢催化剂,其由美国工程师MurrayRaney于1926年开发,用作工业过程中植物油加氢的替代催化剂。
早在1925年,美国工程师莫里·雷尼就提出利用Ni、Co、Fe及Cu与Al、Si熔融,然后用碱液浸溶来制备这种金属的活泼态催化剂,并在随后将它应用在植物油的氢化过程中。
凭借自身低廉的制备成本与高活性、高选择性、稳定性强等优势,雷尼镍在之后几十年中被广泛应用于各类有机还原反应以及医药、合成纤维、香料、染料、油脂等领域。
雷尼镍在制备过程中使用碱液除去不活泼的金属原子而形成多孔骨架,并使活泼的金属原子重新分布其上,因此雷尼镍又被形象的称为骨架镍催化剂。
此外,根据活泼态金属的种类,类似的催化剂还有骨架铁、骨架铜、骨架钴等。
未经活化的雷尼镍(镍铝合金)外观表现为银灰色的粉末,具备一定的可燃性。
活化之后变为灰黑色颗粒,因其附有活泼氢,极不稳定在空气中即可自燃,因此一般浸在水或乙醇中保存。
雷尼镍催化剂的分类雷尼镍通常用符号“W”来表示,数字1-7来区分具体的型号。
不同型号的雷尼镍在制备方法、活性以及用途上都具有一定的差异。
如W-2型雷尼镍制备较为方便,活性适中,可满足大部分催化反应的需要。
W-4~W-7型雷尼镍均为高活性雷尼镍,特别是W-6型雷尼镍,具备相当高的催化活性但制备工艺较为复杂,适用于低温(100℃以下)、低压条件下的氢化。
此外还可将雷尼镍催化剂分为非手性雷尼镍催化剂以及手性雷尼镍催化剂。
用途雷尼镍催化剂主要用于各类催化加氢反应,如烯烃、炔烃、二烯烃、芳香烃以及含有不饱和建的高分子化合物的氢化反应。
它的应用范围极为广泛,使许多加氢反应成为可能,并大大缩短了加氢反应的时间。
典型的反应例如葡萄糖加氢生产山梨醇、己二腈加氢生产己二胺、脂肪酸氨化后加氢生产脂肪伯胺、呋喃加氢生产四氢呋喃、苯胺加氢制备环己胺等。
雷尼镍催化剂的制备原理雷尼镍催化剂是一种高度活性和选择性的催化剂,广泛应用于化学工艺中。
其制备原理主要包括硼氢化镍还原法、硝酸镍沉淀法、电沉积法和溶胶-凝胶法等。
硼氢化镍还原法是制备雷尼镍催化剂的常用方法。
具体步骤如下:首先将硝酸镍溶液加入含有大量氢氧化钠的氢氧化钠溶液中,生成氢氧化镍沉淀。
然后,将氢氧化镍沉淀与硼氢化钠和氢氧化钠混合,搅拌均匀后迅速加热。
在高温下,硼氢化钠还原生成的H2气体与氢氧化镍反应,生成氧化镍和金属镍。
最后,通过过滤、洗涤和干燥等步骤得到雷尼镍催化剂。
硝酸镍沉淀法是制备雷尼镍催化剂的另一种常用方法。
具体步骤如下:将硝酸镍溶液加入酒石酸铵溶液中,生成酒石酸铵镍沉淀。
然后,加入葡萄糖或甘氨酸等还原剂,将酒石酸铵镍沉淀还原为金属镍。
最后,通过过滤、洗涤和干燥等步骤得到雷尼镍催化剂。
电沉积法是一种通过电解沉积的方法制备雷尼镍催化剂。
具体步骤如下:将镍离子溶液作为阴极,通过外加电压使其在阴极上发生还原反应,生成金属镍沉积层。
通过调节电流密度、温度和电解液成分等条件,可以控制沉积层的结构和性质。
最后,将沉积层经过过滤、洗涤和干燥等步骤得到雷尼镍催化剂。
溶胶-凝胶法是一种通过溶胶和凝胶形成过程制备雷尼镍催化剂的方法。
具体步骤如下:首先,将适量的金属盐溶解在溶剂中,形成溶液。
然后,通过加热或加入碱液等方法,使溶液发生水解凝胶化反应,形成凝胶。
最后,将凝胶进行干燥和煅烧等处理得到雷尼镍催化剂。
这些制备方法中,硼氢化镍还原法和硝酸镍沉淀法简单、成本较低,适用于大规模生产;而电沉积法和溶胶-凝胶法可以控制催化剂的结构和性质,并具有较高的催化活性和选择性。
不同的制备方法对于不同的应用场景具有独特的优势和适用性。
摘要本文主要叙述雷尼镍催化剂的制备、性能、应用、安全和发展。
重点是催化剂的制备和工业上的应用。
雷尼镍(Raney-Ni) 是一种历史悠久、应用广泛的催化剂, 近几十年来, 在Raney-Ni制备、表征和改性等方面的研究进展, 大大加深了对其物性和制备机理的了解。
Raney镍在大量的工业加工和在有机合成反应中使用,因为它在室温下的稳定性和较高的催化活性。
未来,雷尼镍还会有更好的发展。
关键词:雷尼镍,制备,性能,应用,发展雷尼镍催化剂Wainwright MSIn Preparation of Solid Catalysts, Ertl G, Knözinger H, Weitkamp J (eds).Wiley-VCH: Weinheim, 1997: 28-42.引言:Raney镍是一种用于许多工业生产,由镍铝合金组成的细晶粒固体催化剂。
它是1962年美国工程师默里.雷尼(Murray Raney)[1]用作于工业生产中菜油加氢的一种代替催化剂。
现在Raney镍作为一种异构催化剂,在各种有机合成、加氢反应中被广泛应用。
Raney镍的制备,是用镍铝合金与氢氧化钠一起反应制得。
这种方法,就是所谓的“活化”,把大部分的铝溶解在合金以外。
这种多孔的结构拥有很大面积,能给予较高的催化活性。
一个典型的催化剂中镍大约占85 %(质量分数),相应的是每两个原子镍就有一个原子铝与之构成催化剂。
铝有利于维护孔的结构,对催化剂整体有帮助。
由于Raney镍的一个注册商标是属于W.R.恩典公司(W. R. Grace and Company) ,那些产品在其商标注册期内只能称为“Raney镍”。
更通用的术语“骨架催化剂”或“海绵体金属催化剂”可能是用来指其物理和化学特性与Raney镍相似的催化剂。
1. 合金制备合金的工业化制备方法是通过熔化活性金属(镍催化剂是在这种情况下制得,但铁、铜等“骨架型”催化剂也可以用相同的方法制备)和铝在一个坩埚内淬火,由此产生熔体,然后把它粉碎成细粉[2]。
雷尼镍催化剂产品生产工艺及技术发展第一节质量指标情况物理化学特性:雷尼镍催化剂活化前为银灰色无定型粉末(镍铝合金粉),具有中等程度的可燃性,有水存在的情况下部分活化并产生氢气易结块,长久暴露于空气中易风化。
镍铝合金粉活化后为灰黑色颗粒,附有活泼氢,极不稳定,在空气中氧化燃烧,须浸在水或乙醇中保存。
它最早由美国工程师莫里·雷尼在植物油的氢化过程中,作为催化剂而使用。
其制备过程是把镍铝合金用浓氢氧化钠溶液处理,在这一过程中,大部分的铝会和氢氧化钠反应而溶解掉,留下了很多大小不一的微孔。
这样雷尼镍表面上是细小的灰色粉末,但从微观角度上,粉末中的每个微小颗粒都是一个立体多孔结构,这种多孔结构使得它的表面积大大增加,极大的表面积带来的是很高的催化活性,这就使得雷尼镍作为一种异相催化剂被广泛用于有机合成和工业生产的氢化反应中。
由于“雷尼”是格雷斯化学品公司的注册商标,所以严格地说,仅有这个公司的戴维森化学部门生产的产品才能称作“雷尼镍”,国内除雷尼镍外,还可以称为骨架镍、海绵镍催化剂。
而“骨架金属催化剂”或者“海绵金属催化剂”被用于称呼具有微孔结构,而物理和化学性质类似于雷尼镍的催化剂,如雷尼铜、雷尼钴、雷尼铁。
用途:本产品主要应用于基本有机化工的催化加氢反应中。
可用于有机物碳碳键的加氢,碳氮键的加氢,亚硝基化合物与硝基化合物的加氢;偶氮与氧化偶氮化合物、亚胺、胺与连氮二苄的加氢,还可以用于脱氢反应等。
最典型的应用是葡萄糖加氢、脂肪腈类的加氢。
在医药、染料、油脂、香料、合成纤维等领域有广泛的应用。
例如:葡萄糖加氢生产山梨醇用于合成维生素C、树脂表面活性剂等。
苯酚催化加氢生产已二醇用于制备已二胺、油漆、涂料。
已二腈加氢生产已二胺是聚酰胺纤维的重要单体。
呋喃催化加氢生产四氢呋喃是良好的溶剂。
脂肪酸氨化后加氢生产脂肪伯胺广泛应用在有机化工生产中。
苯胺加氢制备环已胺用于合成脱硫剂、腐蚀抑制剂、硫化促进剂、乳化剂、抗静剂、杀菌剂等。
雷尼镍催化剂ZL-N211、ZL-N311、ZL-N411系列(Q/AZC 01-2011) 项目 型号ZL-N211 ZL-N311 ZL-N411 ZL-N511 Ni %≥90 ≥90 ≥90 ≥90 Al %≤8 ≤8 ≤13 ≤13 Mo %~ 少量 ~ 少量 Fe %~ ~ 少量 少量 Cr %~ ~ 少量 少量 PH 值8~11 8~11 8~11 8~11 活性/min.g≥4mlH2 ≥6mlH2 ≥6mlH2 ≥6mlH2 粒度分布由原料Ni-Al 合金粉粒度决定 外观灰色或黑灰色无定型颗粒 包装规格30Kg/或50Kg/内封塑袋铁桶或塑料桶;水封存 储运存放在阴凉干燥房内;采用棚车运输;禁倒置 安全 属危险品,禁与易燃物堆放及运输;禁渗漏*备注:活性测定采用丙酮常压加氢法催化剂ZL-N311系列应用情况反应物产物 葡萄糖山梨醇 脂肪腈脂肪胺 蒽醌双氧水 醛、酮加氢 醇可用于脱氢反应雷尼镍催化剂ZL-N411系列应用情况 反应物产物 已二腈已二胺 脂肪腈脂肪胺 烯烃、炔烃烷烃 醛、酮加氢 醇可用于脱氢反应ZL-G211(雷尼钴)、ZL-T511(雷尼铜)、ZL-T211(雷尼铁)系列 项目/型号ZL-G211 ZL-T511 ZL-T211 Al%≤8 ≤8 ≤8 Co%90 - - Cu%- 90 - Fe%- - 90 Cr%- - - PH 值8~11 8~11 8~11 粒度分布32μm 32μm 32μm 外观灰色或黑灰色无定型颗粒 包装规格30kg/或50kg/内封塑袋铁桶或塑料桶;水封存 储运存放在阴凉干燥房内;采用棚车运输;禁倒置 安全属危险品;禁与燃物堆放及运输;禁渗漏ZL-G211(雷尼钴)、ZL-T511(雷尼铜)、ZL-T211(雷尼铁)系列应用情况反应物催化剂类型 产物 醛、酮醇 脂肪腈ZL-G211脂肪胺 丁醛丁醇 脱氢ZL-T511第二节国外主要生产工艺1897年法国化学家保罗·萨巴捷发现了痕量的镍可以催化有机物氢化过程。
随后镍被应用于很多有机物的氢化。
1920年代起美国工程师莫里·雷尼开始致力于寻找更好的氢化催化剂。
1924年他采用镍:硅比例为1:1的混合物,经过氢氧化钠处理后,硅和氢氧化钠反应掉,形成多孔结构。
雷尼发现这种催化剂对棉籽油氢化的催化活性是普通镍的五倍。
随后雷尼使用镍:铝为1:1的合金来制造催化剂,发现得到的催化剂活性更高,并于1926年申请专利。
直到今天,1:1的比例仍然是生产雷尼镍所需的合金的首选比例。
合金制备商业上,生产雷尼镍所需的镍铝合金是通过在熔炉中将具有催化活性的金属(镍,铁或者铜)和铝熔合,得到的熔体进行淬火冷却,然后粉碎成为均匀的细颗粒。
在合金组分的设计上,要考虑两个因素。
一是合金中镍铝的组成比例,随着镍铝比例的变化,在淬火过程中会产生不同的镍铝相,他们有着不同的浸出性能,这可能会导致最终产品有着截然不同的多孔结构。
通常采用相等质量的镍和铝进行熔合。
二是加入第三种金属的比例。
在熔炼过程中,会根据需要加入少量的第三种金属,如钼、铁、铬。
它们的加入改变了合金的组成和相图,导致了不同的活性中心,从而带来了更高的催化活性,被称为助剂。
活化雷尼镍的高催化活性来自于镍本身的催化性质和其多孔的结构,而多孔结构即源自于用浓氢氧化钠溶液除去镍铝合金中的铝,这一过程被称为浸出,简化之后的浸出反应如下:2Al + 2NaOH + 2H2O → 2NaAlO2 + 3H2由于浸出反应带来了催化剂的活性,同时产生的氢气储存进了催化剂中,故也称之为活化。
成品的表面积通常通过气体(如氢气)的吸附实验来测量。
实验发现几乎所有的接触面积都存在着镍。
商业化的雷尼镍的平均镍接触面积是100 m² /g。
主要有三个因素影响着浸出反应的结果,他们是合金的组成,所用氢氧化钠的浓度和浸出反应的温度。
前面提到过,合金中含有多种镍铝相,在浸出过程中,NiAl3和Ni2Al3相之中所含的铝首先被反应掉,而NiAl相中含有的铝反应较慢,可以通过调整浸出时间保留,这就是为什么被称为“选择性浸出”。
典型的活化雷尼镍中镍占85%的质量,这意味这有2/3的原子是镍。
剩余的NiAl相中的铝可以帮助保持这种多孔的结构,为催化剂提供结构的稳定性和热的稳定性。
浸出反应所用的氢氧化钠的浓度要比较高,一般需达5摩尔/升,这样才能迅速将铝转化为溶于水的铝酸钠(NaAlO2),而避免产生氢氧化铝沉淀。
一旦产生氢氧化铝的沉淀,沉淀会堵塞已形成的孔洞,阻止其余的氢氧化钠溶液进入合金的路径,使得剩余的铝较难反应掉。
这样会导致产品的多孔结构的表面积变小,催化活性降低。
在浸出过程中逐步形成的多孔结构具有强烈的缩小其表面积的倾向,会发生结构重排,孔壁彼此结合,使得多孔结构被破坏。
而温度的升高会使得原子运动加快,加大了结构重排的趋势,所以雷尼镍的表面积和催化活性都随浸出反应温度的升高而下降,而如果浸出温度很低,又会使得浸出反应速度过慢,故常用的浸出反应温度介于70至100摄氏度。
氢化反应雷尼镍主要用于不饱和化合物,如烯烃,炔烃,腈,二烯烃,芳香烃,含羰基的物质,乃至具有不饱和键的高分子的氢化反应。
使用雷尼镍进行氢化有时甚至不需要特意加入氢气,仅凭活化后的雷尼镍中吸附的大量氢气即可完成反应。
反应后得到的是顺位氢化产物。
另外,雷尼镍也可以用于杂原子-杂原子键的还原。
一个典型的使用雷尼镍加氢的反应如下:在这个反应中苯被加氢还原为环己烷。
由于芳香族化合物的特殊稳定性,直接氢化还原很困难。
但是使用雷尼镍可以加快反应速度。
其他非均相催化剂,如铂族元素组成的催化剂,可以达到类似的效果,但生产费用昂贵。
还原之后得到的环己烷可以被氧化成己二酸,己二酸作为原料用于工业生产聚酰胺如尼龙等。
脱硫除了作为催化剂加氢,雷尼镍还将充当试剂参与有机含硫化合物如硫缩酮的脱硫生成烃类的反应。
生成的硫化亚镍将沉淀下来,通过蒸馏,可以与易挥发的乙烷很容易分离。
雷尼镍还用于噻吩脱硫同时氢化生成饱和化合物。
但这一类反应的机理至今还未有明确解释。
第三节国内主要生产方法雷尼镍催化剂有许多种,不同型号之间有差异,其制备方法也有所不同,但有相同之处。
1、一般的制备方式雷尼镍的催化活性取决于不同组成的镍一铝合金及不同的加合金的方法,所用碱的浓度,溶化时间,反应温度及洗涤条件等。
总之,采用不同的制备条件,可以得到不同活性的有着不同用途的雷尼镍(雷尼镍通常用符号W表示,数字1—7表示不同的标号).各种型号的雷尼镍中,W-2活性适中,制法也较为简便,能满足一般需要,使用较广泛。
W -4~W-7均履属高活性雷尼镍,特别是W-6,适用于低温(100℃以下)、低压(5.88MPa以下),下的氢化,具有相当高的催化氢化活性。
T-1和雷尼-漆原镍是近年来制备的高活性雷尼镍,其制法简单,催化活性也相当高,是一类性能优良的镍催化剂。
1.w—1型雷尼镍在0℃,用25%的氢氧化钠水溶液处理含镍、铝各占50%的镍一铝合金,反应2—3小时后水洗至中性。
制法:300 g铝一镍合金在2—3小时内,樱慢加到含300g氢氧化钠的1200ml水溶液中,同时搅拌并在冰浴上冷却。
加完后,在搅拌下,把反应混合物加热到115一120℃,反应3小时至气泡不再退出为止。
然后把溶液稀释到3L,澄出含铝酸钠的上清液。
用滗洗法洗涤六次。
再于布氏漏斗中用蒸馏水悬浮洗涤(不要吸干,否则会自燃)至溶液石蕊试纸呈中性。
再用95%的乙醇洗涤三次,贮存于盛有无水乙醇的磨口瓶中备用。
2.W-2型雷尼镍在25℃,以20%的氢氧化钠溶液处理镍铝合金,反应2小时,水洗至中性。
制法:于4L烧杯中,把380 g氢氧化钠溶解在1.5L蒸馏水中,搅拌,在冰浴上冷至10℃。
在搅拌下,把300g镍一铝合金分批小量加到碱液中,加入的速度应控制在使溶液温度不超过25℃(在冰浴上)。
当全部加完(约需2小时)后,停止搅拌,将烧杯从冰浴上取下,使反应液升至室温。
当氢气发生缓慢时,可在沸水浴上徐徐加热(避免升温太快,以防气饱过多,使反应液溢出),直到气泡发生再度变慢为止(约8一12小时,此时溶液的体积应靠补加蒸馏水维持基本恒定)。
然后静置,让镍粉沉下,倾去上清液。
加蒸馏水至原体积,搅拌溶液使镍粉悬浮,再次静置使镍粉沉下,倾去上清液。
然后转移到2L烧杯中,除去上清液,加入500m1含50 g氢氧化钠的水溶液,搅拌,放置,倾去上清液。
再加入500m1蒸馏水,搅拌,放置,倾去上清液。
如此水洗重复数次,直到洗出液对石蕊试纸呈中性后,再洗10次(约洗涤20一40次)。
倾去上清液,加200m195%乙醇,用滗洗法洗涤三次,再用无水乙醇洗三次。
制得的雷尼镍应贮存在充有无水乙醇的磨口瓶中(不得与空气接触),催化剂必须保存在液面下,悬浮在液体中的w—2型雷尼镍重约150g。