微藻养殖培养基介绍
- 格式:docx
- 大小:36.39 KB
- 文档页数:11
淡水藻类wc培养基配方
淡水藻类的培养基配方通常包括以下成分:无机盐、有机物质、微量元素和维生素。
一般来说,淡水藻类的培养基可以使用以下配方:
1. 硝酸盐,提供氮源,一般使用硝酸铵或硝酸钠。
2. 磷酸盐,提供磷源,一般使用磷酸二氢钾或磷酸氢二钠。
3. 钾盐,提供钾源,一般使用硫酸钾或氯化钾。
4. 硫酸镁,提供镁源。
5. 硫酸钙,提供钙源。
6. 硫酸钠,提供钠源。
7. 硫酸铁,提供铁源。
8. 硫酸锰,提供锰源。
9. 硼酸,提供硼源。
10. 硫酸锌,提供锌源。
11. 硫酸铜,提供铜源。
12. 硫酸钼,提供钼源。
13. 维生素溶液,一般包括硫胺素、核黄素、泛酸、菸酸、生物素、维生素B12等。
14. 有机物质,可以添加葡萄糖、乳糖等有机物质作为碳源。
以上是一般淡水藻类培养基的配方,不同种类的淡水藻可能会有不同的特殊需求,因此在配制培养基时需要根据具体的藻类种类和研究要求进行调整。
同时,培养基的pH值、温度、光照等条件也需要根据具体的淡水藻类进行调整,以促进其生长和繁殖。
希望这些信息能够对你有所帮助。
一.编号
铜绿微囊藻(FACHB-912)、水华微囊藻(FACHB-1028)、螺旋藻(FACHB-901)
小球藻(FACHB-1028)
二.培养基及培养条件
(1)螺旋藻采用Zarrouk培养基,
藻种纯化:在Zarrouk 培养基中加入 1.5%琼脂粉,制成固体培养基平板,再将待分离纯化的藻液通过划线方法接种在平板上,置于培养箱中,29℃、光照强度2000 Lux下培养7 d。
从平板上挑取单藻落接入250 mL三角瓶中(含100 mL Z氏培养基),于光照培养箱中静置培养,每天摇3 次,7 d 后作为实验备用藻种.
培养条件:温度30℃,光照4000 Lux,光暗比12:12。
(2)铜绿微囊藻、水华微囊藻、小球藻(绿藻)培养采用BG11培养基
培养条件:温度25℃,光照2000 Lux,光暗比12:12。
藻类的培养及认识海洋学院海洋本**班:**学号:**指导老师:**目录1.小球藻 (1)2.扁藻 (2)3.螺旋藻 (3)4.中肋骨条藻 (4)5.角毛藻 (5)6.海链藻 (5)7.金藻 (5)8.光合细菌 (6)1.小球藻培养基配方(1000ml):Na2CO3 0.02 g、NaNO3 2.0 g、KH2 PO4 0.02 g、MgSO4 0.1 g、尿素量为0.8 g养殖条件:pH值6.0,光照强度4500lx,通气量1.5L/min营养成分(每100g):水分6-7g、蛋白质50-65g、脂肪5-10g、碳水化合物10-20g、纤维素2-5g、叶绿素2-5g、矿物质5-7g、β-胡萝卜素100-200mg、小球藻生长因子2000-5000mg、维生素B1 1-3g、维生素B2 3-6mg、维生素B6 1-3mg、维生素B12 0.2-0.4mg、维生素C20-50mg、维生素E12-30mg、泛酸0.8-2mg、生物素3-20mg、叶酸3-10mg、烟酸10-30mg、胆碱60-160mg、肌醇6-20mg用途:1.只要提供单细胞小球藻种源,进入水体后可迅速繁殖,形成以单细胞小球藻为优势种群的绿色水体。
2.蛋白核小球藻具有较高的营养价值,可作为鱼苗,花白鲢,虾蟹,海参,大菱鲆,甲鱼等的开口饵料,减少饲料成本,提高水产动物的成活率。
3.可以更好的进行光合作用,增加水体溶氧,大大减少缺氧浮头。
4.消耗水体中的氨氮,亚硝酸盐等有害物质,改善水体环境。
2.扁藻培养基配方(1000ml):硝酸钠100mg、磷酸二氢钾45mg、碳酸氢钠800mg、柠檬酸铁0.2mg、人尿2ml、改良f/2维生素溶液1ml、消毒海水1000ml养殖条件(亚心形扁藻):1、盐度:亚心形扁藻对盐度的适应范围很广,在盐度为8-80的水中均能生长繁殖。
最适应的盐度范围在30-40之间。
2、温度:亚心形扁藻对温度的适应范围也较广,在7-30℃范围内均能生长繁殖,最适范围为20-28℃之间。
(NO.1) 2X Erdschreiber's Medium For UTEX LB 2538DirectionsErdschreiber's Medium made with Supplemented Seawater instead of Pasteurized Seawater. For 3 L Total 1. To 3 L of pasteurized supplemented seawater (60 ppt) aseptically add each of the sterile components in the order specified. 2. Vigorously swirl the contents of the flask to mix thoroughly. 3. Store at refrigerator temperature.1 3 L2 36 mL/3 L3 NaNO3 (FisherBP360-500)10 mL/3 L 0.7 M 2.3 mM4 Na2HPO4·7H2O(Sigma S-9390)10 mL/3 L 0.02 M 0.067 mM5 150 mL/3 L6 3 mL/3 L1)Supplemented SeawaterDirectionsFor 1 L Total 1.To approximately 900 mL of Pasteurized Seawater, add the following components in the order specified while stirring continuously. 2. Bring total volume to 1 L with Pasteurized Seawater.1 900 mL2 NaCl (FisherS271-500)23 g/L 393.8 mM3 MgCl2·6H2O(Fisher M 33)5 g/L 24.6 mM4 Na2SO4 (Sigma S6264)4 g/L 28.2 mMa)Pasteurized SeawaterDirectionsMost salt-water media used by UTEX includes natural seawater collected off-shore from Port Aransas, Texas in the Gulf of Mexico. Seawater having a salinity of at least 30 ppt is collected and pre-filtered, then stored undisturbed withinpolyethylene carboys at ambient temperature.Seawater is diluted to 30 ppt with double distilled water immediately prior to pasteurization. A three-liter batch of seawater at 30 ppt in a 4-liter Erlenmeyer flask is covered with a small inverted glass petri plate and an inverted 250-ml beaker, then "pasteurized" in a steamer for 45 minutes. The pasteurized content of the flask is allowed to cool and left undisturbed at ambient temperature for approximately 24 hr. It is then again steam-pasteurized for 45 min., as on the previous day. After the flask cools the second time, the inverted-petri-plate lid is sealed in place with Parafilm and the flask is stored at refrigerator temperature until it is used to prepare culture medium. This pasteurized seawater may used immediately or may be stored for several months prior to use.Procedure:In various laboratories marine algae are cultured in media prepared from "pasteurized" seawater that is assumed to be heated to exactly 73 degrees C. The procedure described here heats 3-L batches of seawater to over 95 degrees C for two consecutive days, although it does not reach boiling temperature.This procedure generally does not cause precipitation of seawater, although excessive agitation of flasks, the use of scratched or etched flasks, or pasteurization of seawater at higher salinity may result in salt precipitation during heating. Pasteurized seawater prepared as described above appears to be nearly sterile, although it is not used to culture axenic UTEX cultures without further heating in agar. Liquid unialgal cultures grown in media prepared from seawater that has been pasteurized by this method can be sub-cultured for many years without the introduction of invasive contamination.2) P-IV Metal SolutionDirectionsFor 1 L Total Note final concentration listed is for the stock solution. 1.To approximately 950 mL of dH2O, add the nutrients in the order listed while stirring continuously. Note: The Na2EDTA should be fully dissolved before adding other components. 2. Bring total volume to 1 L with dH2O. 3. Store at refrigerator temperature.1 Na2EDTA·2H2O(Sigma ED255)0.75 g/L 2 mM2 FeCl3·6H2O(Sigma F-1513)0.097 g/L 0.36 mM3 MnCl2·4H2O(Baker 2540)0.041 g/L 0.21 mM4 ZnCl2 (Sigma Z-0152)0.005 g/L 0.037 mM5 CoCl2·6H2O(Sigma C-3169)0.002 g/L 0.0084 mM6 Na2MoO4·2H2O(J.T. Baker 3764)0.004 g/L 0.018 mM3) Soilwater: GR+ MediumDirectionsThe basic garden-type soilwater; includes a pinch of CaCO3, which is added to the soil and water prior to steaming; suitable for most phototrophic freshwater algae. Optional ingredients: add vitamin B12 to cultures of Volvox; a pinch of NH4MgPO4. 6H2O added to soilwater cultures of Botryococcus, Synechococcus and some Euglenoids enhances growth and to LB 826 Gonium pectorale increases the numbers of 16-celled colonies formed.For 200 mL Total 1. Combine all components listed. 2. Cover the medium container and steam for 2 consecutive days, 3 hours on each day. Pasteurization is a gradual rising of temperature to approximately 95°C in 15 minutes. Then increased just over 98°C for the 3 hour duration. Cooling occurs gradually at room temperature. 3. Refrigerate 24 hours or more and bring to room temperature before using.1 1 tsp/200 mL dH202 CaCO3 (optional)(Fisher C 64)1 mg/200 mLdH2O0.05 mMa)Green House SoilDirectionsPreparation of the Green house soil:Prior to its use in soil-water media, treat soil in batches by placing it in a heat-resistant pan lined with aluminum foil, fill the soil to a so depth of ¼ inch, and bake at 150°C for 2 hours. After it cools, cover the pan with aluminum foil and store in darkness at room temperature. Avoid excessive moisture during storage. Adaptation of E.G. Pringsheim's biphasic soil-water medium. Variations of this medium are suitable for xenic cultures, especially for isolation purposes and for growing algae to secure "normal" growth forms. Soilwater is not a well-defined medium, yet not all soil is suitable for culturing a broad range of algae. UTEX utilizes soil that was obtained in the early 1970s as greenhouse soil from Indiana University. For a long shelf life it must be kept dry and away from light. UTEX keeps it in sealed 5-gallon plastic containers. There is almost certainly nothing special about the particular soil used by UTEX. However, several considerations are probably important, including the following:1. The soil should be a loam, with a mixture of particle sizes (sand, silt, clay).2. It should contain a moderate amount (15 - 20%) of very-well-decomposed organicmatter. 3. It must not contain pesticides, especially herbicides. 4. It should be soil that has been aged (preferably for 6 months or more) under moist conditions and not, for example, fresh potting soil, soil that contains fresh manure, or soil to which a commercial fertilizer was recently applied. 5. A slightly acidic soil derived from granite or other igneous rock is preferable to soil obtained from calcareous soils. Calcium carbonate can be added to the soilwater medium when it is prepared if a slightly alkaline medium is required. 6. Particulate matter in the soil such as gravel, Perlite, or vermiculite are not necessarily damaging but can be of considerable nuisance when wishing to quantitate the amount of soil used in the medium or when handling algae that are physically associated with the soil. Particulate organic matter, such as compost that is only partially degraded, should be avoided altogether.4) Vitamin B12DirectionsFor 200 mL Total 1. Prepare 200 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add Vitamin B12 (0.1 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES buffer pH 7.8(Sigma H-3375)2.4 g/200mL dH2O2 VitaminB12(cyanocobalamin, (Sigma V-6629)0.027g/200 mLdH2O(NO.2)Proteose Medium UTEX 32DirectionsGeneral purpose freshwater medium suitable for axenic cultures. Modified bristol's medium.For 1 L Total pH ~6.8 1. Add proteose peptone to Bristol Medium. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 2. Cover and autoclave medium.1 1 L2 ProteosePeptone (BD211684)1 g/L 1)Bristol MediumDirectionsH.C. Bold's modification of Bristol's recipe (Bold 1949). General purpose freshwatermedium and as bristol's solution, an essential component of other media--see Bold 1NV, Bold 3N, Bristol-NaCl, LDM, Proteose, Soil extract, and Trebouxia.For 1 L Total 1. To approximately 900 mL of dH2O add each of the components in the order specified while stirring continuously. 2. Bring total volume to 1 L with dH2O. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 3. Cover and autoclave medium. 4. Store at refrigerator temperature.1 NaNO3 (FisherBP360-500)10 mL/L 10 g/400mL dH2O 2.94 mM2 CaCl2·2H2O(Sigma C-3881)10 mL/L 1 g/400mL dH2O 0.17 mM3 MgSO4·7H2O(Sigma 230391)10 mL/L 3 g/400mL dH2O 0.3 mM4 K2HPO4 (SigmaP 3786)10 mL/L 3 g/400mL dH2O 0.43 mM5 KH2PO4 (SigmaP 0662)10 mL/L 7 g/400mL dH2O 1.29 mM6 NaCl (FisherS271-500)10 mL/L 1 g/400mL dH2O 0.43 mM(NO.3) MES-volvox Medium UTEX 2505DirectionsGeneral purpose medium for freshwater strains, especially those requiring ammonium. Suitable for xenic and axenic cultures. Modified volvox medium.For 1 L Total 1. To approximately 950 mL of dH2O, add each of the components in the order specified (except vitamins) while stirring continuously. 2. Adjust the pH to 6.7. 3. Bring the total volume to 1 L with dH2O. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 4. Cover and autoclave medium. 5. When cooled add vitamins. *For agar medium add vitamins, mix, and dispense before agar solidifies. 6. Store at refrigerator temperature.1 Ca(NO3)2·4H2O (Sigma C5676)1 mL/L 11.8 g/100 mL dH20 0.5 mM2 MgSO4·7H2O (Sigma230391)1 mL/L 4 g/100 mL dH20 0.16 mM3 Na2glycerophosphate.5H2O(Sigma G 6501 )1 mL/L 5 g/100 mL dH20 0.16 mM4 KCl (Fisher P 217) 1 mL/L5 g/100 mL dH20 0.67 mM5 MES (Sigma M-8250) 1.95 g/L 10 mM6 6 mL/L7 NH4Cl (Fisher A 649-500) 1 mL/L 2.67 g/100 mL dH20 0.5 mM8 1 mL/L91 mL/La)Biotin Vitamin SolutionDirectionsFor 200 mL Total 1. Prepare 200 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add biotin (0.1 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES bufferpH 7.8 (SigmaH-3375)2.4 g/200 mLdH2O2 Biotin (SigmaB-4639)0.005 g/200mL dH2O(NO.4)Enriched Seawater Medium UTEX LB 1926DirectionsModification of L. Provasoli's ES-enrichment for seawater a.k.a. PES (Bold & Wynne 1978). General purpose marine medium for xenic cultures.1. Aseptically add 20 mL of sterile ES Enrichment Solution per liter of Pasteurized Seawater (30 ppt).2. Store at refrigerator temperature.1 1 L2 20 mL/L1)Enrichment Solution for Seawater MediumDirectionsFor 2 L Total 1. To approximately 1 L of dH2O, add each of the components in the order specified (except vitamins) while stirring continuously. 2. Adjust the pH to 7.8. 3. Bring the total volume to 2 L with dH2O. 4. Cover and autoclave medium. 5. When cooled add vitamins. 6. Store at refrigerator temperature.1 NaNO3 (Fisher BP360-500) 4.7 g/2 L 27.65 mM2 Na2glycerophosphate.5H2O(Sigma G 6501 )0.7 g/2 L 1.6 mM3 325 mL/2 L4 325 mL/2 L5 HEPES buffer (Sigma H-3375)6.5 g/2 L 14 mM6 3 mL/2 L7 3 mL/2 L8 3 mL/2 La)ES Fe SolutionDirectionsFor 2 L Total 1. To approximately 1.5 L of dH2O, add the following components in the order listed while stirring continuously. 2. Bring total volume to 2 L withdH2O. 3. Store at refrigerator temperature.1 Fe(NH4)2(SO4)2·6H2O(Sigma F-1513)1.4 g/2 L 1.8 mM2 Na2EDTA·2H2O(Sigma ED255)1.2 g/2 L 1.6 mMb)P-II Metal SolutionDirectionsFor 100 mL Total 1. To approximately 70 mL of dH2O, add each of the components in the order specified while stirring continuously. 2. Bring total volume to 100 mL with dH2O. 3. Store at refrigerator temperature. Note: CoCL2 can be interchancable with CoSO4.1 Na2EDTA·2H2O(Sigma ED255)0.1 g/100 mL 0.27 mM2 H3BO3 (Baker0084)0.114 g/100mL1.8 mM3 FeCl3·6H2O(Sigma F-1513)4.9 mg/100mL0.018 mM4 MnSO4·H2O 16.4 mg/100 0.097 mM(Sigma M8179) mL5 ZnSO4·7H2O(Sigma Z 0251)2.2 mg/100mL0.007 mM6 CoCl2·6H2O(Sigma C-3169)0.48 mg/100mL0.002 mMc)Thiamine Vitamin SolutionDirectionsFor 50 mL Total 1. Prepare 50 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add Thiamine (6.5 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES bufferpH 7.8 (SigmaH-3375)1.2 g/100 mLdH202 Thiamine(Sigma T-1270)0.11 g/100 mLdH20(NO.5)Soil Extract + Sodium Metasilicate UTEX 640DirectionsModification of Soil Extract Medium for diatoms. For 1 L Total 1. Prepare 1 L of Bristol Medium and thoroughly mix. 2. Discard 40 mL of the Bristol Medium. 3. Add 40 mL of previously prepared GR+ Medium [Note: The GR+ should be filtered to remove soil particles]. * or For 1.5% agar medium add 15 g of agar into the flask; do not mix. 4. Cover and autoclave medium. 5. When cooled, add filter sterilized sodium metasilicate. *For agar medium, add sodium metasilicate, mix, and dispense before agar solidifies. 6. Store at refrigerator temperature.1 960 mL2 40 mL of supernatant3 Sodium Metasilicate 1 mL 200 mM 200 µM(NO.6) Erdschreiber'sMedium UTEX LB 1002 and 2307DirectionsModified from the original Plymouth seawaterrecipe. General purpose marine medium forxenic cultures [for bacteria-free cultures seereprints in Rosowski & Parker (1971)].For 3 L Total 1. To 3 L of pasteurized filtered seawater (30 ppt) aseptically add each of the sterile components in the order specified. 2. Vigorously swirl the contents of the flask to mix thoroughly. 3. Store at refrigerator temperature.1 3 L2 36 mL/3 L3 NaNO3(autoclave beforeadding) (Fisher BP360-500)10 mL/3L0.7 M 2.3 mM4 Na2HPO4·7H2O (autoclavebefore adding) (Sigma S-9390)10 mL/3L0.02 M 0.067 mM5 150 mL/3 L6 3 mL/3 L(NO.7)TAP medium (original )from Gorman, D.S., and R.P. Levine (1965) Proc. Natl. Acad. Sci. USA54, 1665-1669. This is probably the most widely-used medium at present for experimental work.Make the following stock solutions:1. TAP saltsNH4Cl 15.0 gMgSO4 . 7H2O 4.0 gCaCl2 . 2H2O 2.0 gwater to 1 liter2. phosphate solutionK2HPO428.8 gKH2PO414.4 gwater to 100 ml3. Hutner's trace elements (follow this )To make the final medium, mix the following:2.42 g Tris25 ml solution #1 (salts)0.375 ml solution #2 (phosphate)1.0 ml solution #3 (trace elements)1.0 ml glacial acetic acidwater to 1 literFor solid medium, add 15 g agar per literAutoclave.For Tris-minimal medium omit the acetic acid and titrate the final solution to pH 7.0 with HCl(1)Hutner's trace elementsHutner et al. (1950) Proc. Am. Philos. Soc.94, 152-170This mixture is used both in and in the medium.For a detailed analysis of how well this trace elements solution meets the nutritional requirements of C. reinhardtii, see Merchant et al. (2006) Biochim. Biophys. Acta1763, 578-594.For 1 liter final mix, dissolve each compound in the volume of water indicated.百度文库 - 让每个人平等地提升自我11 The EDTA should be dissolved in boiling water, and the FeSO4 should be prepared last to avoid oxidation.compound amount waterEDTA disodium salt 50 g 250 mlZnSO4 . 7 H2O 22 g 100 mlH3BO311.4 g 200 mlMnCl2 . 4 H2O 5.06 g 50 mlCoCl2. 6 H2O 1.61 g 50 mlCuSO4 . 5 H2O 1.57 g 50 ml(NH4)6Mo7O24. 4 H2O 1.10 g 50 mlFeSO4. 7 H2O 4.99 g 50 mlMix all solutions except EDTA. Bring to boil, then add EDTA solution. The mixture should turn green. When everything is dissolved, cool to 70 degrees C. Keeping temperature at 70, add 85 ml hot 20% KOH solution (20 grams / 100 ml final volume). Do NOT use NaOH to adjust the pH.Bring the final solution to 1 liter total volume. It should be clear green initially. Stopper the flask with a cotton plug and let it stand for 1-2 weeks, shaking it once a day. The solution should eventually turn purple and leave a rust-brown precipitate, which can be removed by filtering through two layers of Whatman#1 filter paper, repeating the filtration if necessary until the solution is clear. Store refrigerated or frozen convenient aliquots. Some people shorten the time for formation of the precipiate by bubbling the solution with filtered air.If no precipitate forms, the solution is still usable. However, you might want to check the pH in this case and adjust it to around 7.0 using either KOH or HCl as needed.To prepare sulfur-free trace elements for hydrogen generation, the sulfate salts can be replaced with equimolar chloride salts (ZnCl2 10.0 g; CuCl2 . 2 H2O 1.00 g; FeCl2 . 4 H2O, 3.60 g). .。
微藻养殖方法和注意事项摘要:微藻是一类微小的植物,具有高度的光合效率和营养价值,因此在近年来越来越受到人们的关注。
本文将介绍微藻的养殖方法和注意事项,包括培养基选择、光照和温度调控、水质管理和病虫害防治等方面。
通过正确的养殖方法和注意事项,可提高微藻的生长效率和产量,为微藻的产业化应用提供有力支撑。
正文:随着对能源和食品安全问题的关注不断加大,微藻作为一类具有广泛应用前景的生物资源,受到了越来越多人的关注。
微藻具有较高的光合效率和营养价值,可用作生物燃料的原料,也可制备高蛋白饲料和药物等。
因此,掌握微藻的养殖方法和注意事项至关重要。
首先,选择适宜的培养基是微藻养殖的关键。
常见的培养基有复合培养基、液态培养基和固态培养基等。
复合培养基中包含了充足的氮、磷、钾等营养物质,可促进微藻的生长。
液态培养基适用于微藻的大规模培养,而固态培养基可用于微藻单细胞克隆的筛选。
在选择培养基时,应根据不同的微藻品种选择适合的培养基配方,并进行调整和优化。
其次,光照和温度是影响微藻生长的重要因素。
微藻的光合效率非常高,因此需要充足的光照来提供能量。
一般情况下,光照强度应该在5000-10000勒克斯之间,光照时间应保持在12-16小时。
此外,温度对微藻的生长也有重要影响。
不同品种的微藻对温度的要求有所不同,但大多数微藻在20-30摄氏度范围内生长最为适宜。
水质管理也是微藻养殖中必须重视的环节。
微藻对水质的要求较高,一般要保持水体的pH在7-9之间,全氨氮浓度低于1毫克/升。
此外,水体的溶解氧、COD 和BOD等指标也需要进行监测和调整,以保证微藻的正常生长。
最后,对于微藻养殖中的病虫害防治,可采取生物控制和化学控制相结合的方式进行。
常见的病虫害有藻类繁殖、藻胞异常增生和水华等。
针对不同的病虫害,可选择适宜的防治措施,如添加生物防治菌剂或使用合适的杀虫剂等。
综上所述,微藻养殖具有广泛的应用前景,但在实际操作中需要掌握一定的方法和技巧。
微藻培养方法汇总微藻是一类微小的单细胞或多细胞藻类生物,广泛存在于海水、淡水以及土壤中。
它们被广泛应用于食品、能源、环境保护等领域。
为了有效培养和利用微藻,在实验室中需要采用一系列的培养方法。
本文将介绍微藻的培养方法,包括培养基配制、光周期控制、温度控制、培养容器选择、培养规模控制等方面的内容,以帮助研究者进行微藻培养。
一、培养基的配制微藻的培养基是提供营养物质供给微藻生长的溶液。
根据不同的微藻种类和需求,可以使用不同的培养基。
常用的微藻培养基包括滨液培养基、波利文氏培养基、圣外秧基和BG11培养基等。
培养基的配制需要参考相关文献或制备实验室的经验,并保证培养基的无菌。
一般来说,培养基的配制包括以下几个步骤:1.根据培养基配方中的化学品,称取适量的试剂。
2.在去离子水中溶解试剂,根据需要调节pH值。
3.将培养基溶液装入瓶中,并进行高压灭菌或自压灭菌处理。
二、光周期控制光照是微藻生长过程中的重要环境因素,能够影响微藻的光合作用和生长速率。
光周期是指光照和黑暗轮替的时间间隔,通过控制光周期可以调节微藻的生长和代谢活性。
常用的光周期控制方法有以下几种:1.固定光周期法:固定光周期法是指在相同的光照条件下,每天提供固定时间的光照和黑暗。
这种方法适用于大多数微藻的培养。
2.逐渐增加光周期法:逐渐增加光周期法是指在一段时间内逐渐增加光照时间和减少黑暗时间。
这种方法适用于对光照变化较敏感的微藻。
3.梯度光周期法:梯度光周期法是指提供不同光周期的条件,通过对比不同光周期下的微藻生长情况来选择最适宜的光周期。
三、温度控制微藻的生长和代谢活性受温度影响较大,不同的微藻种类对温度有不同的生长适宜范围。
温度过低或过高都会影响微藻的生长和产物积累。
常用的温度控制方法有以下几种:1.室温培养法:即在室温下进行培养,适用于耐寒性较强的微藻种类。
2.恒温培养法:通过恒温培养箱或恒温培养室维持恒定的培养温度,适用于大多数微藻种类。
富含微藻的养殖培养基及用于养殖l型轮虫的方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!富含微藻的养殖培养基及用于养殖L型轮虫的方法1. 引言在L型轮虫的养殖过程中,选择合适的培养基是确保其健康生长的关键因素之一。
淡水藻类wc培养基配方全文共四篇示例,供读者参考第一篇示例:淡水藻类是一类生长在淡水环境中的微藻,以其在生态系统中的重要作用而备受关注。
为了研究淡水藻类的生长特性和生态学特征,科研人员经常需要利用培养基来培养淡水藻类。
淡水藻类wc培养基是一种常用的培养基,能够提供淡水藻类所需的营养物质和生长条件,促进其生长和繁殖。
淡水藻类wc培养基的配方包括多种成分,包括碳源、氮源、磷源、微量元素和维生素等。
下面我们将详细介绍一份常用的淡水藻类wc培养基配方:主要成分:1. 水:1000mL2. NaNO3(硝酸钠):0.1g3. K2HPO4(磷酸氢二钾):0.02g4. MgSO4(硫酸镁):0.2g5. CaCl2(氯化钙):0.02g6. FeSO4(硫酸亚铁):0.001g7. EDTA-Na2(二乙二胺四乙酸二钠):0.001g8. H3BO3(硼酸):0.00004g9. MnCl2(氯化锰二水合物):0.0001g10. ZnSO4(硫酸锌):0.0001g11. CuSO4(硫酸铜):0.0001g12. CoCl2(氯化钴):0.0001g13. MoO3(氧化钼):0.0001g14. NiSO4(硫酸镍):0.0001g15. Vitamin B1(硫胺素):0.0001g制备方法:1. 将硝酸钠、磷酸氢二钾、硫酸镁、氯化钙、硫酸亚铁、二乙二胺四乙酸二钠、硼酸、氯化锰二水合物、硫酸锌、硫酸铜、氯化钴、氧化钼、硫酸镍、硫胺素分别称量并溶解于水中,得到氮源、磷源、镁离子、钙离子、铁离子、螯合剂和微量元素的溶液。
2. 将上述溶液混合均匀成淡水藻类wc培养基溶液。
3. 调节溶液的pH值为7.0-7.5。
4. 将培养基溶液装入适量的培养瓶或培养皿中。
5. 通过高压灭菌或过滤等方法对培养基进行消毒处理。
淡水藻类wc培养基的配方中包含了各种重要的营养物质,如氮源、磷源、微量元素和维生素等,能够满足淡水藻类的生长和繁殖需要。
(NO.1) 2X Erdschreiber's Medium For UTEX LB 2538DirectionsErdschreiber's Medium made with Supplemented Seawater instead of Pasteurized Seawater. For 3 L Total 1. To 3 L of pasteurized supplemented seawater (60 ppt) aseptically add each of the sterile components in the order specified. 2. Vigorously swirl the contents of the flask to mix thoroughly. 3. Store at refrigerator temperature.1 3 L2 36 mL/3 L3 NaNO3 (FisherBP360-500)10 mL/3 L 0.7 M 2.3 mM4 Na2HPO4·7H2O(Sigma S-9390)10 mL/3 L 0.02 M 0.067 mM5 150 mL/3 L6 3 mL/3 L1)Supplemented SeawaterDirectionsFor 1 L Total 1.To approximately 900 mL of Pasteurized Seawater, add the following components in the order specified while stirring continuously. 2. Bring total volume to 1 L with Pasteurized Seawater.1 900 mL2 NaCl (FisherS271-500)23 g/L 393.8 mM3 MgCl2·6H2O(Fisher M 33)5 g/L 24.6 mM4 Na2SO4 (Sigma S6264)4 g/L 28.2 mMa)Pasteurized SeawaterDirectionsMost salt-water media used by UTEX includes natural seawater collected off-shore from Port Aransas, Texas in the Gulf of Mexico. Seawater having a salinity of at least 30 ppt is collected and pre-filtered, then stored undisturbed withinpolyethylene carboys at ambient temperature.Seawater is diluted to 30 ppt with double distilled water immediately prior to pasteurization. A three-liter batch of seawater at 30 ppt in a 4-liter Erlenmeyer flask is covered with a small inverted glass petri plate and an inverted 250-ml beaker, then "pasteurized" in a steamer for 45 minutes. The pasteurized content of the flask is allowed to cool and left undisturbed at ambient temperature for approximately 24 hr. It is then again steam-pasteurized for 45 min., as on the previous day. After the flask cools the second time, the inverted-petri-plate lid is sealed in place with Parafilm and the flask is stored at refrigerator temperature until it is used to prepare culture medium. This pasteurized seawater may used immediately or may be stored for several months prior to use.Procedure:In various laboratories marine algae are cultured in media prepared from "pasteurized" seawater that is assumed to be heated to exactly 73 degrees C. The procedure described here heats 3-L batches of seawater to over 95 degrees C for two consecutive days, although it does not reach boiling temperature.This procedure generally does not cause precipitation of seawater, although excessive agitation of flasks, the use of scratched or etched flasks, or pasteurization of seawater at higher salinity may result in salt precipitation during heating. Pasteurized seawater prepared as described above appears to be nearly sterile, although it is not used to culture axenic UTEX cultures without further heating in agar. Liquid unialgal cultures grown in media prepared from seawater that has been pasteurized by this method can be sub-cultured for many years without the introduction of invasive contamination.2) P-IV Metal SolutionDirectionsFor 1 L Total Note final concentration listed is for the stock solution. 1.To approximately 950 mL of dH2O, add the nutrients in the order listed while stirring continuously. Note: The Na2EDTA should be fully dissolved before adding other components. 2. Bring total volume to 1 L with dH2O. 3. Store at refrigerator temperature.1 Na2EDTA·2H2O(Sigma ED255)0.75 g/L 2 mM2 FeCl3·6H2O(Sigma F-1513)0.097 g/L 0.36 mM3 MnCl2·4H2O(Baker 2540)0.041 g/L 0.21 mM4 ZnCl2 (Sigma Z-0152)0.005 g/L 0.037 mM5 CoCl2·6H2O(Sigma C-3169)0.002 g/L 0.0084 mM6 Na2MoO4·2H2O(J.T. Baker 3764)0.004 g/L 0.018 mM3) Soilwater: GR+ MediumDirectionsThe basic garden-type soilwater; includes a pinch of CaCO3, which is added to the soil and water prior to steaming; suitable for most phototrophic freshwater algae. Optional ingredients: add vitamin B12 to cultures of Volvox; a pinch of NH4MgPO4. 6H2O added to soilwater cultures of Botryococcus, Synechococcus and some Euglenoids enhances growth and to LB 826 Gonium pectorale increases the numbers of 16-celled colonies formed.For 200 mL Total 1. Combine all components listed. 2. Cover the medium container and steam for 2 consecutive days, 3 hours on each day. Pasteurization is a gradual rising of temperature to approximately 95°C in 15 minutes. Then increased just over 98°C for the 3 hour duration. Cooling occurs gradually at room temperature. 3. Refrigerate 24 hours or more and bring to room temperature before using.1 1 tsp/200 mL dH202 CaCO3 (optional)(Fisher C 64)1 mg/200 mLdH2O0.05 mMa)Green House SoilDirectionsPreparation of the Green house soil:Prior to its use in soil-water media, treat soil in batches by placing it in a heat-resistant pan lined with aluminum foil, fill the soil to a so depth of ¼ inch, and bake at 150°C for 2 hours. After it cools, cover the pan with aluminum foil and store in darkness at room temperature. Avoid excessive moisture during storage. Adaptation of E.G. Pringsheim's biphasic soil-water medium. Variations of this medium are suitable for xenic cultures, especially for isolation purposes and for growing algae to secure "normal" growth forms. Soilwater is not a well-defined medium, yet not all soil is suitable for culturing a broad range of algae. UTEX utilizes soil that was obtained in the early 1970s as greenhouse soil from Indiana University. For a long shelf life it must be kept dry and away from light. UTEX keeps it in sealed 5-gallon plastic containers. There is almost certainly nothing special about the particular soil used by UTEX. However, several considerations are probably important, including the following:1. The soil should be a loam, with a mixture of particle sizes (sand, silt, clay).2. It should contain a moderate amount (15 - 20%) of very-well-decomposed organicmatter. 3. It must not contain pesticides, especially herbicides. 4. It should be soil that has been aged (preferably for 6 months or more) under moist conditions and not, for example, fresh potting soil, soil that contains fresh manure, or soil to which a commercial fertilizer was recently applied. 5. A slightly acidic soil derived from granite or other igneous rock is preferable to soil obtained from calcareous soils. Calcium carbonate can be added to the soilwater medium when it is prepared if a slightly alkaline medium is required. 6. Particulate matter in the soil such as gravel, Perlite, or vermiculite are not necessarily damaging but can be of considerable nuisance when wishing to quantitate the amount of soil used in the medium or when handling algae that are physically associated with the soil. Particulate organic matter, such as compost that is only partially degraded, should be avoided altogether.4) Vitamin B12DirectionsFor 200 mL Total 1. Prepare 200 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add Vitamin B12 (0.1 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES buffer pH 7.8(Sigma H-3375)2.4 g/200mL dH2O2 VitaminB12(cyanocobalamin, (Sigma V-6629)0.027g/200 mLdH2O(NO.2)Proteose Medium UTEX 32DirectionsGeneral purpose freshwater medium suitable for axenic cultures. Modified bristol's medium.For 1 L Total pH ~6.8 1. Add proteose peptone to Bristol Medium. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 2. Cover and autoclave medium.1 1 L2 ProteosePeptone (BD211684)1 g/L 1)Bristol MediumDirectionsH.C. Bold's modification of Bristol's recipe (Bold 1949). General purpose freshwatermedium and as bristol's solution, an essential component of other media--see Bold 1NV, Bold 3N, Bristol-NaCl, LDM, Proteose, Soil extract, and Trebouxia.For 1 L Total 1. To approximately 900 mL of dH2O add each of the components in the order specified while stirring continuously. 2. Bring total volume to 1 L with dH2O. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 3. Cover and autoclave medium. 4. Store at refrigerator temperature.1 NaNO3 (FisherBP360-500)10 mL/L 10 g/400mL dH2O 2.94 mM2 CaCl2·2H2O(Sigma C-3881)10 mL/L 1 g/400mL dH2O 0.17 mM3 MgSO4·7H2O(Sigma 230391)10 mL/L 3 g/400mL dH2O 0.3 mM4 K2HPO4 (SigmaP 3786)10 mL/L 3 g/400mL dH2O 0.43 mM5 KH2PO4 (SigmaP 0662)10 mL/L 7 g/400mL dH2O 1.29 mM6 NaCl (FisherS271-500)10 mL/L 1 g/400mL dH2O 0.43 mM(NO.3) MES-volvox Medium UTEX 2505DirectionsGeneral purpose medium for freshwater strains, especially those requiring ammonium. Suitable for xenic and axenic cultures. Modified volvox medium.For 1 L Total 1. To approximately 950 mL of dH2O, add each of the components in the order specified (except vitamins) while stirring continuously. 2. Adjust the pH to 6.7. 3. Bring the total volume to 1 L with dH2O. *For 1.5% agar medium add 15 g of agar into the flask; do not mix. 4. Cover and autoclave medium. 5. When cooled add vitamins. *For agar medium add vitamins, mix, and dispense before agar solidifies. 6. Store at refrigerator temperature.1 Ca(NO3)2·4H2O (Sigma C5676)1 mL/L 11.8 g/100 mL dH20 0.5 mM2 MgSO4·7H2O (Sigma230391)1 mL/L 4 g/100 mL dH20 0.16 mM3 Na2glycerophosphate.5H2O(Sigma G 6501 )1 mL/L 5 g/100 mL dH20 0.16 mM4 KCl (Fisher P 217) 1 mL/L5 g/100 mL dH20 0.67 mM5 MES (Sigma M-8250) 1.95 g/L 10 mM6 6 mL/L7 NH4Cl (Fisher A 649-500) 1 mL/L 2.67 g/100 mL dH20 0.5 mM8 1 mL/L91 mL/La)Biotin Vitamin SolutionDirectionsFor 200 mL Total 1. Prepare 200 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add biotin (0.1 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES bufferpH 7.8 (SigmaH-3375)2.4 g/200 mLdH2O2 Biotin (SigmaB-4639)0.005 g/200mL dH2O(NO.4)Enriched Seawater Medium UTEX LB 1926DirectionsModification of L. Provasoli's ES-enrichment for seawater a.k.a. PES (Bold & Wynne 1978). General purpose marine medium for xenic cultures.1. Aseptically add 20 mL of sterile ES Enrichment Solution per liter of Pasteurized Seawater (30 ppt).2. Store at refrigerator temperature.1 1 L2 20 mL/L1)Enrichment Solution for Seawater MediumDirectionsFor 2 L Total 1. To approximately 1 L of dH2O, add each of the components in the order specified (except vitamins) while stirring continuously. 2. Adjust the pH to 7.8. 3. Bring the total volume to 2 L with dH2O. 4. Cover and autoclave medium. 5. When cooled add vitamins. 6. Store at refrigerator temperature.1 NaNO3 (Fisher BP360-500) 4.7 g/2 L 27.65 mM2 Na2glycerophosphate.5H2O(Sigma G 6501 )0.7 g/2 L 1.6 mM3 325 mL/2 L4 325 mL/2 L5 HEPES buffer (Sigma H-3375)6.5 g/2 L 14 mM6 3 mL/2 L7 3 mL/2 L8 3 mL/2 La)ES Fe SolutionDirectionsFor 2 L Total 1. To approximately 1.5 L of dH2O, add the following components in the order listed while stirring continuously. 2. Bring total volume to 2 L withdH2O. 3. Store at refrigerator temperature.1 Fe(NH4)2(SO4)2·6H2O(Sigma F-1513)1.4 g/2 L 1.8 mM2 Na2EDTA·2H2O(Sigma ED255)1.2 g/2 L 1.6 mMb)P-II Metal SolutionDirectionsFor 100 mL Total 1. To approximately 70 mL of dH2O, add each of the components in the order specified while stirring continuously. 2. Bring total volume to 100 mL with dH2O. 3. Store at refrigerator temperature. Note: CoCL2 can be interchancable with CoSO4.1 Na2EDTA·2H2O(Sigma ED255)0.1 g/100 mL 0.27 mM2 H3BO3 (Baker0084)0.114 g/100mL1.8 mM3 FeCl3·6H2O(Sigma F-1513)4.9 mg/100mL0.018 mM4 MnSO4·H2O 16.4 mg/100 0.097 mM(Sigma M8179) mL5 ZnSO4·7H2O(Sigma Z 0251)2.2 mg/100mL0.007 mM6 CoCl2·6H2O(Sigma C-3169)0.48 mg/100mL0.002 mMc)Thiamine Vitamin SolutionDirectionsFor 50 mL Total 1. Prepare 50 mL of HEPES buffer (50 mM). 2. Adjust the pH to 7.8. 3. Add Thiamine (6.5 mM) wait until fully dissolved. 4. Sterilize by 0.45 µm Millipore filter. Store in dark at freezer temperature. ** The amount of vitamins added can vary from medium to medium so the final concentration is not listed.1 HEPES bufferpH 7.8 (SigmaH-3375)1.2 g/100 mLdH202 Thiamine(Sigma T-1270)0.11 g/100 mLdH20(NO.5)Soil Extract + Sodium Metasilicate UTEX 640DirectionsModification of Soil Extract Medium for diatoms. For 1 L Total 1. Prepare 1 L of Bristol Medium and thoroughly mix. 2. Discard 40 mL of the Bristol Medium. 3. Add 40 mL of previously prepared GR+ Medium [Note: The GR+ should be filtered to remove soil particles]. * or For 1.5% agar medium add 15 g of agar into the flask; do not mix. 4. Cover and autoclave medium. 5. When cooled, add filter sterilized sodium metasilicate. *For agar medium, add sodium metasilicate, mix, and dispense before agar solidifies. 6. Store at refrigerator temperature.1 960 mL2 40 mL of supernatant3 Sodium Metasilicate 1 mL 200 mM 200 µM(NO.6) Erdschreiber'sMedium UTEX LB 1002 and 2307DirectionsModified from the original Plymouth seawaterrecipe. General purpose marine medium forxenic cultures [for bacteria-free cultures seereprints in Rosowski & Parker (1971)].For 3 L Total 1. To 3 L of pasteurized filtered seawater (30 ppt) aseptically add each of the sterile components in the order specified. 2. Vigorously swirl the contents of the flask to mix thoroughly. 3. Store at refrigerator temperature.1 3 L2 36 mL/3 L3 NaNO3(autoclave beforeadding) (Fisher BP360-500)10 mL/3L0.7 M 2.3 mM4 Na2HPO4·7H2O (autoclavebefore adding) (Sigma S-9390)10 mL/3L0.02 M 0.067 mM5 150 mL/3 L6 3 mL/3 L(NO.7)TAP medium (original )from Gorman, D.S., and R.P. Levine (1965) Proc. Natl. Acad. Sci. USA54, 1665-1669. This is probably the most widely-used medium at present for experimental work.Make the following stock solutions:1. TAP saltsNH4Cl 15.0 gMgSO4 . 7H2O 4.0 gCaCl2 . 2H2O 2.0 gwater to 1 liter2. phosphate solutionK2HPO428.8 gKH2PO414.4 gwater to 100 ml3. Hutner's trace elements (follow this )To make the final medium, mix the following:2.42 g Tris25 ml solution #1 (salts)0.375 ml solution #2 (phosphate)1.0 ml solution #3 (trace elements)1.0 ml glacial acetic acidwater to 1 literFor solid medium, add 15 g agar per literAutoclave.For Tris-minimal medium omit the acetic acid and titrate the final solution to pH 7.0 with HCl(1)Hutner's trace elementsHutner et al. (1950) Proc. Am. Philos. Soc.94, 152-170This mixture is used both in and in the medium.For a detailed analysis of how well this trace elements solution meets the nutritional requirements of C. reinhardtii, see Merchant et al. (2006) Biochim. Biophys. Acta1763, 578-594.For 1 liter final mix, dissolve each compound in the volume of water indicated.百度文库 - 让每个人平等地提升自我11 The EDTA should be dissolved in boiling water, and the FeSO4 should be prepared last to avoid oxidation.compound amount waterEDTA disodium salt 50 g 250 mlZnSO4 . 7 H2O 22 g 100 mlH3BO311.4 g 200 mlMnCl2 . 4 H2O 5.06 g 50 mlCoCl2. 6 H2O 1.61 g 50 mlCuSO4 . 5 H2O 1.57 g 50 ml(NH4)6Mo7O24. 4 H2O 1.10 g 50 mlFeSO4. 7 H2O 4.99 g 50 mlMix all solutions except EDTA. Bring to boil, then add EDTA solution. The mixture should turn green. When everything is dissolved, cool to 70 degrees C. Keeping temperature at 70, add 85 ml hot 20% KOH solution (20 grams / 100 ml final volume). Do NOT use NaOH to adjust the pH.Bring the final solution to 1 liter total volume. It should be clear green initially. Stopper the flask with a cotton plug and let it stand for 1-2 weeks, shaking it once a day. The solution should eventually turn purple and leave a rust-brown precipitate, which can be removed by filtering through two layers of Whatman#1 filter paper, repeating the filtration if necessary until the solution is clear. Store refrigerated or frozen convenient aliquots. Some people shorten the time for formation of the precipiate by bubbling the solution with filtered air.If no precipitate forms, the solution is still usable. However, you might want to check the pH in this case and adjust it to around 7.0 using either KOH or HCl as needed.To prepare sulfur-free trace elements for hydrogen generation, the sulfate salts can be replaced with equimolar chloride salts (ZnCl2 10.0 g; CuCl2 . 2 H2O 1.00 g; FeCl2 . 4 H2O, 3.60 g). .。