(完整版)利用平方差公式进行因式分解教学设计
- 格式:docx
- 大小:17.81 KB
- 文档页数:5
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
利用平方差公式进行因式分解-北师大版八年级数学下册教案一、教学目标1.能够理解平方差公式的概念和用法;2.能够利用平方差公式进行因式分解;3.能够应用平方差公式解决实际问题。
二、教学重点1.平方差公式的概念和用法;2.利用平方差公式进行因式分解。
三、教学难点1.应用平方差公式解决实际问题。
四、教学准备1.板书:平方差公式的公式和注释;2.课件:关于平方差公式的例题和练习;3.准备白板、彩色粉笔、橡皮。
五、教学过程1. 导入新知识1.引入平方差公式的概念,并用板书展示公式的表达式。
(a+b)(a−b)=a2−b22.提问:这个公式有什么含义?学生回答:把一个平方数减去另一个平方数表示成两个因数相乘的形式。
3.引入例题:(x+4)(x−4)=(x2−16),并让学生自己分析解答过程。
2. 理论概述1.讲解平方差公式的应用,以及通过平方差公式进行因式分解的方法和步骤。
例如:a2−9=(a+3)(a−3), 16y2−25=(4y+5)(4y−5)2.在课件中给出示例,让学生跟随课件内容进行学习和理解。
3. 讲解技巧及实际问题处理方法1.讲解实际问题的处理方法,并结合例题进行实践。
例如:小明家的院子长方形,长比宽多4米,面积为168平方米,求长和宽各是多少?2.在课件中给出示例,让学生跟随课件内容进行学习和理解。
4. 练习1.在课件中给出一些练习,让学生进行练习。
2.教师巡视课堂,帮助学生解决问题。
六、教学总结1.通过此次教学,学生理解了平方差公式的概念和用法;2.学生能够利用平方差公式进行因式分解;3.学生能够应用平方差公式解决实际问题。
七、教学反思1.在课堂上,学生的参与度和积极性都比较高;2.学生对例题和练习的完成情况都比较好,但是对于实际问题的处理还存在疑惑;3.下一步需要进一步加强实际问题的处理,帮助学生更好地理解和掌握平方差公式的应用。
14.3.2运用平方差公式分解因式教学设计【教学目标】1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式;3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式;4.在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.【教学重点】灵活运用平方差公式进行各种因式分解【教学难点】高次指数的转化、两种因式分解方法(提公因式法、平方差公式)的灵活运用。
【教材分析】本节课位于人教版八年级上册第14.3.2提公因式法后,起承上启下作用。
使学生知道当多项式的各项含有共因式时,通常先提出这个公因式,然后再进一步分解。
【学情分析】本班学生基础知识一般,学生之间个体差异很大,个别学生学习态度不端正,意志力不强,大部分学生好动。
【教学方法】合作探究法及引导发现法【媒体选择】多媒体课件【教学过程】活动一、复习:运用平方差公式计算1)(a+2)(a-2); 2)(x+2y) (x-2y) ;3) (t+4s)(-4s+t); 4) (m²+2n²)(2n²- m²) .设计意图:进一步明确平方差公式,复习旧知识,为新知识的学习做准备.活动二、新课引出教师出示3x3-12x让学生分解因式,让学生在解题过程中发现问题,进而引入新课。
小组讨论:1、什么叫因式分解?你能将多项式x2 –25,9 x2- y2改写成多项式乘多项式吗?它们有什么共同特征?2、尝试将它们分别写成两个因式的乘积,并与同组交流。
活动三、新知的分析、概括、总结观察发现:a2-b2=(a+b)(a-b) x2 –25=(x+5)(x-5) 9 x2- y2=(3x+y)(3x-y)1、能用平方差公式分解因式的多项式有几项?各项指数都是几?各项符号相同还是相反?2、分解的结果是什么形式?描述一下。
设计意图:通过设置问题,说明平方差公式可以用来分解因式。
2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。
平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。
本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。
二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。
但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。
三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。
2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。
3.培养学生的逻辑思维能力,提高他们的数学解题能力。
四. 教学重难点1.掌握平方差公式的结构。
2.如何将实际的因式分解问题转化为平方差公式的形式。
五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。
六. 教学准备1.准备相关平方差公式的课件和教学素材。
2.准备一些实际的因式分解问题,用于课堂练习。
七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。
例如:已知多项式x^2 - 4,请将其因式分解。
让学生尝试解答,然后给出解答过程和答案。
2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。
通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。
3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。
教师巡回指导,解答学生的问题,并给予反馈。
4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。
5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。
平方差公式法因式分解教学设计【教材依据】本节课是苏科版数学七年级下册第九章整式乘法与因式分解第五节公式法第二课时内容。
【教材分析】因式分解是初中数学的一个重要内容,是代数式恒等变形的重要手段之一。
它贯穿、渗透在各种代数式问题之中,为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。
本节课是在学习了整式的乘法、乘法公式和提公因式法因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是因式分解中的一个重要内容。
它对学习完全平方公式因式分解和后面即将要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数,高中学习一元二次不等式和分式不等式等都有着重要的影响,所以学好本节课对后面的学习至关重要!【学情分析】学生已有学习的整式运算的基础知识,在前一节课中已经学习了提公因式法分解因式,初步体会到了因式分解与乘法运算的互逆关系,通过对乘法公式(a+b)(a-b)=a2-b2的逆向变形,容易得出a2-b2= (a+b)(a-b),但准确理解和掌握公式的结构特征,进行因式分解对学生来说还有很大的难度,学生的观察、归纳、类比、概括等能力,有条理的思考及语言表达能力还有待加强。
【指导思想】以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,进一步应用生活问题作为课堂学习的载体,培养学生学有用数学的理念,贯穿类比、换元的数学思想方法。
通过学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力,从而达到素质教育要求发展学生综合素养的目标。
【教学目标】知识与技能:理解平方差公式的特点,掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;过程与方法:通过知识的迁移经历运用平方差公式分解因式的过程;培养探究知识、合作学习的能力,深化逆向思维的能力和数学的应用意识,渗透整体思想和转化思想。
北师大版数学八年级下册《利用平方差公式进行因式分解》教学设计一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式的引入,既是对前面所学知识的巩固,又是进一步学习因式分解的重要工具。
本节课的内容主要包括平方差公式的推导、理解和应用。
通过本节课的学习,学生能够掌握平方差公式的结构特征,学会运用平方差公式进行因式分解,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法和完全平方公式,对因式分解有一定的了解。
但学生在运用平方差公式进行因式分解时,可能会对公式的结构特征和运用方法产生困惑。
因此,在教学过程中,需要关注学生的认知基础,引导学生理解平方差公式的本质,并通过大量的练习,让学生熟练运用平方差公式进行因式分解。
三. 教学目标1.理解平方差公式的结构特征和推导过程。
2.学会运用平方差公式进行因式分解。
3.提高解决问题的能力。
四. 教学重难点1.重难点:平方差公式的推导和运用。
2.重点:引导学生理解平方差公式的结构特征,学会运用平方差公式进行因式分解。
3.难点:对平方差公式的灵活运用,解决实际问题。
五. 教学方法1.讲授法:讲解平方差公式的推导过程,解释公式的作用。
2.引导法:引导学生通过观察、思考,发现平方差公式的结构特征。
3.练习法:布置适量的练习题,让学生在实践中掌握平方差公式的运用。
六. 教学准备1.准备相关的教学PPT,展示平方差公式的推导过程和应用实例。
2.准备一些练习题,用于课堂练习和巩固知识。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引入平方差公式的概念。
例如:已知一个正方形的面积是36,求这个正方形的边长。
让学生尝试解决这个问题,从而引出平方差公式。
2.呈现(10分钟)讲解平方差公式的推导过程,解释公式的作用。
通过PPT展示平方差公式的推导过程,让学生直观地理解平方差公式的来源。
人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。
平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。
2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。
通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。
二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。
但部分学生在运用平方差公式进行因式分解时,容易出错。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。
2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。
同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。
三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。
2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。
四. 教学重难点平方差公式的推导过程及应用。
平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。
五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。
2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。
4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。
六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。
2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。
14.3.2利用平方差公式分解因式教学设计教学目标:1、掌握运用平方差公式分解因式的方法和步骤。
2、掌握该方法的常见错误和解决办法。
3、灵活运用平方差公式进行各种因式分解。
4、能利用所学知识分析解决新问题。
教学重难点: 灵活运用平方差公式进行各种因式分解教材分析:本节课位于人教版八年级下册第14。
2.2提共因式法后,起承上启下作用。
使学生知道当多项式的各项含有共因式时,通常先提出这个共因式,然后再进一步分解。
可培养学生综合分析问题的能力。
学习者特征分析:本班学生基础知识均达标,学生之间个体差异很大,个别学生学习态度不端正,意志力不强,大部分学生好动。
教学策略选择:学为主体,根据学生好动的特点,把学习的权利还给学生。
集体教学,小组协作、交流。
教师启发、点拨教学方法:合作探究法及引导发现法媒体选择:多媒体课件、展台教学过程:一、检查预习案中的复习回顾二、出示学习目标1、掌握运用平方差公式分解因式的方法和步骤。
2、掌握该方法的常见错误和解决办法。
3、灵活运用平方差公式进行各种因式分解。
4、能利用所学知识分析解决新问题。
三、温故知新(以下教学过程:三-----九由预习案配合)我们已经学过乘法公式(a+b)(a-b)=a2 -b2把它反过来,即a2-b2=(a+b)(a-b) 这就可以用来表示把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
本节课我们就来学习运用平方差公式分解因式四、自学指导-11.平方差公式的字母表达式:a2-b2=( a+b)(a-b) 公式中a、b可表示单项式,也可表示多项式2. 观察平方差公式,总结运用平方差公式的条件:(1)二项式(2)两项符号相反(3)每项都可化成平方的形式(设计意图;强化基础知识平方差公式形的理解掌握)五、自学指导-2观察例1、例2,总结运用平方差公式分解因式具体步骤:(1)先变成两数平方的形式(2)再写成两个数的和与这两个数的差的积的形式(3)检查结果,分解彻底(设计意图;加强基本技能,能灵活、准确的利用平方差公式因式分解)五、探究讨论-1【问题1】用“火眼金睛”观察下列哪些多项式能用平方差公式分解因式:(1) a2+b 2 (2) a2-b 2(3) – a2+b2(4) – a2 -b 2 (5) 4a2-b 2(6) -16+9(a+b)2六、探究讨论-2.2.1【问题2】请你评判下列分解因式的过程有错误吗?若有错请你指正(1)9x2-4y2=(9x+4y)(9x-4y) ()(2) x4-1=(x2+1)(x2-1) ( )(3) 9(m+n)2 -(m-n)2= [3(m+n)]2 -(m-n)2= [3(m+n)+(m-n)] [3(m+n)-(m-n)]= (3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n) ()七、探究讨论-2.2.2【问题2】请你评判-分解因式的过程,错误指正(1) 9x2 -4y2=(3x)2-(2y)2(变两数的平方)= (3x+2y)(3x-2y(2) x4 -1=(x 2+1)(x2 -1) (还能继续用平方差公式分解)=(x2 +1)(x+1)(x-1)(3) 9(m+n)2 -(m-n)2=[3(m+n)] -(m-n)=[3(m+n)+(m-n)] [3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n) (还有公因式没提出)=[2(2m+n)][2(m+2n)]=4(2m+n)(m+2n)八、探究讨论-3【讨论总结】用平方差公式法分解因式时需注意:一变二用三查变成两数正确运用查看结果:能不能再次用式平方形式平方差公式公因式九、延伸训练【用简便方法计算】P120/ 7十、课堂小结【你来说,我来听】请你谈一谈,通过本节课,你有什么收获?十、布置作业1、必做题:课本P117、1.22、选做题:(C学生可不做)计算1 -2 +3 -4 +…+2008 -2009板书设计:运用平方差公式分解因式1、(a+b)(a-b)=a -ba -b =(a+b)(a-b)2、(1) 9x2 -4y2(2) x4 -1(3) 9(m+n)2 -(m-n)2十一教学的评价和反思:在本节课中体现学生学习行为的新思路:体现自主学习,互助学习,小组探究合作交流,及时反馈融为一体。
用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
运用平方差公式因式分解一、教学目标(一)知识与技能:会应用平方差公式进行因式分解,发展学生推理能力.(二)过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.(三)情感态度与价值观:培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.二、教学重点、难点重点:利用平方差公式分解因式.难点:领会因式分解的解题步骤和分解因式的彻底性.三、教学过程知识回顾平方差公式(α+b)(a-b)=a2-b2两个数的和与这两个数的差的积,等于这两个数的平方差.填一填:(1)(x+5)(χ-5)=(2)(3x+y)(3x-y)=(3)(l+3a)(l-3a)=比一比,看谁算得快(1)982-22=(2)己知α+从4,a~b=2f则a2-l>2=你能说说算得快的原因吗?把整式乘法的平方差公式U+W(a-b)=a2-b2的等号两边互换位置,就得到运用平方差公式因式分解a2-b2=(a^b)(a~b)t两个数的平方差,等于这两个数的和与这两个数的差的积.辨一辨下列多项式能否用平方差公式来分解因式?为什么?⑴X2+/ ( ) (2)x2-y2( ) ;⑶-JC2+y2( ) (4)-χ2-y2( )例3分解因式:(1)4X2-9(2)(x+p)2-(X+q)2分析:在(1)中,4x2=(2x)2,9=32,4X2-9=(2X)2-32;在(2)中,把Cr+p)和(x+q)各看成一个整体,设x+片小,x+q=n,则原式化为序-〃2.解:⑴4Λ2-9=(2X)2-32=(2X+3)(2X-3)(2)(x+p)2-(χ+q)2=[(χ+p)+(χ+q)][(χ+p)-(x+q)]=(2x+p+g)(pp)例4分解因式:(1)√-/ (2)a3b-ab分析:对于(1),f-y4可以写成(f)2γy2)2的形式,这样就可以用平方差公式进行因式分解了;对于(2),苏6必有公因式应先提出公因式,再进一步分解.解:⑴产卢(x2+y2)Cr2-y2)=(f+y2)(x+y)(x~y)(2)a3b-ab=ab(a2-l)=ab(a+∖)(α-1)分解因式,必须进行到每一个多项式因式都不能再分解为止.练习2.分解因式:(1)cτ~—b2(2)9a2~4h2(3)x2∖'~4y(4)一/+1625解:(1)cr~—h2=(Λ+-h)(a--b)25 5 5(2)9a2~4b2=(3a+2b)(3a~2b)(3)√r4y=y(√-4)=j(x+2)(x-2)(4)-Λ4+16=16-a4=(4+α2)(4-<J2)=(4+α2)(2+«)(2-a)课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底.最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.。
一、教案基本信息1. 教材版本:人教版八年级数学下册2. 课时安排:2课时3. 教学目标:(1) 让学生掌握平方差公式的推导过程及应用;(2) 培养学生运用平方差公式进行因式分解的能力;(3) 提高学生解决实际问题的能力。
二、教学内容1. 平方差公式的推导:(1) 引导学生回顾完全平方公式,即(a±b)²= a²±2ab+b²;(2) 让学生观察平方差与完全平方公式的关系,发现(a²-b²) 可以表示为(a+b)(a-b);(3) 引导学生推导出平方差公式:a²-b²= (a+b)(a-b)。
2. 平方差公式的应用:(1) 让学生练习运用平方差公式进行因式分解,如:x²-9、4²-36 等;(2) 引导学生总结平方差公式的应用规律,即两平方项符号相反时才能运用平方差公式。
三、教学过程1. 导入新课:(1) 复习完全平方公式;(2) 提问:同学们,你们能发现完全平方公式与平方差公式之间的关系吗?2. 自主学习:(1) 让学生尝试推导平方差公式;(2) 学生展示推导过程,教师点评并总结。
3. 课堂讲解:(1) 讲解平方差公式的推导过程;(2) 举例讲解平方差公式的应用,引导学生总结规律。
4. 练习巩固:(1) 让学生独立完成练习题,如:x²-9、4²-36 等;(2) 教师点评答案,讲解错误原因。
5. 拓展提升:(1) 让学生尝试解决实际问题,如:已知一个正方形的面积比一个矩形的面积少36平方厘米,求正方形的边长;(2) 学生展示解题过程,教师点评并讲解。
四、课后作业(1) x²-9;(2) 4²-36;(3) 12²-5²。
2. 已知一个正方形的面积比一个矩形的面积少36平方厘米,求正方形的边长。
五、教学反思1. 学生对平方差公式的掌握程度;2. 学生在实际问题中的应用能力;3. 针对学生的掌握情况,调整教学策略,提高教学效果。
八年级数学下册平方差公式法因式分解教案设计一、教学目标:1. 让学生掌握平方差公式的结构特征和运用方法。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
二、教学内容:1. 平方差公式的介绍和记忆。
2. 平方差公式在因式分解中的应用。
3. 平方差公式解决实际问题。
三、教学重点与难点:1. 教学重点:平方差公式的记忆和运用,以及因式分解的方法。
2. 教学难点:平方差公式的灵活运用,解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解平方差公式的内涵。
2. 采用案例分析法,让学生通过具体例子掌握平方差公式的运用。
3. 采用练习法,巩固学生对平方差公式的记忆和运用。
五、教学过程:1. 导入新课:通过复习平方根的概念,引出平方差公式。
2. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 案例分析:给出具体例子,让学生运用平方差公式进行因式分解。
4. 练习巩固:设计练习题,让学生独立完成,巩固对平方差公式的运用。
5. 总结拓展:总结本节课所学内容,引导学生思考如何运用平方差公式解决实际问题。
6. 布置作业:设计课后作业,让学生进一步巩固平方差公式的运用。
六、教学评价:1. 课后作业:检查学生对平方差公式的掌握程度,以及能否运用公式进行因式分解。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们对平方差公式的理解和运用情况。
3. 学生反馈:听取学生的反馈意见,了解他们在学习过程中的困惑和问题。
七、教学反思:1. 对教学方法的反思:思考本节课所采用的教学方法是否有效,是否需要调整。
2. 对教学内容的反思:分析平方差公式的讲解是否清晰,学生是否能够理解和记忆。
3. 对教学进度的反思:考虑是否需要调整教学进度,以满足学生的学习需求。
八、教学拓展:1. 平方差公式的应用:引导学生思考平方差公式在解决实际问题中的应用。
2. 因式分解的其他方法:介绍其他因式分解的方法,如提取公因式法、交叉相乘法等。
(完整版)利用平方差公式进行因式分解教学设计
利用平方差公式进行因式分解
教学目标:
知识与技能:
1.理解平方差公式的本质:结构的不变性,字母的可变性.
2.会用平方差公式进行因式分解.
3.使学生了解提公因式法是因式分解首先考虑的方法,再考虑用公式法分解.
过程与方法:
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的互逆、换元、整体的思想,感受数学知识的完整性.
情感态度与价值观:
在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到数学的价值.
教学重点:
掌握运用平方差公式分解因式的方法.
教学难点:
用平方差公式分解因式;培养学生多步骤分解因式的能力.
教学过程
一、新课导入
导入一:
【问题】填空.
(1)(x+5)(x-5)=;
(2)(3x+y)(3x-y)=;
(3)(3m+2n)(3m-2n)=.
它们的结果有什么共同特征?
尝试将它们的结果分别写成两个因式的乘积:
(1)x2-25=;
(2)9x2-y2=;
(3)9m2-4n2=.
[设计意图]学生通过观察、对比,把整式乘法中的平方差公式进行逆向应用,发展学生的观察能力与逆向思维能力.
导入二:
在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项不都含有相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是整式乘法的逆过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外一种因式分解的方法——公式法.
[设计意图]复习之前学过的知识后,提出疑问,直接引入新课,开门见山,激发学生的学习兴趣.
二、新知构建
1、用平方差公式分解因式
请看乘法公式:
(a+b)(a-b)=a2-b2.(1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是:
a2-b2=(a+b)(a-b).(2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否为因式分解?
符合因式分解的定义,因此是因式分解.
等式(1)是整式乘法中的平方差公式,等式(2)可以看做是因式分解中的平方差公式.
a2-b2是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.
如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.如:
x2-16=x2-42=(x+4)(x-4);
9m2-4n2=(3m)2-(2n)2=(3m+2n)·(3m-2n).
[设计意图]让学生通过自己的归纳找到因式分解中平方差公式的特征,并能利用相关结论进行实例练习.
2、例题讲解
[过渡语]同学们,前面我们学习了用平方差公式分解因式,下面我们通过几个例题来巩固所学的知识.
(教材例1)把下列各式因式分解:
(1)25-16x2;(2)9a2-b2.
解:(1)25-16x2=52-(4x)2=(5+4x)(5-4x).
(2)9a2-b2=(3a)2-=3a+b·3a-b.
(教材例2)把下列各式因式分解:
(1)9(m+n)2-(m-n)2;
(2)2x3-8x.
解:(1)9(m+n)2-(m-n)2
=[3(m+n)]2-(m-n)2
=[3(m+n)+(m-n)][3(m+n)-(m-n)]
=(3m+3n+m-n)(3m+3n-m+n)
=(4m+2n)(2m+4n)
=4(2m+n)(m+2n).
(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2).
说明:教材例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;教材例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,教材例2的(2)是先提取公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.
[设计意图]教师讲解例题,明确思维方法,给出书写范例.
三、课堂小结
平方差公式:a2-b2=(a+b)(a-b).
我们已学习过的因式分解的方法有提公因式法和平方差公式法.如
果多项式各项含有公因式,那么第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.
分解因式以后,若所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.
四、检测反馈
1.下列因式分解正确的是()
A.x2+y2=(x+y)(x-y)
B.x2-y2=(x+y)(x-y)
C.x2+y2=(x+y)2
D.x2-y2=(x-y)2
解析:x2+y2不能在有理数范围内因式分解,x2-y2=(x+y)(x-y).故选B.
2.分解因式:a3-4a=.
解析:a3-4a=a(a2-4)=a(a+2)(a-2).故填a(a+2)(a-2).
3.(2015·恩施中考)因式分解:9bx2y-by3=.
解析:原式=by(9x2-y2)=by(3x+y)(3x-y).故填by(3x+y)(3x-y).
4.已知x2-y2=69,x+y=3,则x-y=.
解析:因为x2-y2=69,所以(x+y)(x-y)=69,因为x+y=3,所以3(x-y)=69,所以x-y=23.故填23.
5.分解因式:(3a-2b)2-(2a+3b)2.
解:(3a-2b)2-(2a+3b)2
=[(3a-2b)+(2a+3b)][(3a-2b)-(2a+3b)]
=(3a-2b+2a+3b)(3a-2b-2a-3b)
=(5a+b)(a-5b).
五、布置作业
【必做题】
教材第100页随堂练习的1,2题.
【选做题】
教材第100页习题4.4的1,2题.
六、板书设计
公式法(利用平方差公式进行因式分解)一、用平方差公式分解因式
a2-b2=(a+b)(a-b)
二、例题讲解。