基于CFD的大学生方程式赛车身设计与计算
- 格式:pdf
- 大小:649.83 KB
- 文档页数:1
实 验 技 术 与 管 理 第36卷 第11期 2019年11月Experimental Technology and Management Vol.36 No.11 Nov. 2019ISSN 1002-4956 CN11-2034/TDOI: 10.16791/ki.sjg.2019.11.025基于CFD 的FSAE 赛车操纵性数值模拟及验证麦冬玲,刘家招,古 真,陈钰冉(北部湾大学 机械与船舶海洋工程学院,广西 钦州 535099)摘 要:利用CFD 技术进行赛车设计,对中国大学生方程式汽车大赛(FSAE )赛车的车身及空气动力学套件(主要是尾翼)进行数值模拟分析,根据数值模拟结果优化赛车的操纵性。
根据现场试验与模拟结果进行的对比,验证了数值模拟分析结果的准确性,为赛车和汽车的开发设计提供了依据。
关键词:FSAE 赛车;操纵性;数值模拟;CFD中图分类号:U462.1 文献标识码:A 文章编号:1002-4956(2019)11-0101-04Numerical simulation and validation of FSAE racing carmaneuverability based on CFDMAI Dongling, LIU Jiazhao, GU Zhen, CHEN Yuran(College of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou 535099, China)Abstract: The CFD (computational fluid dynamics) technology is used to design the racing car. The body and aerodynamic package (mainly the tail wing) of the FSAE racing car are simulated and analyzed, and the maneuverability of the racing car is optimized according to the numerical simulation results. By comparing the results of field experiments with those of simulation, the accuracy of the results of numerical simulation analysis is verified, which provides a basis for the development and design of racing cars and automobiles. Key words: FSAE racing car; maneuverability; numerical simulation; CFD1 影响赛车操纵性的因素影响赛车操纵性的因素,除来自地面的支持力和摩擦力以外,还有赛车周围流场产生的气动力和气动力矩,主要是侧向力、阻力、升力和这3个力产生的力矩(俗称汽车气动六分力)[1-2],如图1所示。
基于CFD的节能赛车车身研发摘要:针对节能竞技赛车车身,在CATIA车身建模中引入翼型以改善空气的流动特性。
通过控制变量法研究适用于节能车模型的CFD边界层网格画法。
针对尾部的三维涡流,对节能车不同分型面进行CFD对比研究出一种可减少空气阻力系数的斜分型面设计,从而改善车身的空气动力学性能,降低赛车油耗。
关键词:节能车;翼型;网格;分型面2011年,中国的汽车产销率已刷新世界纪录,超过1800万辆,截至2011年11月底,中国汽车保有量已经突破1亿辆。
未来一段时间我国宏观经济仍将保持平稳与较快增长,人均收入增高、城市化和工业化等积极因素将保证我国汽车市场平稳快速增长[1]。
尽管新能源车在逐步推广,但由于技术价格等因数,汽车使用的燃料绝大部分依赖于石油资源,油气资源总量的日趋减少对汽车的节能提出了越来越高的要求。
节能竞技大赛是一项宣传节能环保理念的比赛,赛车比的不是速度而是油耗,是以规定的速度用最少的燃油来行驶完特定的距离。
因此,节能车的阻力越小,使用的燃油就越少,比赛的成绩也就越好。
节能车的滚动阻力的减小可以通过减少车的总重量或使用滚动阻力系数更小的轮胎来实现,而空气阻力的大小则很大程度上取决于节能车车身的空气动力学性能。
NACA翼型在节能车车身上的运用翼型是主要应用于航空飞行器的一种流线型曲线,目前最常用同时也最具代表性的是NACA系列翼型,NACA翼型是二十世纪三十年代末四十年代初由美国国家宇航局(NASA)前身国家航空咨询委员会(NACA)提出的。
相比其他形状而言,翼型有着较低的阻力系数和较好的空气动力学性能[2]。
作为外形与飞机相似的节能车,若将翼型应用于车身的设计当中,也可以得到很好的空气动力学性能。
考虑到节能车速度较低,车身左右基本对称等特殊性,故可采用4位的低速翼型族中的全对称翼型。
应用NACA Aerofoil Sections 软件可以很直观的看出各个翼型的形状(如图1),且可以方便地得到各种翼型的数据。
⼤学⽣⽅程式赛车设计(发动机匹配试算与装配设计)-汽服11403班序号281140303(学号):长春⼤学毕业设计说明书⼤学⽣⽅程式赛车设计(发动机匹配试算与装配设计)姓名沈姗姗学院车辆⼯程学院专业汽车服务⼯程班级1140303指导教师李未(教授)2015 年 5 ⽉20 ⽇⼤学⽣⽅程式赛车设计(发动机匹配试算与装配设计)摘要中国⼤学⽣⽅程式汽车⼤赛是由各个⼤学在校学⽣组队参加的汽车设计与制造的⼀项⽐赛。
各参赛车队严格遵循⽐赛规则,在⼀年内⾃主设计和⽣产出⼀辆在各⽅⾯优秀的⼩型单⼈座休闲赛车,进⾏⽐赛。
本⽂是对⼤学⽣⽅程式赛车发动机系统的匹配试算和结构设计,通过了解发动机的性能参数、结构参数,运⽤汽车设计、发动机原理、汽车构造等知识,通过⽹上查询资料对发动机进⾏选择。
⽂章主要论述如何改进发动机的进排⽓及冷却系统,使发动机达到预想的状态,且符合⼤赛的规定。
我将采⽤GT-Power、FLUNT等软件对排⽓系统进⾏优化设计,采⽤四个分置的进⽓歧管,避免了由于进排⽓时间不同⽽出现挣⽓现象,使得进排⽓更加顺畅,发动机在动⼒⽅⾯更出⾊。
建议进⽓系统使⽤限流阀这样可以使赛车更加安全,这样可以让学⽣更好的学习如何改进进⽓系统,做成两头锥的形状,使得进⽓⽆死⾓,⼜符合⼤赛规定。
应⽤流体⼒学设计谐振腔,使得进⽓量多。
关键词:⽅程式赛车(FSAE),发动机,匹配,进排⽓Design of FSAE(trial matching and assembly design of engine)ABSTRACTContest of Chinese college students formula car is by each team for university students in car design and manufacture of a game. Each participating team strictly follow the rules of the game, the independent design and production in one year out of a good in all aspects of small single leisure car, for the game.This article is on college students' formula engine system matching of the trial and the structure design, through understanding engine performance parameters, structure parameters, using the principle of automobile design, engine, automobile structure, such as knowledge, through the Internet query information of engine to choose. This paper mainly discusses how to improve the inlet and exhaust and cooling system of engine, the engine the desired state, and in accordance with the rulesof the competition. I will use the GT - Power, FLUNT optimize the exhaust system design of software, such as the four division of the intake manifold, to avoid the phenomenon make gas due to different inlet and exhaust time, makes the exhaust more smoothly and the engine better in terms of Power. Suggested that the air intake system use flow-limiting valve so thatwe can make cars safer, this can let students learn how to better improve the air intake system, make it two of the shape of the nose cone, making intakeno dead Angle, and comply with the regulations of competition.Application of fluid mechanics cavity is designed to ensure the air inflow. Keywords: formula (FSAE), engine, match, into the exhaust⽬录第⼀章⼤学⽣⽅程式赛车简介.................................................................................... - 1 - §1.1 赛事简介..................................................................................................... - 1 - §1.2愿景与使命.................................................................................................. - 1 - 第⼆章发动机的匹配. (1)§2.1发动机的匹配 (1)§2.1.1匹配的定义 (1)§2.1.2发动机匹配的应⽤场合 (2)§2.2 发动机的机械匹配技术 (3)§2.2.1 发动机和变速器的选型和匹配 (4)§2.2.2 设计与分析 (2)§2.3 发动机管理系统及其开发技术 (2)§2.3.1 发动机管理系统 (2)§2.3.2 发动机管理系统开发技术 (3)§2.4 发动机的标定技术 (3)§2.4.1 发动机标定 ....................................................................................... - 3 -§2.4.2 发动机标定软件 (3)§2.4.3 发动机标定设备 (3)§2.4.4 发动机标定试验 (3)§2.5 其它相关电⽓系统的开发 (3)§2.5.1车载⽹络系统的开发 (3)§2.5.2 电⽓线束系统的开发 (3)§2.6发动机的选购 (3)§2.6.1 赛车发动机的选择原则 (3)§2.6.2 以下是国内⼏款常⽤FSAE发动机的资料 (3)第三章发动机进排⽓系统的匹配 (7)§3.1 FSAE进排⽓系统和限流阀的关系 (7)§3.2 GT-Power介绍 (7)§3.3发动机的进排⽓管 (7)§3.3.1 进⽓管长度对发动机性能影响 (8)§3.3.2排⽓管长度对发动机性能影响 (8)§3.4 限流阀的作⽤意义 (8)§3.4.1 什么是进⽓限制器 (9)§3.4.2 进⽓限制器的作⽤ (9)§3.4.3 为什么要有进⽓限制器 (10)§3.5 谐振腔CAE分析⽅法 (11)§3.6 进排⽓歧管的设计 (11)§3.7进排⽓最终⽅案 (13)§3.7.1 进排⽓系统UG图 (13)§3.7.2进排⽓CAD图 (14)第四章冷却系统匹配 (15)§4.1 冷却系统的总体布置原则 (15)§4.1.1 提⾼进风系数 (15)§4.1.2提⾼冷却液循环中的散热能⼒ (15)§4.2 膨胀⽔箱的选择 (15)§4.3 ⽔管的设计 (15)§4.4 防冻液的选择 (16)§4.5冷却系统的固定 (16)第五章润滑系统 (17)§5.1 润滑的意义 (17)§5.2 润滑的⽅式 (17)§5.3 润滑系统的组成及油路 (18)§5.4 曲轴箱通风装置 (18)§5.5 机油的功⽤ (19)§5.6 机油的使⽤特性及机油添加剂 (19)§5.7 机油的分类 (20)§5.8 机油泵 (22)§5.9 机油滤清器 (22)§5.10 冷却器 (23)第六章总结 (24)参考⽂献 (25)致谢 (26)附录 (27)第⼀章⼤学⽣⽅程式赛车简介§1.1 赛事简介中国⼤学⽣⽅程式汽车⼤赛是由各个⼤学在校学⽣组队参加的汽车设计与制造的⼀项⽐赛。
毕业设计(论文)题目大学生方程式赛车设计(整体车架设计、标准安全系统及座椅附件设计)2013年5月30 日方程式赛车整体车架设计摘要FSAE赛车是一项以大学生为对象的赛事,旨在为汽车工业培养更多的优秀人才,参赛的赛车全都由各高校研究设计。
由于是为比赛而设计的赛车车架,因此设计时必须要考虑赛事技术规范。
我的毕业设计就是为FSAE 赛车设计车架。
赛车的车架设计必须要考虑赛车发动机、驾驶员的布置以及赛车各个总成的布置。
又由于赛车车架是赛车的主要受力结构,赛车上的几乎所有的结构以及部件都是有车架直接或者间接支撑,所以车架的结构一定要合理,同时强度刚度必须达到一定的要求。
在车架设计之初,要将大赛的有关规定和评分标准完全掌握,对各部件该怎么布置,布置在什么方位有一个清晰的规划。
同时为了使以后的车架结构设计更为合理,我参考了天津大学、湖南大学以及部分国外的车架。
进入设计阶段后,在对比了车架的结构形式后,选择了桁架式的车架。
根据强度要求,选择车架的材料。
在确定了悬架的安装位置后,依据技术规范、赛车的整体布置、发动机以及人体模型确定车架大致的整体尺寸,然后建立几套车架的雏形;再优化车架结构使整体各个系统能合理的布置在车架上,直至使车架结构满足各个方面的要求。
在几套车架结构基本定型以后,开始对车架进行结构受力分析、优化以及对比,选择结构合理质量最轻的车架。
关键词:FSAE,车架,技术规范,发动机,驾驶员FORMUL SAE—A SPACE FRAME DESIGNABSTRACTThe FSAE vehicle race is one takes university student as the sports event of object,for the purpose of creates more outstanding talents for the automobile industry,participating vehicle race all by various university research and designs. As a result of competition vehicle race frame of design, when design must consider the sports event technology standard.My graduation project designs the frame for the FSAE vehicle race. The frame design of vehicle race must consider the the arrangement of arrangement as well as vehicle race each unit of vehicle race engine and pilot. Because vehicle race frame is the main stress structure of vehicle race, almost all structures as well as the parts in vehicle race have the frame direct or indirect support, therefore the structure of frame is certainly reasonable, simultaneously the intensity rigidity must meet certain requirements. At the beginning of the frame designs, must completely grasps the concerned requirements and point scale of big game, how should arrange to various parts, arranges has a clear plan in any position. Simultaneously to make the later vehicle frame design is more reasonable, I have referred to some Tianjin University, Hunan University as well as overseas frames. After being in the design stage, after contrasting the structural style of frame, has chosen the truss-type frame.According to the intensity request, chooses the material of frame. After locating the airflow distribution of suspension fork, according to the overall arrangement, engine of as well as the manikin determination frame approximate overall size technology standard and vehicle race, then establishes the embryonic form of several sets of frame; Optimizes the vehicle frame to enable the overall each system again to arrange reasonably on the frame, until makes the vehicle frame meet the request in each aspect. After several sets ofvehicle frame finalizes basically, starts to carry on the structure analysis of accepting force, to optimize as well as contrast to the frame, optional structure reasonable quality lightest frame.KEY WORDS: FSAE, frame, technology standard, engine, pilot目录第一章赛车概述 (1)§1.1 国外Formula SAE简介 (1)§1.2 中国大学生方程式汽车简介 (2)第二章车架结构特点综述 (3)§2.1 车架的功用与要求 (3)§2.1.1 车架的功用 (3)§2.1.2 对赛车车架的要求 (3)§2.2 车架的计算 (4)§2.3 车架综合实验要求 (4)§2.3.1 车架的应力测定 (5)§2.3.2 车架的刚度测定 (5)§2.3.3 可靠性与耐久性台架试验 (5)§2.3.4 随整车进行的可靠性道路试验或试车场试验以及使用试验 (5)第三章车架类型方案的对比与分析 (6)§3.1 一体式金属车架 (6)§3.2 单体式车架 (7)§3.3 桁架式车架 (7)第四章车架的材料以及结构 (8)§4.1 车架材料的材料力学分析 (8)§4.2 方程式赛车车架材料的技术规范要求 (8)§4.3 车架材料的选择 (9)§4.4 赛车车架的结构 (10)§4.5 车架应力的消除 (10)第五章大学生方程式赛车车架设计 (11)§5.1 赛车整体结构的设计 (11)§5.2 赛车驾驶舱的设计 (14)§5.3 赛车各个系统及零部件在车架上的安装位置的设计 (15)§5.3.1 悬架系统的安装位置的设计 (15)§5.3.2 转向系统安装位置的设计 (17)§5.3.3 传动系统的要求 (18)§5.4 安全系统的要求 (18)第六章赛车车架的结构分析和优化 (21)§6.1 车架在实际环境下的受力 (21)§6.2 车架的结构分析方法 (21)§6.3 有限元分析方法的基本原理 (22)§6.4 有限单元法的分析步骤 (23)§6.5 基于有限元分析方法的车架的分析 (24)§6.6 基于有限元分析方法的碰撞块分析 (24)第七章座椅设计 (26)§7.1 人性化座椅设计 (26)§7.1.1 系统中人和机的职能分工 (27)§7.1.2 体坐姿体压分布 (28)§7.1.3 座垫上的体压分布 (28)§7.2 汽车座椅舒适性设计 (30)§7.2.1 座椅强度的设计 (30)§7.2.2 座椅结构型式的设计 (30)§7.3 座椅蒙皮、椅垫阻燃设 (31)第八章结论 (32)参考文献 (33)致谢 (34)第一章赛车概述§1.1国外Formula SAE简介Formula SAE,是由各国SAE,即汽车工程师协会举办的面向在读或毕业7个月以内的本科生或研究生举办的一项学生方程式赛车比赛,要求在一年的时间内制造出一辆在加速、刹车、操控性方面有优异的表现并且足够稳定耐久,能够成功完成规则中列举的所有项目业余休闲赛车。
大学生方程式赛车设计(传动及最终传动系统设计)摘要汽车传动系统的基本功用是将发动机输出的动力传递给驱动车轮,传动系统对整车的动力性和设计中一个重要的组成部分。
本文主要研究的是FSAE方程式赛车传动系统的燃油经济性有很大的影响,故传动系统参数的确定是汽车设计,基于我院LS Racing车队三年来的比赛经验和设计理念,对赛车的传动系统进行优化和改造。
本赛车选用的是铃木CBRR600四缸发动机,差速器是选用德雷克斯勒限滑差速器(Drexler),根据发动机的特性参数、档位比和差速器的工作原理,选择合适的链传动比,计算链条的参数,设计差速器固定支架,合理的布置整个传动系统。
针对传动系统各组成部件,采用ANSYS有限元分析软件对零部件进行强度校核,优化结构使其达到质量轻、强度高的目标。
关键字:FSAE,差速器选型,德雷克斯勒限滑差速器,传动系IFormula SAE of china (transmission and final drivesystem)ABSTRACTThe basic function of auto transmission system is transfer engine power to drive wheels .The transmission system has a great influence in dynamic performance .So the parameter of drive system is one of the important part in automobile design .The article mainly research is drive system design of FSAE racing car. The car drive system optimization and transformation is based on LS Racing team competition experience and design concept in the past three years .The racing car engine is choose SUZUKI GSX-R600 have four cylinder engine .The differential is choose Drexler limited slip differential. According to the characteristics of the engine parameters, gear ratio and differential working principle ,that choose the right chain transmission ratio, calculation chain parameters, design the differential fixed bracket, reasonable arrangement of the drive system. Aimed at the transmission system components, use the ANSYS finite element analysis to check intensity of the parts, that optimize structure enables it to achieve light weight, high strength goal.KEY WORD:FSAE, Differential selection, Drexler limited slip differential, the ANSYS finite element analysis目录第一章大赛背景及发展现状 (1)§1.1 赛事背景 (1)§1.2 国外情况 (2)§1.3 国内情况 (2)第二章绪论 (4)§2.1 传动系统的组成 (4)§2.2 传动系统的功能实现 (4)§2.3 FSAE大学生方程式赛车传动系统的特点 (5)§2.4 中国大学生方程式汽车大赛(FSC)传动规则和要求 (6)§2.5 本次传动系统设计任务 (6)第三章赛车动力总成的选择与布置 (7)§3.1 整车参数与主要结构 (7)§3.2 赛车动力性计算 (9)§3.2.1 主减速比确定 (9)§3.2.2 赛车驱动力的计算 (10)§3.3 赛车动力性的验证与优化 (11)§3.3.1 拟合外特性曲线图 (11)§3.3.2 驱动力-行驶阻力平衡图 (12)§3.3.3 发动机功率-行驶阻力功率平衡图 (13)§3.3.4加速度特性曲线 (13)§3.3.5 动力因数图 (14)§3.4 传动方式确定 (14)第四章动力总成与车架的连接及与驱动轮的传动设计 (18)§4.1 差速器固定 (18)§4.2 车轮法兰设计 (20)§4.3 大小链轮的设计 (21)§4.3.1 链轮齿数1Z、和传动2Z比i的计算与确定 (21)§4.3.2齿数的选取原则 (21)§4.3.3 传动比的确定 (21)§4.3.4 链轮的计算与选取 (22)§4.4 差速器的设计与选择 (26)§4.4.1 差速器原理 (26)§4.4.2 差速器的分类 (27)§4.4.3 方程式赛车的差速器结构选择 (31)§4.4.4 差速器选用说明 (32)§4.5 万向节的选择 (32)§4.5.1 万向节的工作原理 (33)§4.5.2 等速万向节的分类 (33)§4.6 此次设计选用的万向节类型 (36)参考文献 (38)结束语 (38)第一章大赛背景及发展现状随着我国汽车工业的崛起,赛车文化日益蓬勃发展,同时为号召十二五时期党中央提出的科技强国口号,在这样一个背景下,2010年首届中国大学生方程式汽车大赛在上海国际赛车场隆重举办。
基于CFD的大学生方程式赛车发动机进气系统设计优化章东徽;代雪萍;张明;陈文;柏宇星;臧利国【期刊名称】《机电工程技术》【年(卷),期】2024(53)5【摘要】基于大学生方程式汽车大赛规则,为大学生方程式赛车赛用发动机春风650设计全新的进气系统。
基于CFD方法,针对6000转高转速工况下发动机进气系统进行研究。
采用ANSYS Fluent对进气系统进行瞬态三维流场仿真,时间步长设置为0.0005 s。
湍流模型选择为realizable k-ε湍流模型,Velocity-inlet速度设置为15 m/s,压力为标准大气压;pressure-outlet采用expression设置压力波动函数,进气压力曲线由实际测量得出并拟合为正弦函数。
对仿真结果进行后处理,主要对出口质量流量曲线、进气道内速度矢量分布图和压力云图进行分析研究。
通过流场分布得到如下结果:气流在进气系统内呈现出旋转的趋势,弯曲的管道中易形成螺旋气流。
进气系统中的压力波动周期循环,且稳压腔内部压力梯度较小。
设计的进气系统有效提升了进气量,改善了安装限流阀后发动机的性能,能够提升发动机在比赛工况下的工作性能,为FSAE进气系统设计提供了理论指导。
【总页数】4页(P82-85)【作者】章东徽;代雪萍;张明;陈文;柏宇星;臧利国【作者单位】南京工程学院汽车与轨道交通学院【正文语种】中文【中图分类】TH122【相关文献】1.基于CFD分析的某发动机进气歧管结构优化2.基于STAR-CCM+发动机进气歧管CFD分析及优化3.大学生方程式赛车的发动机可变进气技术研究4.基于CFD 方法分析优化天然气发动机进气均匀性因版权原因,仅展示原文概要,查看原文内容请购买。
上海工程技术大学毕业设计(毕业论文)任务书学院汽车工程学院专业机械设计制造及其自动化(汽车工程)(中美合作)班级学号062110316学生彭涛指导教师李传昌题目方程式赛车发动机进气系统设计与分析任务规定进行日期自2014 年2 月17 日起,至2014 年6 月20 日止目录摘要 (4)关键词 (4)Abstract (5)Key words (5)引言 (5)绪论 (6)1.1 课题研究背景和意义 (6)1.2 汽车发动机进气系统的简介 (7)1.2.1 进气系统定义 (7)1.2.2 基本构成 (7)1.3 汽车发动机进气系统发展趋势 (7)1.4 进气限流情况下提高进气效率技术的研究现状 (8)1.5 研究内容 (8)1.6 进气系统系统概述 (9)1.6.1 进气系统结构参数对充气效率的影响 (9)1.6.2 进气管长度对充气效率的影响 (9)1.6.3 FSAE规则对进气系统限制 (10)1.6.4 赛车进气系统主要构成 (11)2 进气系统方案设计 (11)2.1 进气系统设计流程 (11)2.2 确定进气系统材料与制造工艺 (13)2.3 节气门体类型选择 (14)3 设定进气系统各部件基本参数 (15)3.1 系统参数 (15)3.2 空气滤清器 (15)3.3 限流阀开口 (16)3.4 限流阀 (16)3.5 限流阀扩散器 (17)3.6 稳压腔 (17)3.7 进气道 (18)3.8设计要求 (18)3.8.1 进气方案 (18)3.8.2 进气管形式 (19)4 各部件基本参数设计 (21)4.1 节气门口径 (21)4.2 进气总管长度 (21)4.3 稳压腔体积 (22)4.4 进气歧管长度 (22)5 流场分析 (22)5.1 分析软件介绍 (22)5.2 模型网格划分与边界条件初定义 (23)5.2.1 进气总管分析 (23)5.2.2 稳压腔分析 (25)5.2.3 进气歧管长度分析验证 (29)6 进气系统装配 (29)7 结论与展望 (31)参考文献 (32)大学生方程式赛车进气系统设计与分析车辆工程专业彭涛指导教师李传昌摘要:本设计是针对我院2014年FSAE赛车发动机进气系统的优化设计与仿真研究。
大学生F1方程式赛车整车设计毕业论文大学生F1方程式赛车整车设计摘要本文基于汽车理论课程实践所做的BAJA赛车模型,并结合FSAE 赛车比赛规则和赛道的布置特点,进行拓展设计一款大学生F1方程式赛车。
从赛车底盘角度出发,本文侧重于汽车车架的设计,因为车架是整车的重要组成部分,它不仅承受着来自路面的各种复杂载荷,同时也是其他总成的安装载体。
通过有限元法对车架结构进行分析,对提高整车的各种性能有重要的意义。
本文根据《中国FSC大赛规则(2012)》要求,首先利用UG6.0软件对赛车车架进行结构设计,建立起多个车架的三维模型,然后将设计出来的多个车架以及BAJA模型的车架导入到有限元软件中,对车架进行静力学分析,通过对比静力和应力分布图分析选出更优秀的车架。
同时对Formula SAE赛车的发动机系统、车轮系统、传动系统、悬架系统、转向系统、制动系统等进行选型和整体布置,然后根据所选的总成参数对整车动力性能进行匹配以及整车动力性能进行分析,从而设计出一款符合大赛要求同时性能优异的赛车。
关键词:UG,大学生F1方程式赛车,车架,有限元分析,动力匹配Formule SAE Collegiate Design of The Racing CarABSTRACTThe article is Based on the BAJA racing car model which is made at the Practice of Automobile Theory Course , and at the same time with combinations of the FSAE car racing game rules and the circuit layout characteristics, to expand the design of a formula sae race car. Start from the chassis of the car , this article focuses on the design of automobile frame, because the frame is an important part of vehicle, it not only suffered from a variety of complex surface load, at the same time it is the carrier to installthe other assembly. Through the finite element method analysis of frame structure, has important significances to improve the vehicle performance. According to《FSC contest rules (2012) of the People's Republic of China》requires, first of all, using the software of UG6.0 to carrry out on the car frame structure design, setting up multiple 3 d model of the frame, and then imported multiple frame and BAJA model frame into the finite element software, using the statics to analysis the frame, by comparing the static and stress distribution analysis to select the better frame. To select the type of Formula SAE racing car engine system, the wheel system,the transmission system, the suspension system, the steering system and the brake system and layout of the whole, and then according to the parameters of the selected to match the vehicle dynamic performance and analyzed the vehicle dynamic performance , Thus design a car to match requirements of the competition and also have performances.KEY WORDS:UG, the formula 1 racing car of College students, frame ,finite element analysis , dynamic matching.目录第一章绪论1.1、 Formule SAE概述1.1.1、背景1.1.2、发展及现状1.2、任务及目标第二章赛车总体参数与主要总成的选择2.1、概述2.1.1、总体设计因满足的要求2.1.2、总体设计的目的2.2、汽车形式的选择2.2.1、轴数2.2.2、驱动形式2.2.3、布置形式2.3、汽车主要参数的选择2.3.1、汽车主要尺寸的确定2.3.2、汽车质量参数的确定2.3.3、汽车动力性参数的确定2.4、发动机的选择2.4.1、发动机限制2.4.2、发动机主要性能指标的选择2.4.3、进气系统2.4.4、排气系统2.5、传动系统2.5.1、变速箱性能参数的确定2.5.2、主减速器及差速器的确定2.6、轮胎和轮辋的选择2.7、悬架系统的选择2.7.1、比赛要求2.7.2、悬架的作用2.7.3、悬架的分类2.7.4、悬架的选择2.7.5、方程式赛车悬架的特殊性2.8、制动系统的选择2.8.1、制动系统要求2.8.2、制动器的分类2.8.3、制动器的选择2.9、转向系统的选择2.9.1、转向的要求2.9.2、转向系的确定2.10、车架形式的选择2.10.1、车架的定义2.10.2、车架的设计2.10.3、车架的分类第三章赛车整车的总体设计3.1、车架的设计3.1.1、车架的设计流程3.1.2、车架设计要求3.1.3、名词解释3.1.4、车架设计过程3.1.4.1、前环以及前斜撑设计3.1.4.2、主环设计3.1.4.3、支撑要求3.1.5、车架材料的选择3.1.6、车架焊接方式的选择3.2、其他部件的三维建模3.2.1、发动机总成以及变速箱三维建模3.2.2、制动总泵以及各个踏板的三维建模3.2.3、悬架系统建模3.2.4、制动系统的三维建模3.2.5、车轮三维建模3.2.6、后驱动桥三维建模3.2.7、转向系统的设计3.2.8、油箱三维模型的建立3.2.9、车身的设计3.2.10、座椅的设计3.2.11、赛车的总装第四章整车设计中的关键问题4.1、车架强度校核4.1.1、有限元软件介绍4.1.2、有限元模型的建立4.1.3、模型的简化及建立4.1.4、网格划分4.1.5、车架静力学分析4.1.5.1、车架静态载荷分析4.1.5.2、工况分析及边界条件处理4.1.5.3、弯曲工况分析4.1.5.4、制动工况的分析4.1.6、车架刚度分析4.1.6.1、车架扭转刚度分析4.1.6.2、车架弯曲刚度分析4.1.7、车架模型(二)的有限元模型分析4.2、动力系统计算匹配及评价4.2.1、概述4.2.2、动力性能计算4.2.2.1、动力性相关公式4.2.2.2、计算过程及结果4.2.2.3、本节结论第五章结论参考文献致谢绪论1.1、Formule SAE概述1.1.1、背景Formula SAE,是由各国SAE,即汽车工程师协会举办的面向在读或毕业7个月以内的本科生或研究生举办的一项学生方程式赛车比赛,要求在一年的时间内制造出一辆在加速、刹车、操控性方面有优异的表现并且足够稳定耐久,能够成功完成规则中列举的所有项目业余休闲赛车。
基于CFD的FSAE赛车外流场数值模拟及优化中期报告一、研究背景及意义随着车辆的制造和设计技术的不断提高,汽车比赛的规模和竞争力也越来越高。
FSAE(Formula SAE)赛车由全球各个国家的大学生团队参与,它是一项致力于激发年轻工程师对于汽车制造和设计的热情、培养他们的创新精神、能力和团队合作意识的竞技活动。
在FSAE赛车设计中,外流场是影响赛车性能的关键因素之一,如何降低FSAE赛车空气阻力,提高赛车的性能是一个关键性课题。
通过基于CFD(Computational Fluid Dynamics)数值模拟的方式模拟FSAE赛车的外流场,可以快速准确地了解FSAE赛车的气动外流场分布和流动特性。
并通过优化FSAE赛车外形设计、加装气动装置和调整空气阻力系数等方法,有效地降低赛车的空气阻力,提高赛车的性能,这对于FSAE赛车的设计和制造具有重要的意义。
二、研究内容及方法本研究以FSAE赛车的气动外流场分布与流动特性为研究对象,以CFD数值模拟及优化为主要研究方法,通过以下步骤进行研究:1.建立FSAE赛车的数值模型基于CATIA等设计软件,建立FSAE赛车的三维数值模型,并进行参数化设计,以便于后续的数值模拟与优化分析。
要求模型精度高,几何复杂度大,包括FSAE赛车的底盘、车身、车架、轮胎、悬挂系统等。
2.建立数值模拟网格在数值模型的基础上,使用计算机软件对FSAE赛车进行网格划分,生成三维流场模拟所需的流体网格。
网格划分应该满足几何形状、物理性质、计算效率等多重要求。
3.数值模拟边界条件设置为了保证数值模拟结果的可靠性,需要在模拟过程中设置不同的边界条件,如入口流速、迎风角度等条件,并进行验证。
4.进行数值模拟计算在完成网格划分和边界条件设置之后,进行数值模拟计算。
对于流动物理问题,采用CFD模拟求解技术,对赛车的流场进行数值求解和仿真计算。
5.数值模拟结果分析分析数值模拟结果,了解赛车气动外流场的分布和流动特性,如阻力分布、气流轮廓、压力分布等指标。
大学生方程式赛车设计(制动与行走系统设计)摘要Formula SAE赛事1980年在美国举办第一次比赛,现在已经是为汽车工程学会的学生成员举办的一项国际赛事,其目的是设计、制造一辆小型的高性能方程式赛车,并使用这辆自行设计和制造的赛车参加比赛。
中国大学生方程式赛车比赛的组织与开展始于2010年,至今已成功举办了三届。
本文主要阐述了在中国大学生方程式汽车大赛组委会制定的规则下,如何设计一辆Formula SAE 赛车的制动系统。
设计采用的是前盘后盘的液压双回路制动系方案。
它的工作原理是利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动趋势,亦即由制动踏板的踏板力通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过轮缸活塞推使制动衬片夹紧制动盘产生摩擦力矩,从而产生制动力,使车轮减速直至停车。
由于赛车本身质量较小,很多地方不能按常规的设计方法进行设计,我主要采用了市场调研的方法,先选取一些类似的车型,依据它们的制动系统结合赛车的实际情况反复验证,通过极限算法计算出完全制动时制动盘的最小尺寸。
同时在极限工况下对几个危险截面的零件的强度进行了校核,使其满足要求。
同时利用UG软件进行了建模,以辅助后续工作的顺利进行。
关键词:Formula SAE,赛车,制动,校核FORMULA RACING BRAKE AND WALKINGSYSTEM DESIGNABSTRACTFormula-SAE launched in the USA in 1980, Formula-SAE is now an international competition for Society of Automotive Engineers student members to form teams for the purpose of designing, building and competing in a small high-performance race car.The article discusses how to design a Formula SAE car's braking system。
大学生方程式赛车设计(发动机匹配试算与装配设计)摘要中国大学生方程式汽车大赛(简称中国FSAE)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。
各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节的比赛。
本文具体研究大学生方程式赛车(FSAE)发动机系统的匹配试算和结构设计,通过了解发动机的性能参数、结构参数,运用发动机原理,汽车构造等所学的知识,根据大学生方程式赛车的比赛规则及网上查询资料,对发动机进行选择。
文章主要论述如何改进发动机的进排气及冷却系统,使发动机达到预想的状态,且符合大赛的规定。
对于进排气系统采用GT-Power、FLUNT等软件进行仿真计算设计,进排气系统的优化设计,采用四个分置的进气歧管,避免了各缸进排气时间不同造成的挣气现象,使得进排气更加顺畅,提高了进气效率,从而提升发动机的动力性能。
进气系统限流阀的应用使得赛车更加安全,同时也能让学生更加的主动去学习如何改进进气系统,做成两头锥的形状,使得进气无死角,又不会违背大赛规定。
应用流体力学设计谐振腔,使得进气尽量多。
关键词:方程式赛车(FSAE),发动机,匹配,进排气Design of FSAE(trial matching and assembly design of engine)ABSTRACTFormula SAE of China (hereinafter referred to as the "Chinese FSAE") is a study by the institutions of higher learning in vehicle engineering or relevant majors participate in automotive design and manufacture of the game.This paper studies college students formula (FSAE) matching calculation and structure design of engine system. by understanding the performance parameters, the structural parameters of the engine, using the principle of engine, automobile structure knowledge, According to the rules of the Formula SAE and search Information online to choose a engine . This paper mainly discusses how to improve the intake and exhaust and cooling system of engine, the engine to achieve the desired state, and in accordance with the competition rules. For the inlet and exhaust systems,use GT-Power FLUNT to simulation calculation. Optimization design of inlet and exhaust system,ues four intake manifold split,. avoid the phenomenon of each cylinder earn gas intake and exhaust is caused by the different time, the intake and exhaust more smoothly, improves the air intake efficiency, so as to enhance the power performance of the engine. The application of limited flow valve inlet system makes the car more secure, but also can make students more active go to study how to improve the intake system, made of two cone shape, so that the intake without blind angle, without violating the contest rules. Application of fluid mechanics designing resonant cavity, so that the intake as much as possible.KEY WORDS: Formula One racing (FSAE), engine, matching, The intake and exhaust.目录第一章大学生方程式赛车简介 (1)§1.1 赛事简介 (1)§1.2愿景与使命 (1)第二章发动机的匹配 (3)§2.1发动机的匹配 (3)§2.1.1匹配的定义 (3)§2.1.2发动机匹配的应用场合 (3)§2.2 发动机的机械匹配技术 (3)§2.2.1 发动机和变速器的选型和匹配 (3)§2.2.2 设计与分析 (4)§2.2.3 主要试验项目 (5)§2.3 发动机管理系统及其开发技术 (5)§2.3.1 发动机管理系统 (5)§2.3.2 发动机管理系统开发技术 (5)§2.4 发动机的标定技术 (6)§2.4.1 发动机标定 (6)§2.4.2 发动机标定软件 (6)§2.4.3 发动机标定设备 (6)§2.4.4 发动机标定试验 (7)§2.5 其它相关电气系统的开发 (7)§2.5.1车载网络系统的开发 (7)§2.5.2 电气线束系统的开发 (7)§2.6发动机的选购 (7)§2.6.1 赛车发动机的选择原则 (7)§2.6.2 以下是国内几款常用FSAE发动机的资料 (8)第三章发动机进排气系统的匹配 (14)§3.1 FSAE进排气系统和限流阀的关系 (14)§3.2 GT-Power介绍 (15)§3.3发动机的进排气管 (15)§3.3.1 进气管长度对发动机性能影响 (17)§3.3.2排气管长度对发动机性能影响 (17)§3.4 限流阀的作用意义 (17)§3.4.1 什么是进气限制器 (18)§3.4.2 进气限制器的作用 (18)§3.4.3 为什么要有进气限制器 (19)§3.4.4 进气限制器为什么要安装在节气门之后 (20)§3.5 谐振腔CAE分析方法 (20)§3.6 进排气歧管的设计 (21)§3.7进排气最终方案 (23)§3.7.1 进排气系统UG图 (23)§3.7.2进排气CAD图 (24)第四章冷却系统匹配 (26)§4.1 冷却系统的总体布置原则 (26)§4.1.1 提高进风系数 (26)§4.1.2提高冷却液循环中的散热能力 (26)§4.2 膨胀水箱的选择 (26)§4.3 水管的设计 (27)§4.4 防冻液的选择 (27)§4.5冷却系统的固定 (28)第五章润滑系统 (29)§5.1 润滑的意义 (29)§5.2 润滑的方式 (29)§5.3 润滑系统的组成及油路 (30)§5.4 曲轴箱通风装置 (30)§5.5 机油的功用 (31)§5.6 机油的使用特性及机油添加剂 (32)§5.7 机油的分类 (33)§5.8 机油泵 (34)§5.9 机油滤清器 (35)§5.10 冷却器 (36)第六章总结 (37)参考文献 (38)致谢 (39)附录 (40)第一章大学生方程式赛车简介§1.1 赛事简介中国大学生方程式汽车大赛(简称中国FSAE)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。
基于CFD的大学生方程式赛车身设计与计算
王玮;胡搒
【期刊名称】《科学与财富》
【年(卷),期】2015(7)8
【摘要】赛车车身气动造型设计,是赛车技术走向更高水平的更高标志,本文按照FSC赛车设计规则,对赛车车身进行了概念设计和结构设计,并利用CFD技术建立了车身外流场分析模型,通过数值模拟方法对各种车身造型方案进行了对比优化分析,确定了车身空气动力学装置在不同比赛项目时的调整策略,结果表明最优设计方案符合气动原理,气动装置能够在不同比赛项目中达到不同的气动效果,提高了操纵稳定性。
【总页数】1页(P511-511)
【作者】王玮;胡搒
【作者单位】南京农业大学210031;南京农业大学210031
【正文语种】中文
【相关文献】
1.基于深度学习的大学生无人驾驶方程式赛车循迹控制研究
2.基于大学生电动方程式赛车(FSEC)的电气系统分析和研究
3.基于FSAE大学生方程式赛车的副车架设计
4.基于大学生方程式赛车的制动踏板轻量化设计
5.基于大学生方程式赛车无轮辐车轮设计
因版权原因,仅展示原文概要,查看原文内容请购买。
基于CFD节能赛车的车身研发
黎博文
【期刊名称】《交通节能与环保》
【年(卷),期】2013(000)004
【摘要】针对节能竞技赛车车身,在CATIA车身建模中引入翼型以改善空气的流动特性。
通过控制变量法研究适用于节能车模型的CFD边界层网格画法。
针对尾部的三维涡流,对节能车不同分型面进行CFD对比研究出一种可减少空气阻力系数的斜分型面设计,从而改善车身的空气动力学性能,降低赛车油耗。
【总页数】5页(P37-41)
【作者】黎博文
【作者单位】同济大学中德学院,上海,200092
【正文语种】中文
【中图分类】U469.6
【相关文献】
1.基于CFD的大学生方程式赛车身设计与计算 [J], 王玮;胡搒
2.基于CFD技术的FSC赛车车身气动造型设计 [J], 余顺达;李能;王兵;高阳
3.基于CFD技术的FSC赛车车身气动造型设计 [J], 樊卓闻;张翼;任润国
4.节能竞技赛车车身造型的CFD研究 [J], 齐益强;田芳
5.基于CFD技术的单人小型节能赛车的造型设计研究 [J], 白仁飞;周玉存
因版权原因,仅展示原文概要,查看原文内容请购买。
毕业设计(论文)题目大学生方程式赛车设计(模具及卡具设计)2013年5月30日方程式赛车模具及卡具设计摘要本文依据大学生方程式汽车大赛FSAE赛事技术规则对大学生方程式赛车整体车架、悬架进行了模具及卡具设计。
在卡具设计当中不仅需要考虑赛车车架各杆件是否定位完全以及夹紧可靠,同时必须考虑支撑杆件的强度和刚度能否满足要求,最终还必须考虑焊接空间是否与支撑杆干涉。
在模具设计当中不仅要考虑凸、凹模的加工精度以及冲压机的选择,同时还必须考虑凸、凹模的强度和刚度。
本文在完全满足上述要求的前提下对模具及卡具进行了设计。
在模具及卡具设计之初,将方程式汽车大赛的有关规定和评分标准,作为后续模具及卡具设计的技术规范要求;为了达到卡具设计合理性的目的,本设计参考了湖南大学、天津大学以及部分国外大学的赛车模具及卡具。
进入设计阶段,本设计通过分析比较几种模具及卡具的结构形式,决定选择定位与夹紧一体化的卡具设计,采用压弯模制得对强度要求较高的主环。
然后依据技术规范、车架的最终尺寸确定了卡具及模具的结构形式和具体尺寸,。
再对模具及卡具进行受力分析,使各杆件能合理的定位、夹紧,使主环能满足强度和精度的要求,直至模具及卡具结构满足各个方面的要求。
关键词:FSAE,模具,卡具,建模,工艺分析FORMULE SAE—A MOLD AND FIXTURE DESIGNABSTRACTBased on equation FSAE car competition event technical regulations of university students for the college students formula overall frame, suspension for the mould and fixture design. In fixture design not only need to consider whether or not the car frame each bar of positioning and clamping completely reliable, at the same time must consider the strength of the support bar and stiffness can meet the requirements, the final must also consider whether the welding space interference with the support bar. During mold design should not only consider the machining precision of the convex, concave die and punch, also must consider the intensity of the convex, concave die and stiffness. In this paper, on the premise of fully meet the above requirements on the mould and fixture design.At the beginning of the mould and fixture design, the formula car contest regulations and criteria, as the follow-up mold and fixture design of the technical specification requirements; In order to achieve the purpose of fixture design rationality, the design reference of Hunan university, Tianjin university and some of the foreign car mold and fixture. Entered the stage of design, this design through the comparative analysis several kinds of mould and the structure of fixture, decided to choose integration of positioning and clamping fixture design, USES the bending molding of strength to demand higher main ring. Then according to specification, to obtain the final size of the frame the structure of the mould and fixture and the specific size, and set up in the frame models of the fixture. Stress analysis was carried out on the mold and fixture, make each bar can reasonable positioning, clamping, the main ring can meet the accuracy requirement of the strength and, until the mold and fixture structure meet the requirements of all aspects.Key words: FSAE, mould, fixture, modeling, process analysis目录第一章绪论 (1)§赛事简介 (1)§大赛性质 (2)§大赛理念 (2)§愿景与使命 (2)§组织结构 (3)第二章焊接卡具的设计 (4)§焊接的主要类型 (4)§点焊 (4)§凸焊 (4)§钎焊 (5)§二氧化碳焊 (5)§车用焊接卡具分析 (5)§焊接夹具的分类 (6)§无驱动夹具 (6)§气动夹具和手动夹具 (6)§焊接夹具的结构设计 (7)§六点定位原则在车身焊装夹具上的应用 (7)§焊装夹具设计原则 (8)§焊装夹具的基本要求 (8)§工艺分析 (9)§车架的分析 (9)§基准的选择 (9)§制定工艺路线 (9)§定位、夹紧元件的选择 (11)§定位元件及定位方式的选择 (11)§工件的夹紧及对夹紧装置的要求 (13)§定位误差的分析与计算 (13)§工件的夹紧 (14)§夹紧装置的设计原则 (15)§夹紧力确定的基本原则 (16)§减小夹紧变形的措施 (18)第三章模具的设计 (20)§模具的发展与现状 (20)§国内模具的发展与现状 (20)§模具CAD/CAE/CAM技术 (22)§零件工艺性分析 (23)§材料选择 (23)§结构分析 (23)§工艺分析 (24)§ U形件弯曲模结构设计 (25)§模具的整体结构 (25)§凸、凹模的结构和固定形式 (25)§模具零件的设计与计算 (26)§凸、凹模的间隙 (26)§弯曲力计算 (27)§凸模长度的确定 (28)§凹模尺寸的确定 (28)§冲压设备的选用 (29)§冲压设备主要技术参数 (29)§冲压力的计算 (31)§选择压力机 (31)§模具强度和刚度的计算 (32)第四章结论 (35)参考文献 (36)致谢 (37)第一章绪论§赛事简介Formula SAE 赛事由美国汽车工程师协会(the Society of Automotive Engineers 简称SAE)主办。
毕业设计(论文)题目大学生方程式赛车设计(制动与行走系统设计)2013年5月30日大学生方程式赛车制动与行走系统设计摘要Formula SAE自1978年在美国第一次举办以来,现已成为一项顶尖的国际赛事。
按比赛规定,赛车必须在加速,制动和操控性能方面表现出色。
其中,为保障车辆和驾驶人员的安全,赛车的制动与行走系统设计显得尤为重要。
本文主要阐述了Formula SAE赛车的制动与行走系统设计过程。
本次设计参照上代及其他参赛团体的赛车,进行了整体优化。
本文在分析大赛规则及往届成型赛车的基础上,通过计算分析设计出制动与行走系统的总体方案。
其中,制动系统以制动器为核心,设计出制动操纵机构(踏板装置)及制动操纵驱动机构(II型液压双回路)。
行走系统以轮胎为核心,依次进行轮辋、轮毂、立柱的设计。
本次设计在分析研究国外经典赛车基础上,参照实物及经典模型,利用UG对各零件进行三维建模和装配,利用CAD、CAXA等软件建立模型进行运动干涉分析,保证设计的合理性及优良性。
最后,本次设计运用UG等软件,对制动系统中的连接件、紧固件、制动盘、制动踏板、制动油路等和行走系统中的立柱、轮毂、轮辋进行了仿真及有限元分析,并制造出样件,对样件装车试验,取得良好效果。
最终本设计的结果,确保了本赛车具有出色的制动性和在极限工况下的安全性。
关键词:赛车,制动及行走系统,优化,仿真,有限元分析COLLEGE STUDENTS'FORMULA RACINGBRAKE AND WALKING SYSTEM DESIGNABSTRACTFormula SAE held in the United States for the first time since 1978, has now become a top international event. The car's design must be in acceleration, braking and handling performance. Among them, in order to guarantee the safety of the vehicle and driver, braking and walking system design is especially important.This article mainly elaborated the Formula SAE racing car brake and walking system design process. Design with reference to the parent group and other participants of the car, on the whole optimization. Based on the analysis of the competition rules and past molding car, on the basis of analysis by calculation braking and walking system overall scheme are given. Among them, the braking system to brake as the core, designed the brake operating mechanism and brake control driving mechanism. Walking system to tire as the core, in turn to carry on the rim, hub, pillar design. Refer to physical objects and the classic case in design process, the parts to make use of UG three-dimensional modeling and assembly, optimize the braking control drive mechanism, using CAD, CAXA, such as motion interference analysis, to ensure the rationality of the design and the optimal benign.Using software such as UG, the design of the braking system of the fittings, fasteners, brake pedal, brake disc and walking system such as columns, in the hub, rim has carried on the simulation and finite element analysis, to ensure that this car has good brake and safety under limit conditions.KEY WORDS:car, brake and walking system, optimization, simulation, finite element analysis符号说明d轮缸活塞直径,mmwD主缸活塞直径,mmmF地面制动力,NBF制动踏板力,NpF车轮与地面的附着力,NϕG汽车前轴静负荷,N1G汽车后轴静负荷,N2h质心高度,mmgL轴距,mmL汽车质心离前轴的水平距离,mm1L汽车质心离后轴的水平距离,mm2m汽车总质量,kgaR车轮有效半径,mmer车轮滚动半径,mmeT制动器对车轮的制动力矩,N·mfp管路液压,MPaV主缸工作容积,mm3mV单个轮缸工作容积,mm3wv汽车行驶速度m/sx制动踏板行程,mmpZ地面对前轴的法向反力,N1Z地面对后轴的法向反力,N2β制动力分配系数ϕ同步附着系数δ制动轮缸的活塞行程,mmη踏板机构及制动主缸的机械效率目录第一章概述 (1)§1.1 大学生方程式赛车简介 (1)§1.2 制动系统的重要性 (1)§1.3 行走系统的功用 (1)第二章制动系设计 (3)§2.1 制动系应满足的主要要求 (3)§2.2 制动器的结构型式及选择 (3)§2.2.1 鼓式制动器 (4)§2.2.2 盘式制动器 (5)§2.3 制动系的主要参数及其选择 (7)§2.3.1 制动力与制动力分配系数 (7)§2.3.2 同步附着系数 (10)§2.3.3 制动器最大制动力矩 (10)§2.3.4 制动器因数 (11)§2.3.5 制动器的机构参数与摩擦系数 (11)第三章制动器的设计计算 (13)§3.1 摩擦衬块磨损特性的计算 (13)§3.2 制动器的热容量和温升的核算 (14)§3.3 盘式制动器制动力矩的计算 (16)§3.4 驻车制动计算 (17)第四章制动器主要零件的结构设计 (19)§4.1 制动盘 (19)§4.2 制动钳 (19)§4.3 制动块 (20)§4.4 摩擦材料 (21)§4.5 制动轮缸 (21)§4.6 制动器间隙的调整方法及相应机构 (21)第五章制动驱动机构的结构型式选择及设计计算 (23)§5.1 制动驱动机构的结构型式选择 (23)§5.2 制动管路的分路系统 (25)§5.3 液压制动驱动机构的设计计算 (26)§5.3.1 制动轮缸直径与工作容积 (26)§5.3.2 制动主缸直径与工作容积 (27)§5.3.3 制动踏板力与踏板行程 (28)§5.3.4 制动主缸的形式 (29)第六章行走系统的设计 (30)§6.1 汽车行驶系统概述 (30)§6.1.1 轮胎 (31)§6.1.2 轮辋 (31)§6.1.3 轮毂 (32)§6.1.4 立柱 (33)§6.2 强度校核 (34)§6.2.1 制动盘紧固螺栓的校核 (34)§6.2.2 轮毂螺栓的校核 (35)第七章结论 (37)参考文献 (38)致谢 (40)附录 (41)第一章概述§1.1 大学生方程式赛车简介目前,中国汽车工业已处于大国地位,但还不是强国。
基于CFD勺大学生方程式赛车身设计与计算i=r中国大学生方程式汽车大赛(简称“中国FSC )是一项由高等院校汽车工程或汽车相关专业在校学生组队参加勺汽车设计与制造比赛。
各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节勺比赛。
1车身勺设计要求和内容1.1 设计要求①赛车必须车轮外露和座舱敞开(方程式赛车式样),并且四个车轮不能在同一直线上;②除了驾驶舱必须开口以外,从赛车最前端到主防滚架(或者防火墙)勺这段空间里,不允许车身有其他勺开口。
允许在前悬架勺两件处有微小勺开口;③禁止车身前部有锐边或其它突出勺部件;④车身前部所以可能触碰车外人员身体的边缘,如车鼻等,都必须为半径至少为38mm(1.5 英寸)勺圆角,该圆角勺圆心角必须至少45 度(从正前方向顶部、底部和侧面等全部有影响的方向测量)。
1.2 内容今年的车身除了延续去年车身的优点之外,还将去年不足之处加以优化,比如说车身表面的光滑度,车身的流线,车身在细节处的处理。
并对设计进行了一些优化,进行了空气动力学套件的对比分析。
2车身有限元分析有限单元法是一种有效的数值分析方法。
其采用逼近的方法来模拟真实解,因此能以较高的精度来解决一些复杂问题,从而在工程分析领域被广泛应用。
2.1 车身三维模型的建立首先我们根据车架的尺寸绘制了车身的草图。
草图如下:图1 车身草图然后利用CATIA建立的车身的三维模型,模型如图所示。
图2 车身三维模型2.1 车身空气动力学仿真分析为了方便分析与网格划分,我们将车身三维模型简化。
在CATIA软件中建立分析域,来模拟风洞试验。
其中分析域尺寸,前2-3 倍车长,后5-7 倍车长,高5 倍车高,左右2-3 倍车宽。
利用CATIA与ANSYS软件的接口,将CATIA中所建立的模型导入到ANSYS^ ICEM-CF进行网格划分,最终生成网格数目为21 万个网格,并且网格质量都在0.3 以上,满足分析要求。
文章编号:2095-6835(2023)17-0100-04基于图像的大学生方程式赛车气动下压力系数测量马雨萧,赵伦康,吴佳奇(武汉理工大学,湖北武汉430000)摘要:在大学生方程式赛车大赛(FSC)中,空气动力学设计是赛车设计的重要环节,影响着赛车的动力性、经济性与操作稳定性等,其中赛车的气动下压力系数对圈速影响较大,是空气动力学套件设计的重点目标。
受限于大学生车队的客观条件,多数车队无法快速便捷地获取实车的下压力,CFD仿真与实车相互分离。
受“曹冲称象”启发,创新性地提出了基于图像的大学生方程式赛车下压力系数便捷测量方法,极大地降低了测量门槛,有助于各车队客观了解其赛车的实车下压力系数。
关键词:大学生方程式;空气动力学;图像法测下压力;赛车中图分类号:U469.696文献标志码:A DOI:10.15913/ki.kjycx.2023.17.0291研究背景1.1FSC空气动力学设计现状大学生方程式汽车大赛(FSC)自举办以来,已开展十余年。
随着大赛的开展,学生团队的赛车设计能力逐步提升。
其中,空气动力学设计是赛车设计的一项重要环节,良好的空气动力学设计可以提高赛车在弯中的附着,进而提高赛车在赛道中的极限,取得更快的圈速。
赛车的气动特性包含多个方面,如下压力系数、阻力系数、俯仰力矩等,其中下压力系数对圈速影响较大。
下压力系数与圈速关系图如图1所示。
从图1可知,更大的下压力系数往往能够带来更快的圈速表现,提高车队名次[1]。
图1下压力系数与圈速关系图在具体的设计工作中,首先需要对模型进行处理,去除复杂而细碎的零件,对整车模型进行简化,随后通过经验来设置CFD仿真参数,如面网格尺寸、加密区网格尺寸与范围、求解条件等。
经过这样的仿真,虽然可以与自己的设计进行横向对比与优化,但难以获知仿真的准确性。
此外,受制造成本和工艺限制,实车的空气动力学套件等也无法做到和CAD模型完全一致,这进一步增加了仿真与实车气动参数的误差。