广西各市2019年中考数学分类解析 专题7:统计与概率
- 格式:doc
- 大小:700.50 KB
- 文档页数:15
广西各2019年中考数学分类解析-专项7:统计与概率 专题7:统计与概率选择题1.〔2018广西北海3分〕在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。
从口袋中任意摸出一个球是红球的概率是:【】A 、16 B 、13 C 、12 D 、56【答案】B 。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,∵口袋中小球的总数为6,红球有2个, ∴从口袋中任意摸出一个球是红球的概率是21=63。
应选B 。
2.〔2018广西贵港3分〕在一次投掷实心球训练中,小丽同学5次投掷成绩〔单位:M 〕为:6、8、9、8、9。
那么关于这组数据的说法不正确的选项是【】A 、极差是3B 、平均数是8C 、众数是8和9D 、中位数是9【答案】D 。
【考点】极差,,平均数,中位数,众数。
【分析】根据极差,中位数,平均数和众数的定义分别计算即可解答:A 、极差是9-6=3,故此选项正确,不符合题意;B 、平均数为(6+8+9+8+9)÷5=8,故此选项正确,不符合题意;C 、∵8,9各有2个,∴众数是8和9,故此选项正确,不符合题意;D 、从小到大排列后,为6,8,8,9,9,中位数是8,故此选项错误,符合题意。
应选D 。
3.〔2018广西贵港3分〕从2、-1、-2三个数中任意选取一个作为直线Y =KX +1中的K 值,那么所得的直线不经过第三象限的概率是【】A 、13B 、12C 、23D 、1 【答案】C 。
【考点】概率公式,一次函数图象与系数的关系。
【分析】∵Y =KX +1,当直线不经过第三象限时K 《0,其中3个数中小于0的数有2个,因此概率为23。
应选C 。
4.〔2018广西桂林3分〕中考体育男生抽测项目规那么是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项、恰好抽中实心球和50米的概率是【】A、13B、16C、23D、19【答案】D。
2019年广西玉林市中考数学试卷以及逐题解析一、选择题:本大题共12小题,每小题3分,共36分. 1.(3分)9的倒数是( ) A .19B .19-C .9D .9-2.(3分)下列各数中,是有理数的是( ) A .πB .1.2C .2D .333.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是( )A .平行四边形B .正方形C .矩形D .圆4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( ) A .827810⨯B .927.810⨯C .102.7810⨯D .82.7810⨯5.(3分)若2945α=︒',则α的余角等于( ) A .6055︒'B .6015︒'C .15055︒'D .15015︒'6.(3分)下列运算正确的是( ) A .2325a a a += B .232a a a -=C .325()()a a a --=-D .324222(24)(2)2a b ab ab b a -÷-=- 7.(3分)菱形不具备的性质是( ) A .是轴对称图形 B .是中心对称图形 C .对角线互相垂直D .对角线一定相等8.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是() A .4B .2C .1D .2-9.(3分)如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有()A .3对B .5对C .6对D .8对10.(3分)定义新运算:(0)(0)pq q p q p q q ⎧>⎪⎪=⎨⎪-<⎪⎩⊕,例如:3355=⊕,33(5)5-=⊕,则2(0)y x x =≠⊕的图象是( )A .B .C .D .11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .812.(3分)已知抛物线21:(1)12C y x =--,顶点为D ,将C 沿水平方向向右(或向左)平移m 个单位,得到抛物线1C ,顶点为1D ,C 与1C 相交于点Q ,若160DQD ∠=︒,则m 等于( )A .43±B .23±C .2-或23D .4-或43二、填空题(共6小题,每小题3分,满分18分) 13.(3分)计算:(6)(4)--+= .14.(3分)样本数据2-,0,3,4,1-的中位数是 .15.(3分)我市博览馆有A ,B ,C 三个入口和D ,E 两个出口,小明入馆游览,他从A 口进E 口出的概率是 .16.(3分)如图,一次函数1(5)y k x b =-+的图象在第一象限与反比例函数2ky x=的图象相交于A ,B 两点,当12y y >时,x 的取值范围是14x <<,则k = .17.(3分)设01ba<<,则22242a b m a ab -=+,则m 的取值范围是 .18.(3分)如图,在矩形ABCD 中,8AB =,4BC =,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45︒,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB 边的碰撞次数是 .三、解答题(共8小题,满分66分) 19.(6分)计算:301231|(2)(cos60)π--+-︒.20.(6分)解方程:31 1(1)(2)xx x x-=--+.21.(6分)如图,已知等腰ABC∆顶角30A∠=︒.(1)在AC上作一点D,使AD BD=(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD∆是等腰三角形.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当180α=︒时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.23.(9分)如图,在ABC∆中,5AB AC==,6BC=,以AB为直径作O分别交于AC,BC于点D,E,过点E作O的切线EF交AC于点F,连接BD.(1)求证:EF是CDB∆的中位线;(2)求EF的长.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同. (1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?25.(10分)如图,在正方形ABCD 中,分别过顶点B ,D 作//BE DF 交对角线AC 所在直线于E ,F 点,并分别延长EB ,FD 到点H ,G ,使BH DG =,连接EG ,FH . (1)求证:四边形EHFG 是平行四边形;(2)已知:22AB =,4EB =,tan 23GEH ∠=,求四边形EHFG 的周长.26.(12分)已知二次函数:2(21)2(0)y ax a x a =+++<. (1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,(B A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置); (3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ∠=︒?如果存在,求出点P 的坐标;如果不存在,请说明理由.2019年广西玉林市中考数学试卷答案与解析一、选择题:本大题共12小题,每小题3分,共36分. 1.(3分)9的倒数是( ) A .19B .19-C .9D .9-【分析】直接利用倒数的定义得出答案. 【解答】解:9的倒数是:19.故选:A .【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键. 2.(3分)下列各数中,是有理数的是( ) A .πB .1.2C .2D .33【分析】直接利用有理数的定义分析得出答案. 【解答】解:四个选项中只有1.2是有理数. 故选:B .【点评】此题主要考查了实数,正确把握有理数的定义是解题关键. 3.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是( )A .平行四边形B .正方形C .矩形D .圆【分析】根据圆柱底面圆半径为2,高为2,即可得到底面直径为4,进而得出圆柱的左视图是长方形.【解答】解:圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C .【点评】本题主要考查了简单几何体的三视图,左视图是从物体的左面看得到的视图. 4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( ) A .827810⨯B .927.810⨯C .102.7810⨯D .82.7810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:278亿用科学记数法表示应为102.7810⨯, 故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.(3分)若2945α=︒',则α的余角等于( ) A .6055︒'B .6015︒'C .15055︒'D .15015︒'【分析】根据互为余角的定义作答. 【解答】解:2945α=︒',α∴的余角等于:9029456015︒-︒'=︒'.故选:B .【点评】本题考查了互为余角的定义:如果两个角的和为90︒,那么这两个角互为余角. 6.(3分)下列运算正确的是( ) A .2325a a a += B .232a a a -=C .325()()a a a --=-D .324222(24)(2)2a b ab ab b a -÷-=-【分析】直接利用合并同类项法则以及整式的乘除运算法则分别化简得出答案. 【解答】解:A 、325a a a +=,故此选项错误;B 、232a a -,无法计算,故此选项错误;C 、325()()a a a --=,故此选项错误;D 、324222(24)(2)2a b ab ab b a -÷-=-,正确.故选:D .【点评】此题主要考查了合并同类项以及整式的乘除运算,正确掌握相关运算法则是解题关键.7.(3分)菱形不具备的性质是( ) A .是轴对称图形B .是中心对称图形C .对角线互相垂直D .对角线一定相等【分析】根据菱形的性质对各个选项进行分析,从而得到答案. 【解答】解:A 、是轴对称图形,故正确;B 、是中心对称图形,故正确;C 、对角线互相垂直,故正确;D 、对角线不一定相等,故不正确;故选:D .【点评】本题考查了菱形的性质,熟练掌握菱形的性质是解题的关键.8.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是() A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值.【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=.9.(3分)如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有()A .3对B .5对C .6对D .8对【分析】图中三角形有:AEG ∆,ADC ∆,CFG ,CBA ∆,因为////AB EF DC ,//AD BC ,所以AEG ADC CFG CBA ∆∆∆∽∽∽,有6种组合【解答】解:图中三角形有:AEG ∆,ADC ∆,CFG ,CBA ∆,////AB EF DC ,//AD BC AEG ADC CFG CBA ∴∆∆∆∽∽∽共有6个组合分别为:AEG ADC ∴∆∆∽,AEG CFG ∆∽,AEG CBA ∆∆∽,ADC CFG ∆∽,ADC CBA ∆∆∽,CFG CBA ∆∽故选:C .【点评】本题主要考查相似三角形的判定.10.(3分)定义新运算:(0)(0)pq q p q p q q ⎧>⎪⎪=⎨⎪-<⎪⎩⊕,例如:3355=⊕,33(5)5-=⊕,则2(0)y x x =≠⊕的图象是( )A .B .C .D .【分析】根据题目中的新定义,可以写出2y x =⊕函数解析式,从而可以得到相应的函数图象,本题得以解决.【解答】解:(0)(0)pq q p q p q q⎧>⎪⎪=⎨⎪-<⎪⎩⊕,2(0)22(0)x xy x x x⎧>⎪⎪∴==⎨⎪-<⎪⎩⊕, 故选:D .【点评】本题考查函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答. 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【分析】设O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交O 于F ,此时垂线段OP 最短,MN 最小值为53OP OF -=,当N 在AB 边上时,M 与B 重合时,MN 最大值1013133=+=,由此不难解决问题. 【解答】解:如图,设O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -, 4AC =,3BC =, 5AB ∴=90OPB ∠=︒, //OP AC ∴点O 是AB 的三等分点, 210533OB ∴=⨯=,23OP OB AC AB ==,83OP ∴=, O 与AC 相切于点D , OD AC ∴⊥, //OD BC ∴,∴13OD OQ BC AB ==, 1OD ∴=,MN ∴最小值为85133OP OF -=-=,如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=, MN ∴长的最大值与最小值的和是6.【点评】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点MN 取得最大值、最小值时的位置,属于中考常考题型.12.(3分)已知抛物线21:(1)12C y x =--,顶点为D ,将C 沿水平方向向右(或向左)平移m 个单位,得到抛物线1C ,顶点为1D ,C 与1C 相交于点Q ,若160DQD ∠=︒,则m 等于( )A .43±B .23±C .2-或23D .4-或43【分析】根据平移的性质求得交点Q 的横坐标,代入C 求得纵坐标,然后根据题意和勾股定理得到,22222(1)(11)28m m m +-+-+=,解方程即可求得. 【解答】解:抛物线21:(1)12CC y x =--沿水平方向向右(或向左)平移m 个单位得到21(1)12y x m =---, (1,1)D ∴-,(1,1)D m +-,Q ∴点的横坐标为:22m +, 代入21(1)12y x =--求得2(2m Q +,21)8m -, 若160DQD ∠=︒,则1DQD ∆是等腰直角三角形,1||QD DD m ∴==,由勾股定理得,22222(1)(11)28m m m +-+-+=, 解得43m =±,【点评】本题考查了二次函数的性质,平移的性质,求得Q的坐标是解题的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(6)(4)--+=10-.【分析】根据有理数的减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(6)(4)(6)(4)10--+=-+-=-.故答案为:10-【点评】本题主要考查了有理数的加减法,熟练掌握法则是解答本题的关键.14.(3分)样本数据2-,0,3,4,1-的中位数是0.【分析】根据中位数的定义求解.【解答】解:按从小到大的顺序排列是:2-,1-,0,3,4.中间的是1.则中位数是:0.故答案是:0.【点评】本题考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(3分)我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是16.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为16;故答案为:16. 【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)如图,一次函数1(5)y k x b =-+的图象在第一象限与反比例函数2k y x=的图象相交于A ,B 两点,当12y y >时,x 的取值范围是14x <<,则k = 4 .【分析】根据题意知,将反比例函数和一次函数联立,A 、B 的横坐标分别为1、4,代入方程求解得到k 的值.【解答】解:由已知得A 、B 的横坐标分别为1,4,所以有54(5)4k b k k k b -+=⎧⎪⎨-+=⎪⎩ 解得4k =, 故答案为4.【点评】本题考查了一次函数和二次函数的交点问题,交点坐标适合两个解析式是解题的关键.17.(3分)设01b a<<,则22242a b m a ab -=+,则m 的取值范围是 11m -<< . 【分析】把22242a b a ab -+的分子、分母分别因式分解,约分后可得221a b b m a a-==-,再根据01b a <<即可确定m 的取值范围. 【解答】解:2224(2)(2)2212(2)a b a b a b a b b m a ab a a b a a-+--====-++, 01b a<<, 220b a ∴-<-<,2111b a∴--<, 即11m -<<.故答案为:11m -<<【点评】本题主要考查了分式的约分以及不等式的基本性质,熟练掌握分解因式的方法是解答本题的关键.18.(3分)如图,在矩形ABCD 中,8AB =,4BC =,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45︒,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB 边的碰撞次数是 672 .【分析】根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,201963363÷=⋯,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4) ∴它与AB 边的碰撞次数是3362672=⨯=次故答案为672【点评】本题主要考查了矩形的性质,点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.三、解答题(共8小题,满分66分)19.(6分)计算:3012|31|(2)(cos60)2π----+-︒. 【分析】先取绝对值符号、乘方、二次根式和零指数幂,再计算加减可得.【解答】解:原式31831=-+-+8=.【点评】本题主要考查实数的运算,解题的关键是掌握乘方的定义、绝对值性质、算术平方根的定义及零指数幂的规定.20.(6分)解方程:311(1)(2)x x x x -=--+. 【分析】化简所求方程为2231(2)(1)x x x x +-=+-,将分式方程转化为整式方程223(1)(2)x x x x +-=-+,解得1x =,检验方程的根即可求解;【解答】解:23(2)32311(1)(2)(1)(2)(2)(1)x x x x x x x x x x x x +-+--===--+-++-, 223(1)(2)x x x x ∴+-=-+,1x ∴=,经检验1x =是方程的增根,∴原方程无解;【点评】本题考查分式方程的解法;熟练掌握分式方程的解法,验根是关键.21.(6分)如图,已知等腰ABC ∆顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD ∆是等腰三角形.【分析】(1)作AB 的垂直平分线交AC 于D ;(2)利用等腰三角形的性质和三角形内角和计算出72ABC C ∠=∠=︒,再利用DA DB =得到36ABD A ∠=∠=︒,所以72BDC ∠=︒,从而可判断BCD ∆是等腰三角形.【解答】(1)解:如图,点D 为所作;(2)证明:AB AC =, 1(18036)722ABC C ∴∠=∠=︒-︒=︒, DA DB =,36ABD A ∴∠=∠=︒,363672BDC A ABD ∴∠=∠+∠=︒+︒=︒,BDC C ∴∠=∠,BCD ∴∆是等腰三角形.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定与性质.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是25; (2)当180α=︒时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.【分析】(1)求出低于80分的征文数量,再根据概率公式计算可得;(2)当180α=︒时,成绩是70分的人数为10人,据此求解可得;(3)根据题意得出各组人数进而求出平均数.【解答】解:(1)低于80分的征文数量为20(130%20%10%)8⨯---=,则抽到试卷的分数为低于80分的概率是82205=, 故答案为:25.(2)当180α=︒时,成绩是70分的人数为10人,则成绩是60分的人数201020(10%20%30%)2--⨯++=(人);(3)80分的人数为:2030%6⨯=(人),且80分为成绩的唯一众数,所以当70分的人数为5人时,这个班的平均数最大,∴最大值为:(2010%1002020%902030%80570360)2078.5⨯⨯+⨯⨯+⨯⨯+⨯+⨯÷=(分). 【点评】此题主要考查了概率公式以及扇形统计图的应用,正确获取信息得出各组人数是解题关键.23.(9分)如图,在ABC ∆中,5AB AC ==,6BC =,以AB 为直径作O 分别交于AC ,BC 于点D ,E ,过点E 作O 的切线EF 交AC 于点F ,连接BD .(1)求证:EF 是CDB ∆的中位线;(2)求EF 的长.【分析】(1)连接AE ,由圆周角定理得90ADB AEB ∠=∠=︒,由等腰三角形的性质得出3BE CE ==,证出OE 是ABC ∆的中位线,得出//OE AC ,得出//BD EF ,即可得出结论; (2)由勾股定理得出224AE AB BE =-=,由三角形面积得出245BC AE BD AC ⨯==,由三角形中位线定理即可得出11225EF BD ==. 【解答】(1)证明:连接AE ,如图所示:AB 为O 的直径,90ADB AEB ∴∠=∠=︒,AE BC ∴⊥,BD AC ⊥,AB AC =,3BE CE ∴==, EF 是O 的切线,OE EF ∴⊥,OA OB =,OE ∴是ABC ∆的中位线,//OE AC ∴,OE BD ∴⊥,//BD EF ∴,BE CE =,CF DF ∴=,EF ∴是CDB ∆的中位线;(2)解:90AEB ∠=︒, 2222534AE AB BE ∴=-=-=,ABC ∆的面积1122AC BD BC AE =⨯=⨯, 642455BC AE BD AC ⨯⨯∴===, EF 是CDB ∆的中位线,11225EF BD ∴==.【点评】本题考查了切线的性质、圆周角定理、等腰三角形的性质、三角形中位线定理、勾股定理等知识;熟练掌握切线的性质和圆周角定理是解题的关键.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?【分析】(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意列方程即可得到结论;(2)设至少再增加y 个销售点,根据题意列不等式即可得到结论.【解答】解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x ,根据题意得,22.5(1) 3.6x +=,解得:0.2x =, 2.2x =-(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)设至少再增加y 个销售点,根据题意得,3.60.32 3.6(120%)y +⨯+, 解得:94y , 答:至少再增加3个销售点.【点评】本题考查了一元二次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.25.(10分)如图,在正方形ABCD 中,分别过顶点B ,D 作//BE DF 交对角线AC 所在直线于E ,F 点,并分别延长EB ,FD 到点H ,G ,使BH DG =,连接EG ,FH .(1)求证:四边形EHFG 是平行四边形;(2)已知:22AB =,4EB =,tan 23GEH ∠=,求四边形EHFG 的周长.【分析】(1)证明()ABE CDF AAS ∆≅∆,得BE DF =,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)如图,连接BD ,交EF 于O ,计算EO 和BO 的长,得30OEB ∠=︒,根据三角函数可得HM 的长,从而得EM 和EH 的长,利用勾股定理计算FH 的长,最后根据四边的和计算结论.【解答】解:(1)四边形ABCD 是正方形,AB CD ∴=,//AB CD ,DCA BAC ∴∠=∠,//DF BE,CFD BEA∴∠=∠,BAC BEA ABE∠=∠+∠,DCA CFD CDF∠=∠+∠,ABE CDF∴∠=∠,在ABE∆和CDF∆中,ABE CDFAEB CFDAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS∴∆≅∆,BE DF∴=,BH DG=,BE BH DF DG∴+=+,即EH GF=,//EH GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,四边形ABCD是正方形,BD AC∴⊥,90AOB∴∠=︒,22AB=2OA OB∴==,Rt BOE∆中,4EB=,30OEB∴∠=︒,23EO∴=OD OB=,EOB DOF∠=∠,//DF EB,DFC BEA ∴∠=∠,()DOF BOE AAS ∴∆≅∆,OF OE ∴==EF ∴=,FM ∴=,6EM =,过F 作FM EH ⊥于M ,交EH 的延长线于M ,//EG FH ,FHM GEH ∴∠=∠,tan tan FM GEH FHM HM ∠=∠==,∴= 1HM ∴=,615EH EM HM ∴=-=-=,FH∴四边形EHFG 的周长222510EH FH =+=⨯++【点评】此题主要考查了正方形的性质,平行四边形的判定和性质,三角函数和全等三角形的判定等知识.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题,第二问有难度,恰当地作出辅助线是关键.26.(12分)已知二次函数:2(21)2(0)y ax a x a =+++<.(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,(B A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置); (3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ∠=︒?如果存在,求出点P 的坐标;如果不存在,请说明理由.【分析】(1)将解析式右边因式分解得抛物线与x 轴的交点为(2,0)-、1(a-,0),结合0a <即可得证;(2)结合(1)中一个交点坐标1(a -,0)及横坐标均为整数,且a 为负整数可得a 的值,从而得出抛物线解析式,继而求出点C 、D 坐标,从而画出函数图象;(3)分点P 在AC 上方和下方两种情况,结合45ACO ∠=︒得出直线PC 与x 轴所夹锐角度数,从而求出直线PC 解析式,继而联立方程组,解之可得答案.【解答】解:(1)2(21)2(2)(1)y ax a x x ax =+++=++,且0a <,∴抛物线与x 轴的交点为(2,0)-、1(a -,0), 则二次函数的图象与x 轴有两个交点;(2)两个交点的横坐标均为整数,且a 为负整数,1a ∴=-,则抛物线与x 轴的交点A 的坐标为(2,0)-、B 的坐标为(1,0),∴抛物线解析式为(2)(1)y x x =+-+22x x =--+219()24x =-++, 当0x =时,2y =,即(0,2)C ,函数图象如图1所示:(3)存在这样的点P ,2OA OC ==,45ACO ∴∠=︒,如图2,当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,75PCA ∠=︒,120PCO ∴∠=︒,60OCB ∠=︒,则30OEC ∠=︒,23tan 3OC OE OEC ∴==∠ 则(23E ,0),求得直线CE 解析式为32y =+, 联立2322y y x x ⎧=+⎪⎨⎪=--+⎩,解得02x y =⎧⎨=⎩或333353x y ⎧-=⎪⎪⎨-⎪=⎪⎩, 33(3P -∴,35)3-; 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,75ACP ∠=︒,45ACO ∠=︒,30OCF ∴∠=︒, 则323tan 2OF OC OCF =∠==, 23(F ∴,0), 求得直线PC 解析式为32y x =-+,联立2322y x y x x ⎧=-+⎪⎨=--+⎪⎩, 解得:02x y =⎧⎨=⎩或3131x y ⎧=⎪⎨=⎪⎩, (31P ∴,31),综上,点P 的坐标为33(-35-或(3131). 【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.。
2019年广西柳州市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共12 小题,每小题3分,合计36分.{题目}1.(2019年广西柳州市)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆 D .10.44×104辆{答案}C{解析}本题考查了科学记数法,104400=1.044×105,因此本题选C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年广西柳州市)如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.{答案}C{解析}本题考查了组合几何体的三视图,左视图就是从几何体左边看到的图形,从左看可得一个圆在长方形内,因此本题选C.{分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}3.(2019年广西柳州市)下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.当心吊物安全 B.当心触电安全 C.当心滑落安全 D .注意安全{答案}D{解析}本题考查了轴对称图形的判别,根据轴对称图形的定义A、B、C都不是轴对称图形,D 是轴对称图形,因此本题选D.{分值}3{章节:[1-13-1-1]轴对称}{考点:××}{考点:轴对称图形}{难度:1-最简单}{题目}4.(2019年广西柳州市)计算x(x 2-1)=( )A .x 3-1B .x 3-xC .x 3+xD . x 2-x {答案}B{解析}本题考查了整式的乘法,根据单项式乘多项式的法则,把单项式与多项式的每一项相乘,x(x 2-1)= x 3-x ,因此本题选B . {分值}3{章节:[1-14-1]整式的乘法} {考点:单项式乘以多项式} {类别:常考题} {难度:1-最简单}{题目}5.(2019年广西柳州市)反比例函数2y x的图像位于( ) A .第一、三象限 B .第二、三象限 C .第一、二象限 D .第二、四象限{答案}A{解析}本题考查了反比例函数的图像与性质,k=2>0,它的图像在第一、三象限,因此本题选A . {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的图象}{类别:思想方法}{类别:数学文化}{类别:北京作图}{类别:高度原创}{类别:发现探究}{类别:常考题}{类别:易错题}{类别:新定义}{难度:1-最简单}{难度:2-简单}{难度:3-中等难度}{难度:4-较高难度}{难度:5-高难度}{难度:6-竞赛题}{题目}6.(2019年广西柳州市)如图,A 、B 、C 、D 是圆上的点,则图中与∠A 相等的角是( )A .∠B B .∠C C .∠DEBD .∠D {答案}D{解析}本题考查了圆周角定理 ,同弧所对的圆周角相等,∠A 、∠D 都是弧BC 所对的圆周角,所以∠A=∠D ,因此本题选D . {分值}3{章节:[1-24-1-4]圆周角} {考点:圆周角定理} {类别:常考题} {难度:1-最简单}{题目}7.(2019年广西柳州市)如图, ABCD 中,全等三角形的对数共有( )CAA .2对B .3对C .4 对D .5 对{答案}C{解析}本题考查了平行四边形的性质和三角形全等的判定,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形,因此本题选C.{分值}3{章节:[1-18-1-1]平行四边形的性质}{考点:平行四边形边的性质}{考点:平行四边形角的性质}{考点:平行四边形对角线的性质}{考点:全等三角形的判定SSS}{考点:全等三角形的判定SAS}{考点:全等三角形的判定ASA,AAS}{类别:常考题}{难度:2-简单}阅读【资料】,完成第8、9题【资料】如图,这是根据公开资料整理绘制而成的2004—2018年中美两国国内生产总值(GDP)的直方图及发展趋势线(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数){题目}8.(2019年广西柳州市)依据【资料】中所提供的信息,2016—2018年中国GDP的平均值大约是()A.12.30 B.14.19 C.19.57 D .19.71{答案}A{解析}本题考查了求平均数和条形统计图,从条形统计图中获取2016—2018年中国GDP的值,则这三年的平均值为11.1912.2413.4612.303++≈,因此本题选A.{分值}3{章节:[1-20-1-1]平均数}{考点:算术平均数}{考点:条形统计图}{类别:常考题}{难度:2-简单}{题目}9.(2019年广西柳州市)依据【资料】中所提供的信息,可以推算出的GDP要超过美国,至少要到()A.2052 B.2038 C.2037 D .2034{答案}B{解析}本题考查了一次函数与一元一次不等式等知识,由统计图得:0.86x+0.468>0.53x+11.778,解得x>34,即到2038年GDP超过美国,因此本题选B.{分值}3{章节:[1-19-3]一次函数与方程、不等式}{考点:折线统计图}{考点:一次函数与一元一次不等式}{类别:常考题}{难度:2-简单}{题目}10.(2019年广西柳州市)已知A、B两地相距3千米,小黄从A地到B地,平均速度为4 千米/时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0) B.y=4x-3(x≥34) C.y=3-4x(x≥0) D .y=3-4x(0≤x≤34){答案}D{解析}本题考查了列函数关系式和自变量的取值范围,根据实际问题余下的路程=相距的路程-已走的路程,∴函数关系式为y=3-4x,总用时不超过34小时,∴自变量的取值范围为0≤x≤34,因此本题选D.{分值}3{章节:[1-19-1-1]变量与函数}{考点:函数关系式}{考点:函数自变量的取值范围}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}11.(2019年广西柳州市)小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指之和为偶数时小李获胜,那么小李获胜的概率为()A.1325B.1225C.425D .12{答案}A{解析}本题考查了列表法与树状图法以及概率公式,画树状图如下:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为,因此本题选A.{分值}3{章节:[1-25-2]用列举法求概率}{{考点:两步事件放回}{难度:3-中等难度}{题目}12.(2019年广西柳州市)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部,复数可以进行四则运算,运算的结果还是一个复数,例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是()A.-6 B.6 C.5 D .-5{答案}C{解析}本题考查了新定义,完全平方公式等知识,先读懂题意,利用完全平方公式得出(3﹣mi)2=9﹣6mi+m2i2,再根据新定义得出复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,由(3﹣mi)2的虚部是12得出m=﹣2,代入9﹣m2=9﹣(﹣2)2=9﹣4=5,因此本题选C.{分值}3{章节:[1-14-2]乘法公式}{考点:完全平方公式}{考点:新定义}{类别:高度原创}{类别:常考题}{类别:新定义}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6 小题,每小题 3 分,合计18分.{题目}13.(2019年广西柳州市)计算:7x-4x=___________.{答案}3x{解析}本题考查了合并同类项,根据合并同类项的法则计算,7x-4x=3x,因此本题填3x.{分值}3{章节:[1-2-2]整式的加减}{考点:合并同类项}{类别:常考题}{难度:1-最简单}{题目}14.(2019年广西柳州市)如图,若A B∥CD,则在图中所标注的角中,一定相等的角是___________.{答案}∠1=∠3{解析}本题考查了平行线的性质,A B∥CD,根据两直线平行,同位角相等得∠1=∠3,因此本题填∠1=∠3.{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行同位角相等}{类别:常考题}{难度:1-最简单}{题目}15.(2019年广西柳州市)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果,下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:0.01).{答案}0.95{解析}本题考查了用样本估计总体,在相同实验条件下,频率会逐步稳定在某一个值附近,本题发芽频率的值稳定在0.95附近,所以发芽率约是0.95,因此本题填0.95.{分值}3{章节:[1-25-3]用频率估计概率}{考点:用样本估计总体}{考点:利用频率估计概率}{类别:常考题}{难度:2-简单}{题目}16.(2019年广西柳州市)在半径为5 的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为___________.{答案}5{解析}本题考查了正多边形和圆,先根据题意画出图形,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5,因此本题填5.{分值}3{章节:[1-24-3]正多边形和圆}{考点:正多边形和圆}{难度:3-中等难度}{题目}17.(2019年广西柳州市)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为___________.{答案}{解析}本题考查了解直角三角形,过A作AD垂直于BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,,因此本题填.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形}{类别:思想方法}{类别:常考题}{难度:3-中等难度}{题目}18.(2019年广西柳州市)已知一组数据共有5 个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是___________.{答案}{解析}本题考查了方差、平均数、中位数、众数,∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,∵40﹣8﹣8﹣9=15,由方差是0.4得:前面的2个数的为7和8,∴最小的数是7,因此本题填7.{分值}3{章节:[1-20-2-1]方差}{考点:算术平均数}{考点:中位数}{考点:众数}{考点:方差}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题型:4-解答题}三、解答题:本大题共 8小题,合计66分.{题目}19.(2019年广西柳州市)计算:22+|﹣3|﹣+π0{解析}本题考查了乘方、绝对值、算术平方根、零次幂等知识,先计算乘方、绝对值、算术平方根和零指数幂,再计算加减.{答案}解:原式=4+3﹣2+1=6.{分值}6{章节:[1-15-2-3]整数指数幂}{难度:1-最简单}{类别:常考题}{类别:易错题}{考点:绝对值的意义}{考点:算术平方根}{考点:乘方运算法则}{考点:零次幂}{题目}20.(2019年广西柳州市)已知:∠AOB.求作:∠A′O′B′,使得∠A′O′B′=∠AOB.作法:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;④过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据上面的作法,完成以下问题:(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).证明:由作法可知O′C′=OC,O′D′=OD,D′C′=,∴△C′O′D′≌△COD()∴∠A′O′B′=∠AOB.(){解析}本题考查了尺规作图,全等三角形的判定和性质,(1)根据题目中的作法作出图形;(2)根据SSS得到两个三角形全等,从而得出∠A′O′B′=∠AOB.{答案}解:(1)如图所示,∠A′O′B′即为所求;(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,∴△C′O′D′≌△COD(SSS)∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)故答案为:DC,SSS,全等三角形的对应角相等.{分值}6{章节:[1-12-2]三角形全等的判定}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定SSS}{考点:与全等有关的作图问题}{题目}21.(2019年广西柳州市)据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1){解析}本题考查了扇形统计图和近似数和有效数字,(1)根据扇形统计图中义务教育段的经费所占的百分比乘以42557亿元即可得到结论;(2)用2017年全国教育经费总投入42557亿元除以(1+9.43%)得到2016年全国教育经费总投入.{答案}解:(1)42557×45%=19150.65亿元,答:义务教育段的经费总投入应该是19150.65亿元;(2)42557÷(1+9.43%)≈38.9亿元,答:2016年全国教育经费总投入约为38.8亿元.{分值}8{章节:[1-10-3]课题学习从数据谈节水}{难度:2-简单}{类别:常考题}{考点:扇形统计图}{题目}22.(2019年广西柳州市)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:{解析}本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定,连接AC,由SSS 证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,得出结论.{答案}解:证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.{分值}8{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:内错角相等两直线平行}{考点:全等三角形的性质}{考点:全等三角形的判定SSS}{考点:两组对边分别平行的四边形是平行四边形}{题目}23.(2019年广西柳州市)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?{解析}本题考查了分式方程的应用以及一元一次不等式的应用,(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,根据数量=总价÷单价结合用8元购买大本作业本的数量与用5元购买小本作业本的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设大本作业本购买m本,则小本作业本购买2m本,根据总价=单价×数量结合总费用不超过15元,即可得出关于m的一元一次不等式,解之取其中的最大整数值.{答案}解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.{分值}8{章节:[1-15-3]分式方程}{难度:3-中等难度}{类别:常考题}{考点:其他分式方程的应用}{考点:一元一次不等式的应用}{题目}24.(2019年广西柳州市)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2),将线段AB绕点A顺时针旋转90°得到线段AC,反比例函数y=(k≠0,x>0)的图象经过点C.(1)求直线AB和反比例函数y=(k≠0,x>0)的解析式;(2)已知点P是反比例函数y=(k≠0,x>0)图象上的一个动点,求点P到直线AB距离最短时的坐标.{解析}本题考查了反比例函数的图象及性质,(1)将点A(1,0),点B(0,2),代入y=mx+b,可求直线解析式;过点C作CD⊥x轴,根据三角形全等可求C(3,1),进而确定k;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+b=,当△=b2﹣24=0时,点P到直线AB距离最短.{答案}解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD (AAS),∴AD=AB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+b=,∴﹣2x2+bx﹣3=0,当△=b2﹣24=0时,b=,此时点P到直线AB距离最短;∴P(,).{分值}10{章节:[1-26-1]反比例函数的图像和性质}{难度:4-较高难度}{类别:思想方法}{类别:常考题}{考点:待定系数法求一次函数的解析式}{考点:反比例函数的解析式}{考点:反比例函数的图象}{考点:反比例函数的性质}{考点:反比例函数与一次函数的综合}{考点:坐标系内的旋转}{题目}25.(2019年广西柳州市)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且=,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM.{解析}本题考查了圆周角定理、垂径定理、全等三角形的判定与性质,相似三角形的判定和性质等知识,(1)连接BC,AC,AD,通过证明△ACE∽△CEB,可得,可求BE的长,即可求⊙O的半径;(2)通过证明△ADE≌△NDE,可得∠DAN=∠DNA,即可证BN=BF,可得△BNF为等腰三角形;(3)通过证明△ODE∽△ODM,可得DO2=OE•OM,通过证明△PCO∽△CEO,可得CO2=PO•ON,即可得结论.{答案}解:(1)如图1,连接BC,AC,AD,∵CD⊥AB,AB是直径,∴,CE=DE=CD=3,∴∠ACD=∠ABC,且∠AEC=∠CEB,∴△ACE∽△CEB,∴,∴,∴BE=9,∴AB=AE+BE=10,∴⊙O的半径为5;(2)∵=,∴∠ACD=∠ADC=∠CDF,且DE=DE,∠AED=∠NED=90°,∴△ADE≌△NDE(ASA),∴∠DAN=∠DNA,AE=EN,∵∠DAB=∠DFB,∠AND=∠FNB,∴∠FNB=∠DFB,∴BN=BF,∴△BNF是等腰三角形;(3)如图2,连接AC,CE,CO,DO,∵MD是切线,∴MD⊥DO,∴∠MDO=∠DEO=90°,∠DOE=∠DOE,∴△MDO∽△DEO∴,∴OD2=OE•OM,∵AE=EN,CD⊥AO,∴∠ANC=∠CAN,∴∠CAP=∠CNO,∵,∴∠AOC=∠ABF,∵CO∥BF,∴∠PCO=∠PFB,∵四边形ACFB是圆内接四边形,∴∠PAC=∠PFB,∴∠PAC=∠PFB=∠PCO=∠CNO,且∠POC=∠COE,∴△CNO∽△PCO,∴,∴CO2=PO•NO,∴ON•OP=OE•OM.{分值}10{章节:[1-27-1-2]相似三角形的性质}{难度:4-较高难度}{类别:思想方法}{类别:常考题}{考点:全等三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{考点:圆周角定理}{题目}26.(2019年广西柳州市)如图,直线y=x-3交x轴于点A,交y轴于点C,点B的坐标为(1,0),抛物线y=x2+bx+c(a≠0)经过A、B、C三点,抛物线的顶点为D,对称轴与x轴的交点为点E,点E关于原点的对称点为F,连接CE,以点F为圆心,12CE的长为半径作圆,点P为直线y=x-3上的一个动点.(1)求抛物线的解析式;(2)求△BDP周长的最小值;(3)若动点P与点C不重合,点Q为⊙F上的任意一点,当PQ的最大值等于32CE时,过PQ两点的直线与抛物线交于MN两点,点M在点N的左侧,求四边形ABMN的面积.{解析}本题考查了二次函数、一次函数、勾股定理、点的对称性、图形的面积计算等知识的综合运用,(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),代入抛物线的解析式求解;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,用对称求得B′的坐标,进而求出B′B的长,最后求得△BDP周长的最小值;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值, P在直线y=x﹣3上,设点P(m,m﹣3),利用PF=CE求出点P的坐标,进而得出直线PF的解析式,求得PF与抛物线的两个交点,则S四边形ABMN=S梯形NRSM减去S△ARN减去S△SBM.{答案}解:(1)直线y=x﹣3,令x=0,则y=﹣3,令y=0,则x=3,故点A、C的坐标为(3,0)、(0,﹣3),则抛物线的表达式为:y=a(x﹣3)(x﹣1)=a(x2﹣4x+3),则3a=﹣3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x﹣3…①;(2)过点B作直线y=x﹣3的对称点B′,连接BD交直线y=x﹣3于点P,直线B′B交函数对称轴与点G,连接AB′,则此时△BDP周长=BD+PB+PD=BD+B′B为最小值,D(2,1),则点G(2,﹣1),即:BG=EG,即点G是BB′的中点,过点B′(3,﹣2),△BDP周长最小值=BD+B′B=;(3)如图2所示,连接PF并延长交圆与点Q,此时PQ为最大值,点A、B、C、E、F的坐标为(3,0)、(1,0)、(0,﹣3)、(2,0)、(﹣2,0),则CE=,FQ=CE,则PF=CE﹣CE=,设点P(m,m﹣3),点F(﹣2,0),PF2=13=(m﹣2)2+(m﹣3)2,解得:m=1,故点P(1,﹣2),将点P、F坐标代入一次函数表达式并解得:直线PF的表达式为:y=﹣x﹣…②,联立①②并解得:x=,故点M、N的坐标分别为:(,)、(,),过点M、N分别作x轴的垂线交于点S、R,则S四边形ABMN=S梯形NRSM﹣S△ARN﹣S△SBM=.{分值}10{章节:[1-23-2-3]关于原点对称的点的坐标}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{类别:常考题}{考点:二次函数与圆的综合}{考点:一次函数的性质}{考点:勾股定理}{考点:最短路线问题}。
绝密★启用前7.下列图形,既是轴对称图形又是中心对称图形的是(( ) )广西省百色市 2019 年初中学业水平考试A.正三角形B.正五边形在此卷上答题无效C.等腰直角三角形D.矩形数学⎧12 - 2x<20⎩3x - 6≤08.不等式组⎨的解集是一、选择题(本大题共 12 小题,每小题 3 分,共 6 分,在每小题给出的四个选项中只有一项是符合要求的)A.-4<x≤6C.-4<x≤2B.x≤- 4或x>2D.2≤x<41.三角形的内角和等于A.90︒( ))9.抛物线y x2 + 6x 7 可由抛物线y x2 如何平移得到的=+=( )B.180︒C.270︒D.360︒A.先向左平移 3 个单位,再向下平移 2 个单位B.先向左平移 6 个单位,再向上平移 7 个单位C.先向上平移 2 个单位,再向左平移 3 个单位D.先回右平移 3 个单位,再向上平移 2 个单位2.如图,已知a∥b ,∠1=58︒,则∠2 的大小是(10.小韦和小黄进行射击比赛,各射击 6 次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是( ) A.122︒B.85︒C.58︒C.8D.32︒3.一组数据 2,6,4,10,8,12 的中位数是( ))A.6B.7 D.91x +1A.无解4.方程=1的解是(B.x =-1C.x = 0D.x =15.下列几何体中,俯视图不是圆的是( ) A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同11.下列四个命题:A.四面体B.圆锥C.球D.圆柱①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直6.一周时间有 604 800 秒,604 800 用科学记数法表示为( )A.6048⨯102C.6.048⨯106B.6.048⨯105D.0.6048⨯106其中逆命题是真命题的是A.①②③④B.①③④数学试卷第 2 页(共 6 页)( )C.①③D.①数学试卷第 1 页(共 6 页)( ), ( ),则线段 MN 的中点的坐标公式18.四边形具有不稳定性.如图,矩形 ABCD 按箭头方向变形成平行四边形 A 'B 'C 'D ', 12.阅读理解:已知两点 M x , y N x , y K (x , y ) 1 1 2 2 当变形后图形面积是原图形面积的一半时,则∠A ' = . x 1 + x y1 + y为:x = 2 ,y = 2 .如图,已知点 O 为坐标原点,点 A (-3, 0), 经过点2 2 ( ),则有a ,b 满足等式: 2.设 ( ),A ,点B 为弦 P A 的中点.若点 N x , y a 2 +b 2 = 9 B m ,n 2 则 m ,n 满足的等式是 ( )三、解答题(本大题共 8 小题,共 66 分,解答应写出文字说明、证明过程或演算步骤) 19.(6 分)计算: (-1)3 + 9 (π 112)0 2 3 tan 60︒ . - - - ⎛ m - 3⎫ ⎛ n ⎫22 A .m 2 + n 2 = 9 B . + = 9 ⎪ ⎪ ⎝ 2 ⎭⎝ 2 ⎭ ( + )2 + ( )2 = D . 2m 3 4n 2 = 9( + )2 + 3 4 C . 2m 3 2n 3 ÷ 的值,其中 m = -2019 . 20.(6 分)求式子 m - 3 m 2 - 9 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.-16 的相反数是 14.若式子 x -108 在实数范围内有意义,则 x 的取值范围是 15.编号为 2,3,4,5,6 的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是 16.观察一列数:-3,0,3,6,9,12,……,按此规律,这一列数的第 21 个数是 17.如图,△ABC 与△A 'B 'C '是以坐标原点 O 为位似中心的位似图形,若点 A 2,2 ),则△A 'B 'C '的面积为 ..( ), ( ),函 C 1,2 .21.(6 分)如图,已如平行四边形 OABC 中,点 O 为坐标顶点,点 A 3,0 .k 数 y = (k ≠ 0) 的图象经过点 C . ( ),x (1)求 k 的值及直线 OB 的函数表达式: (2)求四边形 OABC 的周长. ( ), ( ), ( .B 3, 4C 6,1 B ' 6,8 数学试卷 第 3 页(共 6 页) 数学试卷 第 4 页(共 6 页)22.(8 分)如图,菱形ABCD 中,作BE ⊥AD 、CF ⊥AB ,分别交AD、AB 的延长线于点E、F. 24.(10 分)一艘轮船在相距 90 千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用 6 小时,逆流航行比顺流航行多用 4 小时.在此卷上答题无效(1)求证:AE BF ;=( )求该轮船在静水中的速度和水流速度;1(2)若点E 恰好是AD 的中点,AB 2 ,求=BD的值. (2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?25.(10 分)如图,已知AC、AD 是的两条割线,AC 与交于B、C 两点,AD 过圆心O 且与交于E、D 两点,OB 平分∠AOC .(1)求证:△ACD∽△ABO ;23.(8 分)九年级(1)班全班 50 名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:(2)过点E 的切线交AC 于F,若EF∥OC ,编号人数一二三四五=OC 3 ,求EF 的值.[ 提示:a15 20 10 b( 2+ 1 ) -( 2]1:5已知前面两个小组的人数之比是.解答下列问题:(1)a +b =.(2)补全条形统计图:y =-x +b M (-2, 4),点O 为坐标原点,26.(12 分)已知抛物线y =mx2 和直线都经过点(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)y =-x +b点P 为抛物线上的动点,直线(1)求m、b 的值;与x 轴、y 轴分别交于A、B 两点.(2)当是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin∠BOP 的值.数学试卷第 5 页(共 6 页) 数学试卷第 6 页(共 6 页)广西省百色市 2019 年初中毕业学业考试数学答案解析一、选择题1.【答案】B【解析】因为三角形的内角和等于 180 度,故选:B.【考点】三角形的内角和定理2.【答案】C【解析】∵a∥b ,∴∠1=∠2,∵∠1= 58︒,∠2 = 58︒,∴故选:C.【考点】平行线的性质3.【答案】B【解析】将数据重新排列,再根据中位数的概念求解可得.将数据重新排列为 2、4、6、8、10、12,6 + 8= 7 ,所以这组数据的中位数为2故选:B.【考点】中位数4.【答案】C1 x +1-x x +1-1== 0,可得x = 0;【解析】移项可得1=1,x +11 x +1-x x +1-1== 0,∴移项可得∴x 0 ,=经检验x 0 是方程的根,=∴方程的根是x = 0 ;故选:C.【考点】方程式的解法5.【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.【考点】简单几何体的三视图6.【答案】B【解析】科学记数法的表示形式为a⨯10n 的形式,其中1≤a<10,为整数.确定的值时,要看把原数n n变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.数字 604 800 用科学记数法表示为6.048⨯105 .故选:B.【考点】科学计数法7.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形;故选:D.【考点】中心对称图形,轴对称图形8.【答案】C【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解不等式12 2x 20,得:x>- 4,-<解不等式3x - 6≤0 ,得: x ≤2 ,则不等式组的解集为 -4<x ≤2 .故选:C .【考点】解一元一次不等式组9.【答案】A【解析】按照“左加右减,上加下减”的规律求则可.因为 y = x 2 + 6x + 7 = (x + 3)2 - 2.y = x 2 先向左平移 3 个单位,再向下平移 2 个单位即可得到抛物线 y = x 2 + 6x + 7 . 所以将抛物线 故选:A .【考点】抛物线的平移,抛物线解析式的变化规律:左加右减,上加下减.10.【答案】A【解析】根据折线统计图得出两人成绩的波动幅度,结合众数、平均数和方差的定义逐一判断即可得. A ,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,C 选项错误;B .小韦成绩的众数为 10 环,小黄成绩的众数为 9 环,此选项错误;6 + 7⨯ 2 +10⨯3 257 + 8⨯ 2 + 9⨯3 25 D .小韦成绩的平均数为 故选:A .= ,小黄的平均成绩为 = ,此选项错误; 6 3 6 3【考点】折线统计图,方差,平均数11.【答案】C【解析】首先写出各个命题的逆命题,然后进行判断即可.①两直线平行,内错角相等;其命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C .【考点】写一个命题的逆命题的方法12.【答案】D【解析】根据中点坐标公式求得点 B 的坐标,然后代入 a ,b 满足的等式.∵点 A (-3,0 ),点 ( , ), 点 ( , )为弦 P A 的中点,Pa b B m n -3 + a 0 + b ∴ m =, n = . 2 2 ∴ a 2m 3, = + b = 2n . 又 a ,b 满足等式: a 2 +b 2 = 9,( + )2 + 4n 2 = 9 .∴ 2m 3故选:D . 【考点】坐标与图形性质二、填空题13.【答案】16【解析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可. -16 的相反数是 16.故答案为:16【考点】相反数的含义以及求法14.【答案】 x ≥108【解析】根据被开方数是非负数,可得答案.由 x -108 在实数范围内有意义,得 x -108≥0 .解得 x ≥108 ,故答案是: x ≥108 .【考点】二次根式有意义的条件3 15.【答案】 5【解析】直接利用概率公式求解可得.在这 5 个乒乓球中,编号是偶数的有 3 个,3 所以编号是偶数的概率为 , 53 故答案为: . 5【考点】概率公式16.【答案】57-3+ 3 n -1 = 3n - 6 ,据此求解可得.( ) 【解析】根据数列中的已知数得出这列数的第 n 个数为 -3+ 3 n -1 = 3n - 6 ,由题意知,这列数的第 n 个数为 ( ) 当 n 21时, = 3n -6 = 3⨯21-6 = 57,故答案为:57.【考点】数字的变化类17.【答案】18【解析】直接利用位似图形的性质得出对应点位置进而得出答案.∵△ABC 与△A 'B 'C '是以坐标原点 O 为位似中心的位似图形,点( ), A 2,2 ( ), ( ), ( ),C 6,1 B ' 6,8B 3,4 ∴ A '(4, 4), '(C 12, 2 ) , 1 1 1 ∴△A 'B 'C '的面积为: 6 8 ⨯ - ⨯ ⨯ - ⨯ ⨯ - ⨯ ⨯ = 2 4 6 6 2 8 18. 2 2 2故答案为:18.【考点】位似变换,三角形面积求法18.【答案】30︒【解析】根据矩形和平行四边形的面积公式可知,平行四边形 A 'B 'C 'D '的底边 AD 边上的高等于 AD 的一 半,据此可得∠A ' 为 30°.1 ∵ S 平行四边形ABCD = S 矩形ABCD ,2 ∴平行四边形 A 'B 'C 'D '的底边 AD 边上的高等于 AD 的一半,∠A ' = 30︒.∴故答案为:30°【考点】四边形的不稳定性,矩形与平行四边形的面积公式,30°角所对的直角边等于斜边的一半三、解答题19.【答案】原式 = -1+ 3-1- 2 3 ⨯ 3 =1- 2⨯3 = -5 ;【解析】根据实数的运算法则,特殊角的三角函数值,算术平方根的运算分别进行化简即可;【考点】本题考查实数的运算,零指数幂,特殊角的三角函数值( + )( - ) 3 m 3 m 3 20.【答案】原式 = ⋅ m - 3 43 = (m + 3) , 4当 m 2019 时,= 3 = ⨯(- + ) 2019 3 原式 4 3 = ⨯(-2016 ) 4= -1512.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将 m 的值代入计算可得.【考点】分式的化简求值k ( )在反比例函数21.【答案】(1)依题意有:点C 1, 2 的图象上, y = (k ≠ 0) x ∴k = xy = 2, ∵ ( A 3,0)∴ CB OA3, = = 又 CB ∥x 轴,∴ ( ),B 4,2y = ax 设直线 OB 的函数表达式为 ,∴ 2 = 4a ,1 ∴ a = , 21 ∴直线 OB 的函数表达式为 y = x ; 2(2)作CD OA 于点 ⊥ D ,∵(),C 1,2∴OC =12 + 22 = 5 ,在平行四边形OABC 中,CB =OA = 3,AB =OC = 5 ,∴四边形OABC 的周长为:3+ 3+ 5 + 5 = 6 + 2 5 ,即四边形OABC 的周长为6 + 2 5 .k【解析】(1)根据函数y=k(k ≠ 0)的图象经过点C,可以求得的值,再根据平行四边形的性质即可求得x点B 的坐标,从而可以求得直线OB 的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.【考点】待定系数法求反比例函数解析式,一次函数解析式,反比例函数图象上点的坐标特征,平行四边形的性质22.【答案】(1)证明:四边形ABCD 是菱形∴AB BC ,=AD∥BC∠=∠A CBF∵BE ⊥AD 、CF AB=∠∴⊥∴∠AEB BFC = 90︒∴△AEB≌△BFC (AAS)∴AE =BF(2)∵E 是AD 中点,且BE ⊥AD∴直线BE 为AD 的垂直平分线∴BD AB 2==【解析】(1)由“AAS”可证△AEB≌△BFC ,可得AE BF ;=(2)由线段垂直平分线的性质可得BD AB 2 .==【考点】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质+=-(++) =23.【答案】(1)由题意知a b 50 15 20 10 5,故答案为:5;(2)∵a 3,=b = 50 -3+15 + 20 +10 = 2()∴,∴a +b = 5,故答案为 5;(2)补全图形如下:(3)由题意得a 3,= b = 2.设第一组 3 位同学分别为A 、A 、A ,设第五组 2 位同学分别为B 、B ,1 2 3 1 28 25 由上图可知,一共有 20 种等可能的结果,其中两名同学是同一组的有 8 种,所求概率是:Pa +b = 50-15+ 20+10 = 5==.20【解析】(1)由题意知();(2)a 3,= b =50 -(3+15 +20 +10)=2,a+b=5;8 2(3)一共有 20 种等可能的结果,其中两名同学是同一组的有 8 种,所求概率是:P【考点】统计图与概率==.20 5 24.【答案】(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,⎧6(x + y ) = 90 ⎪ 依题意,得: ⎨ , ( + )( - ) = ⎪ 6 4 x⎩y 90 ⎧x =12 解得: ⎨ ⎩y = 3. 答:该轮船在静水中的速度是 12 千米/小时,水流速度是 3 千米/小时.(2)设甲、丙两地相距 a 千米,则乙、丙两地相距(90-a )千米,a 90 - a = 依题意,得: , 12 + 3 12 - 3225 解得: a = . 4225 答:甲、丙两地相距千米. 4 【解析】(1)设该轮船在静水中的速度是 x 千米/小时,水流速度是 y 千米/小时,根据路程=速度×时间,即 可得出关于 x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距 a 千米,则乙、丙两地相距( 90- a )千米,根据时间=路程÷速度,即可得出关于 a 的一元一次方程,解之即可得出结论.【考点】本题考查了二元一次方程组的应用,一元一次不等式的应用25.【答案】证明:(1)∵OB 平分∠AOC1 ∴∠BOE = ∠ AOC 2∵ OC OD= ∠ =∠OCDD ∴ ∵∠AOC =∠ +∠OCDD 1 ∠D = ∠ AOC ∴ ∴ 2∠ =∠BOE D ,且∠A =∠A∴△ACD ∽△ABO(2)∵EF 切于 E ∴∠OEF 90 = ︒ ∵ EF ∥OC∴∠DOC =∠OEF = 90︒∵ OC OD3 = =∴CD =OC2 +OD2 = 3 2∵△ACD∽△ABOAD CD=∴∴AO BOAE + 6 3 2=AE + 3 3∴AE = 3 2∵EF∥OCAE EF=∴∴AO OC3 2 EF=3 2 + 3 3∴EF = 6 -3 21=∠2【解析】(1)由题意可得∠BOE AOC D=∠,且∠A=∠A,即可证△ACD∽△ABO ;(2)由切线的性质和勾股定理可求CD 的长,由相似三角形的性质可求AE = 3 2 ,由平行线分线段成比例AE EF=EF 的值.可得,即可求AO OC【考点】相似三角形的判定和性质,圆的有关知识,勾股定理(-2, 4)代入,得:4 = 4m,26.【答案】(1)将M y =mx2∴m 1;=M -2,4()代入y=-x +b 4 = 2+b,将,得:∴b 2.=y =-x + 2(2)由(1)得:抛物线的解析式为y =x2 ,直线AB 的解析式为.当 y = 0时, -x + 2 = 0 ,解得: x 2 ,= ∴点 A 的坐标为(2,0), OA = 2. (x ,x 2 PM 2 = (-2 - x )2 + (4 - x 2 )2 = x 4 - 7x 2 + 4x + 20 .是以 AM 为底边的等腰三角形,) 2 (x )22 - x 0+ P 的 坐 标 为 , 则 P 2 A = 2 ( -) 4 = x 24 ,设 点 ∵ ∴ PA 2 = PM 2 ,即 x 4 + x 2 - 4x + 4 = x 4 -7x 2 + 4x + 20,整理,得: x 2 - x - 2 = 0,x = -1 x = 2 ,解得: , 1 2 ∴点 P 的坐标为( -1,1)或(2, 4). PN ⊥ y (3)过点 P 作 轴,垂足为点 N ,如图所示.当点 P 的坐标为(-1,1 )时, P N 1, PO = 12 +12 = 2 , = PN 2 ∴ sin ∠BOP = = ; PO 2当点 P 的坐标为(2, 4)时,PN = 2 , PO = 22 + 42 = 2 5 , PN PO 5 ∴ sin ∠BOP = = . 52 5 ∴满足(2)的条件时,sin ∠BOP 的值的值为或 . 2 5 【解析】(1)根据点 M 的坐标,利用待定系数法可求出 m ,b 的值;(2)由(1)可得出抛物线及直线 AB 的解析式,利用一次函数图象上点的坐标特征可求出点 A 的坐标,设点 P 的坐标为(x ,x 2 ,结合点 , 的坐标可得出 PA , PM 的值,再利用等腰三角形的性质可得出关于) A M 2 2x 的方程,解之即可得出结论;PN y(3)过点P 作轴,垂足为点N,由点P 的坐标可得出PN,PO 的长,再利用正弦的定义即可求出sin∠BOP的值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质,勾股定理,解直角三角绝密★启用前 5.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()广西北部湾经济区 2019 年初中学业水平考试在此卷上答题无效数学(本试卷满分120分,考试时间120分钟)一、选择题(本大题共 12 小题,毎小题 3 分,共 36 分,在毎小题给出的四个选项中只有一项是符合要求的)A. 60︒B.65︒C.75︒D.85︒6.下列运算正确的是A.(ab3 )2 =a2b6()B. 2 a+ b =ab3 51.如果温度上升2℃记作+2℃,那么温度下降3℃记作A. +2℃B. -2℃C. +3℃2.如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是(D. -3℃()C.5a2 -3a2 = 2D.(a+1)2=a2+1)7.如图,在△ABC中,AC =BC ,∠A = 40︒,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40︒B. 45︒C.50︒D.60︒8.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图A B C D书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆3.下列事件为必然事件的是A.打开电视机,正在播放新闻()的概率是()1A.3231929B. C. D.B.任意画一个三角形,其内角和是180︒C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上kx9.若点( 1, y ) ,(2, y ) ,(3, y ) 在反比例函数y-=(k 0) 的图象上,则y ,y ,y 的<1 2 3 1 2 3大小关系是()4.2019 年 6 月 6 日,南宁市地铁 3 号线举行通车仪式,预计地铁 3 号线开通后日均客流A. y >y >yB. y >y >y3 2 11 2 3量为 700 000 人次,其中数据 700 000 用科学记数法表示为A.70⨯104B. 7⨯105C.7⨯106()D. 0.7⨯10 6 C. y >y >y D. y >y >y2 3 11 3 2数学试卷第 1 页(共 8 页)数学试卷第 2 页(共 8 页)9 23 5 2 5510.扬帆中学有一块长30 m ,宽20 m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列A. B. C. D.10 3二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.若二次根式x + 4 有意义,则x 的取值范围是方程为().14.分解因式:3ax -ay =2 3 2 .15.甲,乙两人进行飞镖比赛,每人各投6 次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为 4,那么成绩较为稳定的是(填“甲”或“乙”). .3 1A. (30 -x)(20 -x) =⨯ 20⨯30B. (30 - 2x)(20 -x) =⨯ 20⨯304 416.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,1 3C.30x + 2⨯ 20x =⨯ 20⨯30D. (30 - 2x)(20 -x) =⨯ 20⨯304 4 =,则AH =已知BO 4,S= 24 .菱形ABCD11.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为 1.5 米,她先站在A 处看路灯顶端O 的仰角为35︒,再往前走 3 米站在C 处,看路灯顶端O 的仰角为65︒,则路灯顶端O 到地面的距离约为(已知sin 35︒≈ 0.6,cos35︒≈ 0.8 ,tan 35︒≈ 0.7 ,sin 65︒≈ 0.9 ,cos65︒≈ 0.4,tan 65︒≈ 2.1)()17.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为 1 寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为寸.A.3.2 米B.3.9 米C.4.7 米D.5.4 米12.如图,AB 为O的直径,BC 、CD 是O的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知AB = 2 5 ,BC = 2,当C E+D ECE的值最小时,则的值为()DE18.如图,AB 与CD 相交于点O ,AB =CD,∠AOC = 60︒,∠ACD +∠ABD = 210︒,则线段AB ,AC ,BD 之间的等量关系式为.数学试卷第 3 页(共 8 页)数学试卷第 4 页(共 8 页)分),收集数据如下: 1 班:90,70,80,80,80,80,80,90,80,100; 2 班:70,80,80,80,60,90,90,90,100,90; 3 班:90,60,70,80,80,80,80,90,100,100. 整理数据: 在此卷上答题无效 三、解答题共(本大题共 8 小题,共 66 分,解答应写岀文字说明,证明过程或演算步 骤) (-1) 3 + ( 6) 2 -(-9) + (-6) ÷2 . 分数 人数 19.(6 分)计算: 60 10 80 90 100 ⎧3x - 5 < x +1 ⎪ 20.(6 分)解不等式组: ⎨3x - 4 2x -1 ,并利用数轴确定不等式组的解集. 班级 1 班 ⎪ ⎩ 6 0 1 1 1 1 1 6 3 4 2 a 2 1 1 2 2 班 21.(8 分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2,-1) , 3 班 分析数据: B (1,-2) , C (3,-3) 平均数 中位数 众数 (1)将△ABC 向上平移 4 个单位长度得到△ A B C ,请画出△ A B C ; 1 1 1 1 1 1 1 班 2 班 3 班 83 83 b 80 c 80 d (2)请画出与△ABC 关于 y 轴对称的△ A B C ; 2 2 2 (3)请写出 A 、 A 的坐标. 1 2 80 80 根据以上信息回答下列问题: (1)请直接写出表格中 a ,b , c , d 的值; (2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由; (3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该 校七年级新生共 570 人,试估计需要准备多少张奖状? 23. (8 分)如图,△ABC 是 O 的内接三角形, AB 为 O 直径, AB = 6 , AD 平分 ∠BAC ,交 BC 于点 ,交 O 于点 ,连接 BD . E D 22.(8 分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共 10 题,每题 10 分.现分别从三个班中各随机取 10 名同学的成绩(单位:(1)求证:∠BAD = ∠CBD ; 数学试卷 第 5 页(共 8 页) 数学试卷 第 6 页(共 8 页)(2)若 ∠AEB =125︒ ,求 BD 的长(结果保留π ).26(. 10 分)如果抛物线C 的顶点在拋物线C 上,抛物线C 的顶点也在拋物线C 上时, 1 2 2 1 1 那么我们称抛物线C 与 C “互为关联”的抛物线.如图 1,已知抛物线 C : y = x 2 + x 1 2 1 1 4 与C y = ax + x + c 是“互为关联”的拋物线,点 A ,B 分别是抛物线C ,C 的顶 : 2 2 2 1 2 点,抛物线C 2 经过点 D (6,-1) . 24.(10 分)某校喜迎中华人民共和国成立 70 周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有 50 张,毎袋小红旗有 20 面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少 5 元,用 150 元购买贴纸所得袋数与用 200 元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(1)直接写出 A , B 的坐标和抛物线C 2 的解析式; (2)抛物线C 2 上是否存在点 E ,使得△ABE 是直角三角形?如果存在,请求出点 E 的坐标;如果不存在,请说明理由; (3)如图 2,点 F (-6,3) 在抛物线C 上,点 M ,N 分别是抛物线C ,C 上的动点, 1 1 2 (2)如果给每位演出学生分发国旗图案贴纸 2 张,小红旗 1 面.设购买国旗图案贴纸a 袋 (a 为正整数),则购买小红旗多少袋能恰好配套?请用含 a 的代数式表示.且点 M ,N 的横坐标相同,记△AFM 面积为 S 1(当点 M 与点 A ,F 重合时 S = 1 0) , △ABN 的面积为 S (当点 N 与点 A ,重合时 S = 0),令 S = S + S ,观察图象,当 (3)在文具店累计购物超过 800 元后,超出 800 元的部分可享受 8 折优惠.学校按(2)中的配套方案购买,共支付 w 元,求 w 关于 a 的函数关系式.现全校有 1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10 分)如图 1,在正方形 ABCD 中,点 E 是 AB 边上的一个动点(点 E 与点 A ,B不重合),连接CE ,过点 B 作 BF ⊥ CE 于点 G ,交 AD 于点 F .2 2 1 2 y ≤y 时,写出 x 的取值范围,并求出在此范围内 S 的最大值. 1 2 (1)求证:△ABF ≌△BCE ;(2)如图 2,当点 E 运动到 AB 中点时,连接 DG ,求证: DC = DG ;(3)如图 3,在(2)的条件下,过点C 作 CM ⊥ DG 于点 H ,分别交 AD , BF 于MN点 M , N ,求 的值.NH 数学试卷 第 7 页(共 8 页) 数学试卷 第 8 页(共 8 页)广西北部湾经济区 2019 年初中学业水平考试数学答案解析一、选择题1.【答案】D【解析】上升2℃记作+2℃,下降3℃记作-3℃;故选:D。
广西南宁市2019年中考[数学]考试真题与答案解析一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数是无理数的是( )AB .C .D .2.下列图形是中心对称图形的是( )A .B .C .D .3. 2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约次,则数据用科学记数法表示为( )A .B .C .D .4. 下列运算正确的是( )A .B .C .D .5. 以下调查中,最适合采用全面调查的是( )A .检测长征运载火箭的零部件质量情况B .了解全国中小学生课外阅读情况C .调查某批次汽车的抗撞击能力D .检测某城市的空气质量105-889000889000388.910⨯488.910⨯58.8910⨯68.8910⨯22422x x x +=3232x x x ⋅=()322x x =75222x x x ÷=6. 一元二次方程的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定7. 如图,在中,,观察图中尺规作图的痕迹,则的度数为( )A .B .C .D .8. 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A.B .C .D .9. 如图,在中,高,正方形一边在上,点分别在上,交于点则的长为( )A .B .C .D .2210x x -+=ABC V ,80BA BC B =∠=︒DCE ∠60o 65o 70o 75o16141312ABC V 120,BC =60AD =EFGH BC ,E F ,AB AC AD EF ,N AN 1520253010. 甲、乙两地相距提速前动车的速度为提速后动车的速度是提速前的倍,提速后行车时间比提速前减少则可列方程为( )A.B .C .D .11. 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )A .寸B .寸C .寸 D .寸12. 如图,点是直线上的两点,过两点分别作轴的平行线交双曲线于点.若,则的值为( )600,km /,vkm h 1.220,min 60016003 1.2v v -=60060011.23v v =-60060020 1.2v v-=600600201.2v v=-,kun CD 2C D AB 1110=AB 50.552101104,A B y x =,A B x ()10y x x=>,C D AC =223OD OC -A .B .C .D .二、填空题13.如图,在数轴上表示的的取值范围是_.14.计算.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数“射中环以上”的次数“射中环以上”的频率(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区共有排, 其中第排共有个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有排,则该礼堂的座位总数是__.17.以原点为中心,把点逆时针旋转得到点则点的坐标为___.18.如图,在边长为的菱形中,,点分别是上的动点,且与交于点.当点从点运动到点时,则点的运动路径长为__.54x =204010020040010009153378158321 80190.750.830.780.790.800.80812010()3,4M 90︒,N N ABCD 60C ∠=︒,E F ,AB AD ,AE DF DE =BF P E A B P三、解答题19. 计算:.20.先化简,再求值:,其中.21.如图,点在一条直线上,.求证:;连接,求证:四边形是平行四边形.22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取份答卷,并统计成绩(成绩得分用表示,单位:分),收集数据如下:整理数据:()()213142--+÷-⨯11x x x x +⎛⎫÷- ⎪⎝⎭3x =,,,B E C F ,,AB DE AC DF BE CF ===()1ABC DEF V V ≌()2AD ABED 20x 90,82,99,86,98,96,90,100,89,8387,88,81,90,93,100,100,96,92,1008085x ≤<8590x ≤<9095x ≤<95100x ≤≤34a8分析数据:平均分中位数众数根据以上信息,解答下列问题:直接写出上述表格中的值;该校有名家长参加了此次问卷测评活动,请估计成绩不低于分的人数是多少?请从中位数和众数中选择一个量, 结合本题解释它的意义.23.如图,一艘渔船位于小岛的北偏东方向,距离小岛的点处,它沿着点的南偏东的方向航行.渔船航行多远距离小岛最近(结果保留根号) ?渔船到达距离小岛最近点后,按原航向继续航行到点处时突然发生事故,渔船马上向小岛上的救援队求救,问救援队从处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器92bc()1,,a b c ()2160090()3B 30o 40nmile A A 15o ()1B ()2B C B B人公司研发出型和型两款垃圾分拣机器人,已知台型机器人和台型机器人同时工作共分拣垃圾吨,台型机器人和台型机器人同时工作共分拣垃圾吨.台型机器人和台型机器人每小时各分拣垃圾多少吨?某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾吨.设购买型机器人台,型机器人台,请用含的代数式表示;机器人公司的报价如下表:型号原价购买数量少于台购买数量不少于台型万元/台原价购买打九折型万元/台原价购买打八折在的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.25.如图,在中,以为直径的交于点连接且连接并延长交的延长线于点与相切于点.求证:是的切线:连接交于点,求证:;A B 2A 5B 2h 3.63A 2B 5h 8()11A 1B ()2A B 20A a 104()5a ≤≤B b a b ()33030A 20B 12()2w w ACE V AC O e CE ,D ,AD ,DAE ACE ∠=∠OD AE ,P PB O e B ()1AP O e ()2AB OP F FAD DAE V :V若,求的值.26.如图1,在平面直角坐标系中,直线与直线相交于点点是直线上的动点,过点作于点点的坐标为连接.设点的纵坐标为的面积为.当时,请直接写出点的坐标;关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.()312tan OAF ∠=AEAP1:1l y x =+2:2l x =-,D A 2l A 1AB l ⊥,B C ()0,3,,AC BC A ,t ABC V s ()12t =B ()2s t ()()215,15,44115,15t bt t t s a t t ⎧+-<->⎪=⎨⎪+--<<⎩或a b ()32l A ABC V A ABC V答案解析一、选择题123456789101112二、填空题12、[解析]设点,则为点为,则为两边同时平方,得ADCDABBCBACC(),A aa C 1,a a⎛⎫⎪⎝⎭B (),b b D 1,b b⎛⎫ ⎪⎝⎭11,BD b AC ab a∴=-=-AC =Q 11a b a b ⎫∴-=-⎪⎭22113a b a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭222211232a b a b ⎛⎫∴+-=-- ⎪⎝⎭22222211,OC a OD b a b=+=+Q18、[解析]方法一: 连接易证:得则四点共圆为的外接圆易求半径得从而点的路径长为 [此题还有特殊值法等多种技巧]三、解答题19.[答案]解:原式20.[答案]解:原式()22232OC OD ∴-=-2234OD OC -=∴,BD ,BFD DEA V V ≌60,BPE ∠=︒120,BPD ∠=︒180,C DPB ∴∠+∠=︒C B PD ∴、、、O ∴e CBD V Oe 2,R BD ==120,DOB ∠=︒P 120423603R ππ︒⋅=︒()1932=+÷-⨯()16=+-5=-211x x x x x ⎛⎫+=÷- ⎪⎝⎭当时,原式21.[答案]证明:即证明:四边形是平行四边形22.[答案](人)众数:在统计的问卷的成绩中,得分的人数最多.23. [答案]从点作垂线交于点.()()111x x x x x +=⋅+-11x =-3x =11312==-()1,BE CF =Q ,BE EC CF EC ∴+=+,BC EF =,AB DE AC DF==Q ()ABC DEF SSS ∴≅V V ()2()ABC DEF SSS ≅QV V ,B DEF ∴∠=∠//,AB DE ∴,BE DF =Q ∴ABED ()15,91,100a b c ===()()258200.65+÷=16000.651040⨯=()3100()1B AC BD AC D因为垂线段最短,上的点距离点最近,即为所求.易求:在中,易证答:从处沿南偏东出发,最短行程24.[答案]解:设台每小时分拣吨,台每小时分拣吨,依题意得:解得依题意得:AC D BAD )45,4540BAD AD BD ABsin mile ∠=︒==︒==()2Rt BDCV BD tan C DC ∠===30,C ∴∠=︒)30BD BC nmile sin ∴==︒15,60DBE DBC ∠=︒∠=︒45EBC DBC DBE ∴∠=∠-∠=oB 45o ()11A x 1B y ()()225 3.65328x y x y +=⎧⎪⎨+=⎪⎩0.40.2x y =⎧⎨=⎩()20.40.220,a b ÷=与是一次函数的关系,当时,当时,当时,综上,购买台,台,费用最少25.[答案]证明:为直径又为的切线连为圆的切线又弧弧()()()200.91210023545200.9120.81002303520120.810021,,,030a a a W a a a a a a ⨯+⨯-<≤⎧⎪=⨯+⨯-<≤⎨⎪⨯+⨯-≤≤⎩W a 1045a ≤<3545,45a a <≤=930min W =3035,35a a ≤≤=918min W =1030,10a a ≤<=968min W =35A 30B W ()1AC Q 90,ADC ∴∠=︒90,ACE CAD ∴∠+∠=︒90DAE DAC ∠+∠=o,OA AP ∴⊥AP ∴O e ()2,OB ,PA PB Q ,PA PB ∴=,OB OA OP OP ==()OBP OAP SSS ∴≅V V ,BOD DOA ∠=∠∴AD ∴DB =又在中,设:,故且即26. [答案]依题有,当时,故得当时,达到最大值,则代入得,FAD ACE ∴∠=∠,OF AB ∴⊥,ACE DAE ∠=∠Q ,90FAD DAE AFD ADE ∴∠=∠∠=∠=o ()FAD DAE AA ∴V :V ()3Rt OFA V 12tan OAF ∠=,2,OF x AF x OA ===2AP OA ==)1DF OD OF OA OF x =-=-=Q FAD DAEV :V ,FAD DAE ACE ∴∠=∠=∠,tan ACE tan FAD ∴∠=∠AE DF AC AF ==)(15AE x ⇒==AE AP ∴==()111,22B ⎛⎫- ⎪⎝⎭()27t =4,s =215774,44b ⨯+-=1b =-2t =S 11193232224OAC OBC S S S =-=⨯⨯-⨯⨯=V V S ()()921254a +-=解得若为的直角顶点,则此时的方程为,令得,此时若为的直角顶点,过作垂线交于则在中,由勾股定理得14a =-()3)i A ABC V 1//,AC l AC 3y x =+2x =-()12,1A -AC ==122ABC S ==V )ii C ABC V B 2l 2l (),2,E A t -()1312,,2,1,,222t t t E D B ---⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭Rt ABC V 222AC BC AB +=即解得:或此时或;或当为的直角顶点,此种情况不存在,当在上方时为锐角,当在下方时,为钝角,故不存在()222222313123322222t t t t t t ----⎛⎫⎛⎫⎛⎫⎛⎫+-++-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭212270t t ⇒-+=3t =9t =()22,3A -()32,9A -122ABC S AC BC =⨯⨯=V 1102ABC S =⨯=V )iii B ABC V A D ABC ∠A D ABC ∠。
广西桂林市2019年中考[数学]考试真题与答案解析一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.有理数2,1,﹣1,0中,最小的数是( )A.2B.1C.﹣1D.02.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是( )A.40°B.50°C.60°D.70°3.下列调查中,最适宜采用全面调查(普查)的是( )A.调查一批灯泡的使用寿命B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率D.调查全班同学的身高4.下面四个几何体中,左视图为圆的是( )A.B.C.D.5.若=0,则x的值是( )A.﹣1B.0C.1D.26.因式分解a2﹣4的结果是( )A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)7.下列计算正确的是( )A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x28.直线y=kx+2过点(﹣1,4),则k的值是( )A.﹣2B.﹣1C.1D.29.不等式组的整数解共有( )A.1个B.2个C.3个D.4个10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是( )A.60°B.65°C.70°D.75°11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是( )A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=11012.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是( )A.πB.πC.2πD.2π二、填空题本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上。
广西各2019年中考数学分类解析-专项7:统计与概率专题7:统计与概率一、选择题1.〔2018广西北海3分〕在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。
从口袋中任意摸出一个球是红球的概率是:【】 A 、16B 、13C 、12D 、56【答案】B 。
【考点】概率。
【分析】依照概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值确实是其发生的概率。
因此, ∵口袋中小球的总数为6,红球有2个, ∴从口袋中任意摸出一个球是红球的概率是21=63。
应选B 。
2.〔2018广西贵港3分〕在一次投掷实心球训练中,小丽同学5次投掷成绩〔单位:m 〕为:6、8、9、8、9。
那么关于这组数据的说法不.正确的选项是......【】 A 、极差是3 B 、平均数是8 C 、众数是8和9 D 、中位数是9 【答案】D 。
【考点】极差,,平均数,中位数,众数。
【分析】依照极差,中位数,平均数和众数的定义分别计算即可解答:A 、极差是9-6=3,故此选项正确,不符合题意;B 、平均数为(6+8+9+8+9)÷5=8,故此选项正确,不符合题意;C 、∵8,9各有2个,∴众数是8和9,故此选项正确,不符合题意;D 、从小到大排列后,为6,8,8,9,9,中位数是8,故此选项错误,符合题意。
应选D 。
3.〔2018广西贵港3分〕从2、-1、-2三个数中任意选取一个作为直线y =kx +1中的k 值,那么所得的 直线不.通过..第三象限的概率是【】 A 、13B 、12C 、23D 、1【答案】C 。
【考点】概率公式,一次函数图象与系数的关系。
4.〔2018广西桂林3分〕中考体育男生抽测项目规那么是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项、恰好抽中实心球和50米的概率是【】A、13B、16C、23D、19【答案】D。
专题16 统计与概率1.(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【答案】D【解析】由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录,④整理借阅图书记录并绘制频数分布表,③绘制扇形图来表示各个种类所占的百分比,①从扇形图中分析出最受学生欢迎的种类,故选D.2.(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】A.扇形统计图能反映各部分在总体中所占的百分比,此选项说法正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1–40%=60%,超过50%,此选项说法正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项说法错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1–40%–10%–20%)=108°,此选项说法正确;故选C.【名师点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.3.(2019•安徽)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A.60 B.50 C.40 D.15【答案】C【解析】由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选C.【名师点睛】本题主要考查众数,熟练掌握众数的定义是解题的关键.4.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【答案】B【解析】由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选B.5.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【答案】D【解析】A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【名师点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.1【答案】B【解析】由表格可得,30名学生平均每天阅读时间的中位数是:0.90.92=0.9,30名学生平均每天阅读时间的众数是0.7,故选B.【名师点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.7.(2019•河南)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【解析】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选C.【名师点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.【名师点睛】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.9.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.10.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11.(2019•广西)下列事件为必然事件的是A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【答案】B【解析】∵A,C,D选项中的事件均为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选B.【名师点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(2019•海南)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是A.12B.34C.112D.512【答案】D【解析】∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P=2560=512,故选D.【名师点睛】本题考查了概率,熟练掌握概率公式是解题的关键.13.(2019•宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为__________小时.【答案】1.15【解析】由图可知,该班一共有学生:8+16+12+4=40(人),该班学生这天用于体育锻炼的平均时间为:(0.5×8+1×16+1.5×12+2×4)÷40=1.15(小时).故答案为:1.15.【名师点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数.14.(2019•山西)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是__________.【答案】扇形统计图【解析】要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图.【名师点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.15.(2019•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是__________.(填“甲”或“乙”)【答案】甲【解析】甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【名师点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n [(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.(2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【答案】(1)23;(2)77.5;【解析】(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m=77782+=77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×515850++=224(人).【名师点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.18.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【答案】(1)“1台机器在三年使用期内维修次数不大于10”的概率为0.6.(2)购买1台该机器的同时应一次性额外购10次维修服务更合适.【解析】(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6.(2)购买10次时,此时这100台机器维修费用的平均数y1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300;购买11次时,此时这100台机器维修费用的平均数y2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.19.(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【答案】(1)13.(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为23.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为:13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为69=23.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.【答案】(1)这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;②乙组两次都拿到8元球的概率为12.【解析】(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为12.【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.。
2019年广西贵港市中考数学试卷一、选择题(本大题共12小题,共36.0分)1. 计算(-1)3的结果是( )A. −1B. 1C. −3D. 32. 某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是( ) A. B. C. D.3. 若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是( )A. 9,9B. 10,9C. 9,9.5D. 11,104. 若分式x 2−1x +1的值等于0,则x 的值为( )A. ±1B. 0C. −1D. 15. 下列运算正确的是( )A. x 3+(−x )3=−x 6B. (x +x )2=x 2+x 2C. 2x 2⋅x =2x 3D. (xx 2)3=x 3x 5 6. 若点P (m -1,5)与点Q (3,2-n )关于原点成中心对称,则m +n 的值是( )A. 1B. 3C. 5D. 77. 若α,β是关于x 的一元二次方程x 2-2x +m =0的两实根,且1x +1x =-23,则m 等于( )A. −2B. −3C. 2D. 38. 下列命题中假命题是( )A. 对顶角相等B. 直线x =x −5不经过第二象限C. 五边形的内角和为540∘D. 因式分解x 3+x 2+x =x (x 2+x )9. 如图,AD 是⊙O 的直径,xx⏜=xx ⏜,若∠AOB =40°,则圆周角∠BPC 的度数是( )A. 40∘B. 50∘C. 60∘D. 70∘10. 将一条宽度为2cm 的彩带按如图所示的方法折叠,折痕为AB ,重叠部分为△ABC (图中阴影部分),若∠ACB =45°,则重叠部分的面积为( )A. 2√2xx 2B. 2√3xx 2C. 4xx 2D. 4√2xx 211. 如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( ) A. 2√3B. 3√2C. 2√6D. 512. 如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为S 1,S 2,则下列结论错误的是( )A. x 1+x 2=xx 2B. 4x =2xxC. xx =4xxD. cos ∠xxx =35 二、填空题(本大题共6小题,共18.0分)13. 有理数9的相反数是______.14. 将实数3.18×10-5用小数表示为______.15. 如图,直线a ∥b ,直线m 与a ,b 均相交,若∠1=38°,则∠2=______.16. 若随机掷一枚均匀的骰子,骰子的6个面上分别刻有1,2,3,4,5,6点,则点数不小于3的概率是______.17. 如图,在扇形OAB 中,半径OA 与OB 的夹角为120°,点A 与点B 的距离为2√3,若扇形OAB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.18. 我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,且b 2-4a >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2-2x -3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当-1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大;④当x =-1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4.其中正确结论的个数是______.三、解答题(本大题共8小题,共66.0分)19. (1)计算:√4-(√3-3)0+(12)-2-4sin30°; (2)解不等式组:{6x −2>2(x −4)23−3−x 2≤−x 3,并在数轴上表示该不等式组的解集.20. 尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC ,请根据“SAS ”基本事实作出△DEF ,使△DEF ≌△ABC .21. 如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =x x (x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值;(2)求△ACE 的面积.为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x 分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分) 频数(人) 频率51≤x <61a 0.1 61≤x <7118 0.18 71≤x <81b n 81≤x <9135 0.35 91≤x <10112 0.12 合计 100 1(1)填空:a =______,b =______,n =______;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x ≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.22.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?23.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.24.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,-5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.25.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=√2,求线段PA+PF的最小值.(结果保留根号)答案和解析1.【答案】A【解析】解:(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选:A.本题考查有理数的乘方运算.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.2.【答案】B【解析】解:从正面看去,一共两列,左边有2竖列,右边是1竖列.故选:B.先细心观察原立体图形中正方体的位置关系,从正面看去,一共两列,左边有2竖列,右边是1竖列,结合四个选项选出答案.本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力.3.【答案】C【解析】解:将数据重新排列为8,9,9,9,10,10,11,11,∴这组数据的众数为9,中位数为=9.5,故选:C.根据众数和中位数的概念求解可得.本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.【答案】D【解析】解:==x-1=0,∴x=1;故选:D.化简分式==x-1=0即可求解;本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.5.【答案】C【解析】解:a3+(-a3)=0,A错误;(a+b)2=a2+2ab+b2,B错误;(ab2)3=a3b5,D错误;故选:C.利用完全平方公式,合并同类项法则,幂的乘方与积的乘方法则运算即可;本题考查整式的运算;熟练掌握完全平方公式,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.6.【答案】C【解析】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故选:C.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.7.【答案】B【解析】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.利用一元二次方程根与系数的关系得到α+β=2,αβ=m,再化简+=,代入即可求解;本题考查一元二次方程;熟练掌握一元二次方程根与系数的关系是解题的关键.8.【答案】D【解析】解:A.对顶角相等;真命题;B.直线y=x-5不经过第二象限;真命题;C.五边形的内角和为540°;真命题;D.因式分解x3+x2+x=x(x2+x);假命题;故选:D.由对顶角相等得出A是真命题;由直线y=x-5的图象得出B是真命题;由五边形的内角和为540°得出C是真命题;由因式分解的定义得出D是假命题;即可得出答案.本题考查了命题与定理、真命题和假命题的定义:正确的命题是真命题,错误的命题是假命题;属于基础题.9.【答案】B【解析】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.根据圆周角定理即可求出答案.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.10.【答案】A【解析】解:如图,过B作BD⊥AC于D,则∠BDC=90°,∵∠ACB=45°,∴∠CBD=45°,∴BD=CD=2cm,∴Rt△BCD中,BC==2(cm),∴重叠部分的面积为×2×2=2(cm),故选:A.过B作BD⊥AC于D,则∠BDC=90°,依据勾股定理即可得出BC的长,进而得到重叠部分的面积.本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【答案】C【解析】解:设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴DE=4,=,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴=,设AE=2y,AC=3y,∴=,∴AD=y,∴=,∴CD=2,故选:C.设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出=,从而可求出CD的长度.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.12.【答案】D【解析】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠ECH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,∴HQ∥AB,∴=,即=,∴HQ=x,∴CD-HQ=x-x=x,∴cos∠HCD===,故结论D错误,故选:D.根据勾股定理可判断A;连接CF,作FG⊥EC,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.本题考查了正方形的性质,三角形全等的判定和性质三角形相似的判定和性质,勾股定理的应用以及平行线分线段成比例定理,作出辅助线构建等腰直角三角形是解题的关键.13.【答案】-9【解析】解:9的相反数是-9;故答案为-9;根据相反数的求法即可得解;本题考查相反数;熟练掌握相反数的意义与求法是解题的关键.14.【答案】0.0000318【解析】解:3.18×10-5=0.0000318;故答案为0.0000318;根据科学记数法的表示方法a×10n(1≤a<9)即可求解;本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.15.【答案】142°【解析】解:如图,∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠2=180°-38°=142°.故答案为142°.如图,利用平行线的性质得到∠2=∠3,利用互补求出∠3,从而得到∠2的度数.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.【答案】23【解析】解:随机掷一枚均匀的骰子有6种等可能结果,其中点数不小于3的有4种结果,所以点数不小于3的概率为=,故答案为:.骰子六个面出现的机会相同,求出骰子向上的一面点数不小于3的情况有几种,直接应用求概率的公式求解即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.【答案】23【解析】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2, ∵=2πr , ∴r= 故答案是:利用弧长=圆锥的周长这一等量关系可求解.本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.18.【答案】4【解析】解:①∵(-1,0),(3,0)和(0,3)坐标都满足函数y=|x 2-2x-3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当-1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x 轴的两个交点,根据y=0,求出相应的x 的值为x=-1或x=3,因此④也是正确的;⑤从图象上看,当x <-1或x >3,函数值要大于当x=1时的y=|x 2-2x-3|=4,因此⑤时不正确的;故答案是:4由(-1,0),(3,0)和(0,3)坐标都满足函数y=|x 2-2x-3|,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的; 根据函数的图象和性质,发现当-1≤x ≤1或x ≥3时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据y=0,求出相应的x 的值为x=-1或x=3,因此④也是正确的;从图象上看,当x <-1或x >3,函数值要大于当x=1时的y=|x 2-2x-3|=4,因此⑤时不正确的;逐个判断之后,可得出答案.理解“鹊桥”函数y=|ax 2+bx+c|的意义,掌握“鹊桥”函数与y=|ax 2+bx+c|与二次函数y=ax 2+bx+c 之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数y=ax 2+bx+c 与x 轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.19.【答案】解:(1)原式=2-1+4-4×12 =2-1+4-2=3;(2)解不等式6x -2>2(x -4),得:x >-32,解不等式23-3−x 2≤-x 3,得:x ≤1, 则不等式组的解集为-32<x ≤1,将不等式组的解集表示在数轴上如下:【解析】(1)先计算算术平方根、零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:如图,△DEF 即为所求.【解析】先作一个∠D=∠A ,然后在∠D 的两边分别截取ED=BA ,DF=AC ,连接EF 即可得到△DEF ; 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.21.【答案】解:(1)由已知可得AD =5,∵菱形ABCD ,∴B (6,0),C (9,4), ∵点D (4,4)在反比例函数y =x x (x >0)的图象上,∴k =16,将点C (9,4)代入y =23x +b ,∴b =-2;(2)E (0,-2),直线y =23x -2与x 轴交点为(3,0),∴S △AEC =12×2×(2+4)=6; 【解析】(1)由菱形的性质可知B (6,0),C (9,4),点D (4,4)代入反比例函数y=,求出k ;将点C (9,4)代入y=x+b ,求出b ;(2)求出直线y=x-2与x 轴和y 轴的交点,即可求△AEC 的面积;本题考查反比例函数、一次函数的图象及性质,菱形的性质;能够将借助菱形的边长和菱形边的平行求点的坐标是解题的关键.22.【答案】10 25 0.25【解析】解:(1)a=100×0.1=10,b=100-10-18-35-12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人), 答:全校获得二等奖的学生人数90人.(1)利用×这组的频率即可得到结论;(2)根据(1)求出的数据补全频数分布直方图即可;(3)利用全校2500名学生数×考试成绩为91≤x ≤100考卷占抽取了的考卷数×获得二等奖学生人数占获奖学生数即可得到结论.本题考查的是频数分布直方图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据,也考查了利用样本估计总体的思想.23.【答案】解:(1)设这两年藏书的年均增长率是x ,5(1+x )2=7.2,解得,x 1=0.2,x 2=-2.2(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(7.2-5)×20%=0.44(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5×5.6%+0.447.2×100%=10%, 答:到2018年底中外古典名著的册数占藏书总量的10%.【解析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.24.【答案】(1)证明:∵在矩形ABCD 中,∠ABO =∠OCE =90°,∵OE ⊥OA ,∴∠AOE =90°,∴∠BAO +∠AOB =∠AOB +∠COE =90°,∴∠BAO =∠COE ,∴△ABO ∽△OCE , ∴xx xx =xx xx ,∵OB =OC ,∴xx xx =xx xx , ∵∠ABO =∠AOE =90°,∴△ABO ∽△AOE ,∴∠BAO =∠OAE ,过O 作OF ⊥AE 于F ,∴∠ABO =∠AFO =90°,在△ABO 与△AFO 中,{∠xxx =∠xxx∠xxx =∠xxx xx =xx,∴△ABO ≌△AFO (AAS ),∴OF =OB ,∴AE 是半圆O 的切线;(2)解:∵AF 是⊙O 的切线,AC 是⊙O 的割线,∴AF 2=AP •AC ,∴AF =√2(2+4)=2√3,∴AB =AF =2√3,∵AC =6,∴BC =√xx 2−xx 2=2√6,∴AO =√xx 2+xx 2=3,∵△ABO ∽△AOE , ∴xx xx =xx xx ,∴3xx =2√33, ∴AE =3√32. 【解析】(1)根据已知条件推出△ABO ∽△OCE ,根据相似三角形的性质得到∠BAO=∠OAE ,过O 作OF ⊥AE 于F ,根据全等三角形的性质得到OF=OB ,于是得到AE 是半圆O 的切线;(2)根据切割线定理得到AF==2,求得AB=AF=2,根据勾股定理得到BC==2,AO==3,根据相似三角形的性质即可得到结论. 本题考查了切线的判定和性质,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.25.【答案】解:(1)函数表达式为:y =a (x =4)2+3,将点B 坐标代入上式并解得:a =-12,故抛物线的表达式为:y =-12x 2+4x -5;(2)A (4,3)、B (0,-5),则点M (2,-1),设直线AB 的表达式为:y =kx -5,将点A 坐标代入上式得:3=4k -5,解得:k =2,故直线AB的表达式为:y=2x-5;m2+4m-5),(3)设点Q(4,s)、点P(m,-12①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,m2+4m-5)向左平移2个单位、向下平移4个单位得到Q(4,s),同样点P(m,-12m2+4m-5-4=s,即:m-2=4,-12解得:m=6,s=-3,故点P、Q的坐标分别为(6,1)、(4,-3);②当AM是平行四边形的对角线时,m2+4m-5+s,由中点定理得:4+2=m+4,3-1=-12解得:m=2,s=1,故点P、Q的坐标分别为(2,1)、(4,1);故点P、Q的坐标分别为(6,1)或(2,1)、(4,-3)或(4,1).【解析】(1)函数表达式为:y=a(x=4)2+3,将点B坐标代入上式,即可求解;(2)A(4,3)、B(0,-5),则点M(2,-1),设直线AB的表达式为:y=kx-5,将点A 坐标代入上式,即可求解;(3)分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.26.【答案】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED =∠A ′CE +∠CA ′E =45°+15°=60°,∴∠CEA ′=120°,∵FE 平分∠CEA ′,∴∠CEF =∠FEA ′=60°,∵∠FCO =180°-45°-75°=60°,∴∠FCO =∠A ′EO ,∵∠FOC =∠A ′OE ,∴△FOC ∽△A ′OE , ∴xx x ′x =xx xx ,∴xx xx =x ′xxx, ∵∠COE =∠FOA ′,∴△COE ∽△FOA ′,∴∠FA ′O =∠OEC =60°,∴△A ′OF 是等边三角形,∴CF =CA ′=A ′F ,∵EM =EC ,∠CEM =60°,∴△CEM 是等边三角形,∠ECM =60°,CM =CE ,∵∠FCA ′=∠MCE =60°,∴∠FCM =∠A ′CE ,∴△FCM ≌△A ′CE (SAS ),∴FM =A ′E ,∴CE +A ′E =EM +FM =EF .(2)解:如图2中,连接A ′F ,PB ′,AB ′,作B ′M ⊥AC 交AC 的延长线于M .由②可知,∠EA ′F =′EA ′B ′=75°,A ′E =A ′E ,A ′F =A ′B ′,∴△A ′EF ≌△A ′EB ′,∴EF =EB ′,∴B ′,F 关于A ′E 对称,∴PF =PB ′,∴PA +PF =PA +PB ′≥AB ′,在Rt △CB ′M 中,CB ′=BC =√2AB =2,∠MCB ′=30°,∴B ′M =12CB ′=1,CM =√3,∴AB′=√xx2+x′x2=√(√2+√3)2+12=√6+2√6.∴PA+PF的最小值为√6+2√6.【解析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
广西各市2019年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (2018广西北海3分)在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。
从口袋中任意摸出一个球是红球的概率是:【 】 A .16B .13C .12D .56【答案】B 。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,∵口袋中小球的总数为6,红球有2个, ∴从口袋中任意摸出一个球是红球的概率是21=63。
故选B 。
2. (2018广西贵港3分)在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m )为:6、8、9、8、9。
则关于这组数据的说法不正确...的是【 】 A .极差是3 B .平均数是8 C .众数是8和9 D .中位数是9 【答案】D 。
【考点】极差,,平均数,中位数,众数。
【分析】根据极差,中位数,平均数和众数的定义分别计算即可解答:A .极差是9-6=3,故此选项正确,不符合题意;B .平均数为(6+8+9+8+9)÷5=8,故此选项正确,不符合题意;C .∵8,9各有2个,∴众数是8和9,故此选项正确,不符合题意;D .从小到大排列后,为6,8,8,9,9,中位数是8,故此选项错误,符合题意。
故选D 。
3. (2018广西贵港3分)从2、-1、-2三个数中任意选取一个作为直线y =kx +1中的k 值,则所得的直线不经过...第三象限的概率是【 】 A .13B .12C .23D .1【答案】C 。
【考点】概率公式,一次函数图象与系数的关系。
中随机抽取一项;从50米、50×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是【】A.13B.16C.23D.19【答案】D。
【考点】列表法或树状图法,概率。
【分析】画出树状图或列表,然后根据图表即可求得所有等可能的结果与恰好抽中实心球和50米的情况,利用概率公式即可求得答案:画树状图得:∵共有9种等可能的结果,恰好抽中实心球和50米的有1种情况,∴恰好抽中实心球和50米的概率是:19。
故选D。
5. (2018广西河池3分)下列事件是必然事件的是【】A.打开电视机,正在播放新闻联播B.数据2,4,7,2,5的众数是7C.某种彩票中奖率是1%,买这种彩票100张一定会中奖D.两直线平行,同位角相等【答案】D。
【考点】必然事件。
【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.必然事件就是一定发生的事件。
因此,A.打开电视机,正在播放新闻联播,是随机事件;B.因为数据2,4,7,2,5的众数是2,所以数据2,4,7,2,5的众数是7,是不可能事件;C.某种彩票中奖率是1%,就是说中奖的概率是1%,机会较小,但也有可能发生,但买这种彩票100张不一定会中奖,是随机事件;D .两直线平行,同位角相等,是必然事件。
故选D 。
6. (2018广西来宾3分)在一个不透明的袋子中,装有形状、质地、大小等完全相同的1个黑球、2个白球、3个黄球、4个红球.从中随机抽取一个,那么取出的小球是黄球的概率是【 】A .110 B .15 C .310 D .25【答案】C 。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,∵袋子中小球共有1+2+3+4=10个,黄球有3个, ∴从中随机抽取一个,取出的小球是黄球的概率是310。
故选C 。
7. (2018广西南宁3分)下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是【 】 A .①② B .①③ C .②④ D .②③ 【答案】B 。
【考点】调查方法的选择。
【分析】全面调查就是对需要调查的对象进行逐个调查。
这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长。
抽样调查是从需要调查对象的总体中,抽取若干个个体即样本进行调查,并根据调查的情况推断总体的特征的一种调查方法。
抽样调查可以把调查对象集中在少数样本上,并获得与全面调查相近的结果。
这是一种较经济的调查方法,因而被广泛采用。
根据全面调查和抽样调查的特点,适宜采用抽样调查方式的是“①调查一批灯泡的使用寿命”和“③调查市场上某种食品的色素含量是否符合国家标准”。
故选B 。
8. (2018广西玉林、防城港3分)市农科所收集统计了甲、乙两种甜玉米各10块试验田的亩产量后,得到其方差分别是 2s 0.002=甲 、2s0.01=乙,则【 】A. 甲比乙的亩产量稳定B.乙比甲的亩产量稳定C.甲、乙的亩产量的稳定性相同D.无法确定哪一种的亩产量更稳定 【答案】A 。
【考点】方差【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
因此,∵22s s <乙甲,∴甲比乙的亩产量稳定。
故选A 。
9. (2018广西玉林、防城港3分)一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于的方程2x px q 0++=有实数根的概率是【 】 A.21 B. 31 C. 32 D. 65【答案】A 。
【考点】画树状图法或列表法,概率,一元二次方程根的判别式。
【分析】画树状图:∵p、q 组成的一元二次方程共有6个:2x x 10-+=,2x x 20-+=,2x x 10+-=,2x x 20++=,2x 2x 10+-=,2x 2x 10++=,其中,2x x 10-+=,2x x 20-+=,2x x 20++=的根的判别式小于0,方程无实数根,2x x 10+-=,2x 2x 10+-=的根的判别式大于0,方程有两个不相等的实数根,2x 2x 10++=的根的判别式等于0,方程有两个相等的实数根,即满足关于的方程2x px q 0++=有实数根的情况有3种,∴满足关于的方程2x px q 0++=有实数根的概率是31=62。
故选A 。
二、填空题1. (2018广西北海3分)一组数据:1、-1、0、4的方差是 ▲ 。
【答案】3.5。
【考点】方差。
【分析】先求出该组数据的平均数,再根据方差公式求出其方差:∵1x 110414=-++=(), ∴2222211S [11110141]419 3.544=-+++-+-=++=()()()()()。
2. (2018广西桂林3分)数据:1,1,3,3,3,4,5的众数是 ▲ . 【答案】3。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是3,故这组数据的众数为3。
3. (2018广西河池3分)有六张分别印有等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为 ▲ . 【答案】12。
【考点】概率公式,中心对称图形,轴对称图形。
【分析】先找出既是中心对称图形,又是轴对称图形的卡片数再除以总的卡片数即为所求的概率:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片中既是中心对称图形,又是轴对称图形的卡片有正方形、矩形、正六边形共3张,∴抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为31=62。
4. (2018广西来宾3分)数据组:26,28,25,24,28,26,28的众数是 ▲ . 【答案】28。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是28,故这组数据的众数为28。
5. (2018广西柳州3分)某校篮球队在一次定点投篮训练中进球情况如图,那么这个对的队员平均进球 个数是 ▲ .【答案】6。
【考点】加权平均数。
【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数:根据题意得:⨯+⨯+⨯+⨯=+++1445184761414。
6. (2018广西南宁3分)在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是S甲2=1.5,S乙2=2.5,那么身高更整齐的是▲ 队(填“甲”或“乙”).【答案】甲。
【考点】方差。
【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
因此,∵S甲2<S乙2,∴两队中身高更整齐的是甲队。
7. (2018广西钦州3分)某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是▲ .【答案】1 25。
【考点】概率公式。
【分析】让习惯用左手写字的学生数除以学生总数即为所求的概率:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,则老师随机抽1名同学,共50种情况,而习惯用左手字手的同学被选中的有2种,∴其概率为21 5025=。
三、解答题1. (2018广西北海8分)去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图。
根据统计图中的信息,解答下列问题:(1)本次调查的样本容量是___________,调查中“了解很少”的学生占___________%;(2)补全条形统计图;(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议。
【答案】解:(1)50,50。
(2)∵“基本了解”的学生为50×30%=15(人),∴补全条形统计图如图:(3)该校“很了解”北海的历史文化的学生约有900×10%=90(人)。
(4)不了解和很少了解的约占60﹪,说明同学们对北海历史文化关注不够,建议加强有关北海历史文化的教育,多种形式的开展有关活动。
【考点】扇形统计图,条形统计图,频数、频率和总量的关系,用样本估计总体。
【分析】(1)根据扇形图可知“了解很少”占50%,用“了解很少”的频数除以“了解很少”的百分比即可得到样本容量:25÷50%=50(人)。