人教版高中数学必修1第1章第一章 集合与函数概念复习课教案
- 格式:doc
- 大小:634.37 KB
- 文档页数:9
最新人教版高一数学必修1第一章《复习》教案本章的研究内容主要包括集合和函数的基本知识,以及抽象函数和复合函数的相关问题。
通过整合这些知识,可以帮助学生系统化、网络化地理解数学概念,培养他们的理性思维能力和抽象思维能力。
在研究过程中,我们将注重培养学生的分析、探究、思考能力,帮助他们综合运用基本知识解决问题。
同时,我们也会激发学生对数学的兴趣,培养他们的合作、交流和创新意识。
本章的教学重点包括集合与函数的基本知识,含字母问题的研究,以及抽象函数的理解。
教学难点则在于分类讨论的标准和抽象函数的理解。
为了更好地进行教学,我们准备了多媒体课件和投影仪,并计划用两个课时来完成本章的教学任务。
在教学过程中,我们首先对第一章的知识点进行了回顾,包括集合的含义、表示法、元素与集合的关系,集合间的基本关系以及函数的概念和表示方法等等。
我们还介绍了函数的单调性、奇偶性以及应用问题的解法。
在解决函数应用题的过程中,我们需要遵循“设、列、解、答”的步骤,即先分析题意设出变量,然后列出关系式建立函数模型,接着运用函数的性质解出要求的量,最后回到原实际问题作答。
这些步骤可以用框图来表示。
通过本章的研究,我们希望学生能够掌握集合和函数的基本知识,理解抽象函数和复合函数的相关问题,并能够综合运用这些知识解决实际问题。
同时,我们也希望能够培养学生的分析、探究、思考能力,激发他们对数学的兴趣和创新意识。
当涉及到多个变量时,需要寻找与所求量(y)之间的关系式。
确定一个自变量(x),并通过题目中的条件用x表示其他变量,最终得到函数模型y=f(x)。
在证明集合相等时,需要同时满足A包含于B和B包含于A。
判断两个函数是否相同,需要考虑它们的定义域和对应法则。
函数表达式可以通过定义法、换元法和待定系数法求得。
函数的定义域可以通过列出使函数有意义的自变量的不等式来求解。
常见的依据包括分母不为0、偶次根式中被开方数不小于0以及实际问题的实际意义。
⼈教课标版⾼中数学必修1第⼀章集合与函数概念集合教案课题:1.1集合-集合的概念(1)教学⽬的:(1)使学⽣初步理解集合的概念,知道常⽤数集的概念及记法(2)使学⽣初步了解“属于”关系的意义(3)使学⽣初步了解有限集、⽆限集、空集的意义教学重点:集合的基本概念及表⽰⽅法教学难点:运⽤集合的两种常⽤表⽰⽅法——列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的⼀个重要的基本概念在⼩学数学中,就渗透了集合的初步概念,到了初中,更进⼀步应⽤集合的语⾔表述⼀些问题在⼏何中⽤到的有点集⾄于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运⽤,基本的逻辑知识在⽇常⽣活、学习、⼯作中,也是认识问题、研究问题不可缺少的⼯具这些可以帮助学⽣认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在⾼中数学的最开始,是因为在⾼中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使⽤数学语⾔的基础例如,下⼀章讲函数的概念与性质,就离不开集合与逻辑本节⾸先从初中代数与⼏何涉及的集合实例⼊⼿,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常⽤表⽰⽅法,包括列举法、描述法,还给出了画图表⽰集合的例⼦这节课主要学习全章的引⾔和集合的基本概念学习引⾔是引发学⽣的学习兴趣,使学⽣认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有⼀个初步认识教科书给出的“⼀般地,某些指定的对象集在⼀起就成为⼀个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:⼀、复习引⼊:1.简介数集的发展,复习最⼤公约数和最⼩公倍数,质数与和数;2.教材中的章头引⾔;3.集合论的创始⼈——康托尔(德国数学家)(见附录);4.“物以类聚”,“⼈以群分”;5.教材中例⼦(P4)⼆、讲解新课:阅读教材第⼀部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表⽰的?(3)集合中元素的特性是什么?(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的.我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:⼀般地,某些指定的对象集在⼀起就成为⼀个集合. 1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0 的集,表⽰成Z *3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、⑴集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… ⑵“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数(不确定)(2)好⼼的⼈(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是⾮零实数,那么bb aa +可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证: (1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,⽽x1不⼀定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2 ∵a ∈Z, b ∈Z,c ∈Z, d ∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d)2 ∈G ,⼜∵211b a x +==2222222b a b b a a --+-且22222,2ba bb a a ---不⼀定都是整数,∴211b a x +==2222222b a b b a a --+-不⼀定属于集合G四、⼩结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,⽆序性 3.常⽤数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:⼋、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3⽉3⽇⽣于圣彼得堡,1918年1⽉6⽇病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时⼊瑞⼠苏黎世⼤学,翌年⼊柏林⼤学,主修数学,1866年曾去格丁根学习⼀学期1867年以数论⽅⾯的论⽂获博⼠学位年在哈雷⼤学通过讲师资格考试,后在该⼤学任讲师,1872年任副教授,1879年任教授由于研究⽆穷时往往推出⼀些合乎逻辑的但⼜荒谬的结果(称为“悖论”),许多⼤数学家唯恐陷进去⽽采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的⽆穷宣战他靠着⾟勤的汗⽔,成功地证明了⼀条直线上的点能够和⼀个平⾯上的点⼀⼀对应,也能和空间中的点⼀⼀对应这样看起来,1厘⽶长的线段内的点与太平洋⾯上的点,以及整个地球内部的点都“⼀样多”,后来⼏年,康托尔对这类“⽆穷集合”问题发表了⼀系列⽂章,通过严格证明得出了许多惊⼈的结论康托尔的创造性⼯作与传统的数学观念发⽣了尖锐冲突,遭到⼀些⼈的反对、攻击甚⾄谩骂有⼈说,康托尔的集合论是⼀种“疾病”,康托尔的概念是“雾中之雾”,甚⾄说康托尔是“疯⼦”来⾃数学权威们的巨⼤精神压⼒终于摧垮了康托尔,使他⼼⼒交瘁,患了精神分裂症,被送进精神病医院真⾦不怕⽕炼,康托尔的思想终于⼤放光彩1897年举⾏的第⼀次国际数学家会议上,他的成就得到承认,伟⼤的哲学家、数学家罗素称赞康托尔的⼯作“可能是这个时代所能夸耀的最巨⼤的⼯作”可是这时康托尔仍然神志恍惚,不能从⼈们的崇敬中得到安慰和喜悦1918年1⽉6⽇,康托尔在⼀家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产⽣了探索⽆穷集和超穷数的兴趣康托尔肯定了⽆穷数的存在,并对⽆穷问题进⾏了哲学的讨论,最终建⽴了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创⽴了集合论作为实数理论,以⾄整个微积分理论体系的基础17世纪⽜顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创⽴微积分理论体系之后,在近⼀⼆百年时间⾥,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等⼈进⾏的微积分理论严格化所建⽴的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的⽼师,对康托尔表现了⽆微不⾄的关怀他⽤各种⽤得上的尖刻语⾔,粗暴地、连续不断地攻击康托尔达⼗年之久他甚⾄在柏林⼤学的学⽣⾯前公开攻击康托尔⼀个薪⾦较⾼、声望更⼤的教授职位使得康托尔想在柏林得到职位⽽改善其地位的任何努⼒都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个⼈,⽽且还不只我⼀⼈,认为重要之点在于,切勿引进⼀些不能⽤有限个⽂字去完全定义好的东西集合论是⼀个有趣的“病理学的情形”,后⼀代将把(Cantor)集合论当作⼀种疾病,⽽⼈们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施⽡兹,康托尔的好友,由于反对集合论⽽同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很⾃卑,甚⾄怀疑⾃⼰的⼯作是否可靠他请求哈勒⼤学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒⼤学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着⼿研究数学中最困难的问题之⼀⼀般π次⽅程求解问题许多数学家为之耗去许多精⼒,但都失败了直到1770年,法国数学家拉格朗⽇对上述问题的研究才算迈出重要的⼀步伽罗华在前⼈研究成果的基础上,利⽤群论的⽅法从系统结构的整体上彻底解决了根式解的难题他从拉格朗⽇那⾥学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进⼀步发展了他的思想,把全部问题转化成或者归结为置换群及其⼦群结构的分析上同时创⽴了具有划时代意义的数学分⽀——群论,数学发展史上作出了重⼤贡献1829年,他把关于群论研究所初步结果的第⼀批论⽂提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论⽂的鉴定⼈在1830年1⽉18⽇柯西曾计划对伽罗华的研究成果在科学院举⾏⼀次全⾯的意见听取会然⽽,第⼆周当柯西向科学院宣读他⾃⼰的⼀篇论⽂时,并未介绍伽罗华的著作1830年2⽉,伽罗华将他的研究成果⽐较详细地写成论⽂交上去了以参加科学院的数学⼤奖评选,论⽂寄给当时科学院终⾝秘书J .B .傅⽴叶,但傅⽴叶在当年5⽉就去世了,在他的遗物中未能发现伽罗华的⼿稿1831年1⽉伽罗华在寻求确定⽅程的可解性这个问题上,⼜得到⼀个结论,他写成论⽂提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论⽂绞尽了脑汁尽管借助于拉格朗⽇已证明的⼀个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5⽉30⽇,临死的前⼀夜,他把他的重⼤科研成果匆忙写成后,委托他的朋友薛伐⾥叶保存下来,从⽽使他的劳动结晶流传后世,造福⼈类年5⽉31⽇离开了⼈间死因参加⽆意义的决⽃受重伤1846年,他死后14年,法国数学家刘维尔着⼿整理伽罗华的重⼤创作后,⾸次发表于刘维尔主编的《数学杂志》上课题:1.1集合-集合的概念(2)教学⽬的:(1)进⼀步理解集合的有关概念,熟记常⽤数集的概念及记法(2)使学⽣初步了解有限集、⽆限集、空集的意义(3)会运⽤集合的两种常⽤表⽰⽅法教学重点:集合的表⽰⽅法教学难点:运⽤集合的列举法与描述法,正确表⽰⼀些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:⼀、复习引⼊:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在⼀起就形成⼀个集合(2)元素:集合中每个对象叫做这个集合的元素 2、常⽤数集及记法(1)⾃然数集:全体⾮负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:⾮负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?4、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出) 5、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q …… (2)“∈”的开⼝⽅向,不能把a ∈A 颠倒过来写⼆、讲解新课:(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程012=-x 的所有解组成的集合,可以表⽰为{-1,1} 注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表⽰⼀个元素,{a}表⽰⼀个集合,该集合只有⼀个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{x ∈A| P (x )}含义:在集合A 中满⾜条件P (x )的x 的集合例如,不等式23>-x 的解集可以表⽰为:}23|{>-∈x R x 或23|{>-x x所有直⾓三⾓形的集合可以表⽰为:}|{是直⾓三⾓形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直⾓三⾓形};{⼤于104的实数} (2)错误表⽰法:{实数集};{全体实数}3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?⑴有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三)有限集与⽆限集1、有限集:含有有限个元素的集合2、⽆限集:含有⽆限个元素的集合3、空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x三、练习题:1、⽤描述法表⽰下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且 2、⽤列举法表⽰下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防⽌把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的⽅程ax +b=0,当a,b 满⾜条件____时,解集是有限集;当a,b 满⾜条件_____时,解集是⽆限集4、⽤描述法表⽰下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、⼩结:本节课学习了以下内容:1.集合的有关概念:有限集、⽆限集、空集2.集合的表⽰⽅法:列举法、描述法、⽂⽒图五、课后作业:六、板书设计(略)七、课后记:1.2 ⼦集、全集、补集教学⽬标:(1)理解⼦集、真⼦集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关⼦集、全集、补集的符号及表⽰⽅法,会⽤它们正确表⽰⼀些简单的集合,培养学⽣的符号表⽰的能⼒;(4)会求已知集合的⼦集、真⼦集,会求全集中⼦集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会⽤符号及图形(⽂⽒图)准确地表⽰出来,培养学⽣的数学结合的数学思想;(6)培养学⽣⽤集合的观点分析问题、解决问题的能⼒.教学重点:⼦集、补集的概念教学难点:弄清元素与⼦集、属于与包含之间的区别教学⽤具:幻灯机教学过程设计(⼀)导⼊新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表⽰⽅法是列举法.2.哪些集合表⽰⽅法是描述法.3.将集M、集从集P⽤图⽰法表⽰.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系⽤符号表⽰出来.将集N中元素3与集M的关系⽤符号表⽰出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学⽣回答】1.集合M和集合N;(⼝答)2.集合P;(⼝答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(⼝答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(⼝答)【引⼊】在上⾯见到的集M与集N;集M与集P通过元素建⽴了某种关系,⽽具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(⼆)新授知识1.⼦集(1)⼦集定义:⼀般地,对于两个集合A与B,如果集合A的任何⼀个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
第一章单元复习从容说课通过对本章集合知识与函数知识结构的整合,使学生所学的知识系统化、网络化.本课从知识结构的整体出发,通过对集合知识与函数知识的综合运用,培养学生的理性思维能力,优化学生的数学认知结构.通过解决抽象函数、复合函数的有关问题,培养学生的抽象思维能力;利用分析、讨论的课堂教学手段,培养学生的合作、交流意识;结合函数知识解决实际问题,激发学生学习数学的兴趣,培养他们分析问题、解决问题的能力.三维目标一、知识与技能掌握集合、函数的有关概念,能综合运用集合与函数的基本知识解决问题.对复合函数与抽象函数有新的认识.二、过程与方程培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点集合与函数的基本知识,含字母问题的研究,抽象函数的理解.教学难点分类讨论的标准、抽象函数的理解.教具准备多媒体课件、投影仪.课时安排2课时教学过程一、知识回顾(一)第一章知识点1.集合:①集合的含义;②表示法;③元素与集合的关系.2.集合间的基本关系:①子集;②真子集;③集合相等.3.集合的运算:①并集;②交集;③补集.4.函数:①函数的概念;②三要素:定义域,值域,对应法则;③映射概念.5.函数的表示:①表示法:解析法,列表法,图象法;②求函数的解析式;③求函数的定义域;④求一些简单函数的值域和最值.6.函数的单调性:①函数单调性定义;②单调函数的概念;③单调区间;④判断或证明函数单调性的方法;⑤单调性的应用;⑥利用函数的单调性求最值.7.函数的奇偶性:①奇偶性的概念;②奇偶性的定义域特征;③判断函数奇偶性的步骤;④奇偶性图象特征.8.函数的应用问题:①解函数应用题的基本方法步骤;②与几何图形有关的应用题的解法;③与物理现象有关的应用题的解法;④与社会生活有关的实际问题的解法.9.(1)解函数应用题的主要步骤是:①“设”即分析题意设出变量;②“列”即列出关系式,建设函数模型;③“解”即运用函数的性质解出要求的量;④“答”即回到原实际问题作答.(2)解实际问题的步骤用框图可表示为(3)当实际问题中的变量较多时,首先寻找所求量(y )与这些变量间的关系式,然后根据实际要求确定一个自变量(x ),而其他变量通过题中条件再用x 表示出来,用代入法即可得到函数模型y =f (x ).(二)方法总结1.证明集合相等的方法:A =B ⇔①A ⊂B ;②A ⊃B (两点必须同时具备).2.相同函数的判定方法:①定义域相同;②对应法则相同(两点必须同时具备).3.函数表达式的求法:①定义法;②换元法;③待定系数法.4.函数的定义域的求法:列出使函数有意义的自变量的不等关系式,求解即得函数的定义域.常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③实际问题要考虑实际意义等.5.函数值域的求法:①配方法(二次或四次);②判别式法;③反表示法;④换元法;⑤不等式法;⑥函数的单调性法.6.函数单调性的判定法:①设x 1、x 2是所研究区间内的任两个自变量,且x 1<x 2;②判定f (x 1)与f (x 2)的大小;③作差比较或作商比较.(注:做有关选择、填空题时,可采用复合函数单调性判定法,做解答题时必须用单调性定义和基本函数的单调性)7.函数奇偶性的判断:首先看函数的定义域是否关于原点对称,再看f (-x )与f (x )的关系.(1)图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用函数图象的对称性描绘函数图象.(2)函数的应用举例(实际问题的解法). a.解决应用问题的一般程序是:①审题:弄清题意,分清条件和结论,理顺数量关系;②建模:将文字语言转化成数学语言,利用相应的数学知识模型. ③求模:求解数学模型,得到数学结论.④还原:将用数学方法得到的结论,还原为实际问题的意义.b.建模类型:①可化为一、二次函数的应用题的解法;②可化为分段函数的应用题解法. 8.常用函数的研究、总结与推广:(1)以二次函数为背景的函数问题(包括通过换元可转化为二次函数的问题).(2)研究函数y =b ax d cx ++(ac ≠b d)的图象性质. (3)研究函数y =x +x1的图象性质并推广.9.抽象函数(即不给出f (x )解析式,只知道f (x )具备的条件)的研究. (1)若f (a +x )=f (a -x ),则f (x )关于直线x =a 对称. (2)若对任意的x 、y ∈R ,都有f (x +y )=f (x )+f (y ),可利用赋值法研究抽象函数的性质.二、讲解新课 典型例题 【例1】 集合A ={x |x 2-mx -8≥0},B ={x |x 2-2mx -n <0},问能否找到两个实数m 、n ,使A ∩B ={x |4≤x <5}?若存在,求出m 、n 的值;若不存在,请说明理由.解:假设存在实数m 、n 满足条件.由题意可知,4是方程x 2-mx -8=0的一根,由韦达定理知方程的另一根为-2. ∴m =4+(-2)=2.∴B ={x |x 2-4x -n <0},A ={x |x ≥4或x ≤2}. 由题意可知,5是方程x 2-4x -n =0的一根,方程x 2-4x -n =0的另一根为x 0,则⎩⎨⎧-=⋅=+,5,4500n x x ∴⎩⎨⎧=-=.5,10n x综上,存在实数m =2,n =5满足题意.方法引导:本题通过集合与一元二次方程结合,给出一类开放性的问题,要求学生自己找出是否存在实数m 、n 能够满足题意.解题的关键就是能发现一元二次不等式解的特点.【例2】 设A ={x |-2≤x ≤a }≠∅,B ={y |y =2x +3,x ∈A },C ={z |z =x 2,x ∈A },且C ⊆B ,求实数a 的取值范围.解:∵A ={x |-2≤x ≤a },∴B ={y |y =2x +3,x ∈A }={y |-1≤y ≤2a +3}. 又C ={z |z =x 2,x ∈A },且C ⊆B ,①当-2≤a ≤0时,C ={z |z =x 2,x ∈A }={z |a 2≤z ≤4},∴⎩⎨⎧≥+-≥,432,12a a 得a ≥21,无解.②当0<a ≤2时,C ={z |0≤z ≤4},∴⎩⎨⎧+≤-≥,324,10a 得a ≥21.∴21≤a ≤2.③当a >2时,C ={z |0≤z ≤a 2}, ∴⎩⎨⎧+≤-≥,32,102a a 得-1≤a ≤3.∴2<a ≤3.综上21≤a ≤3. 方法引导:本题是集合与二次函数相结合的问题,通过对a 进行分类讨论,利用数轴分析集合间的包含关系来解决.【例3】 已知函数f (x )=xax x ++22,x ∈[1,+∞).(1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.(1)解:当a =21时,f (x )=x +x21+2.设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)(1-2121x x ). ∵2x 1x 2>2,0<2121x x <21, ∴1-2121x x >0.又x 2-x 1>0, ∴f (x 2)-f (x 1)>0,即f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上为增函数,则f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)解法一:在区间[1,+∞]上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1在区间[1,+∞)上递增, ∴当x =1时,y min =3+a .于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正;当a <0时,y =x +2与y =xa在[1,+∞)上都是增函数.所以f (x )=x +xa+2在[1,+∞)上是增函数.故当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.方法引导:本题体现了函数思想在解题中的运用,第(1)题用函数单调性求函数的最小值,第(2)题用函数的单调性解决恒成立的问题.在第(2)题的解法一中,还可以这样解:要使x 2+2x +a >0恒成立,只要a >-x 2-2x =-(x +1)2+1恒成立,在[1,+∞)上,由函数单调性得-(x +1)2+1≤-3,所以只要a >-3.【例4】 已知f (x )=-x 2+ax -4a +21,x ∈[0,1],求f (x )的最大值g (a ),且求g (a )的最小值.解:∵f (x )=-x 2+ax -4a +21=-(x -2a )2+42a -4a +21,对称轴x =2a,∵x ∈[0,1],①当2a≤0,即a ≤0时,f (x )max =f (0)=-4a +21.②当0<2a<1,即0<a <2时,f (x )max =f (2a )=42a -4a +21.③当2a≥1,即a ≥2时,f (x )max =f (1)=43a-21.∴g (a )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<+-≤+-.2,2143,20,2144,0,2142a a a a aa a ①当a ≤0时,-4a +21≥21. ②当0<a <2时,42a -4a +21=41(a -21)2+167≥167.③当a ≥2时,43a-21≥1.∴g (a )min =167.方法引导:本题是含参数的二次函数最值问题,通过对称轴x =2a的移动,对a 进行分类讨论,得到的最大值g (a )是关于a 的一个分段函数的形式,注意分段函数的最小值,是每一段最小值的最小值.【例5】 对于任意非零实数x 、y ,已知函数y =f (x )(x ≠0)满足f (xy )=f (x )+f (y ). (1)求f (1),f (-1);(2)判断y =f (x )的奇偶性;(3)若y =f (x )在(0,+∞)上是增函数,且满足f (x )+f (x -21)≤0,求x 的取值范围.解:(1)∵对于任意非零实数x 、y ,有f (xy )=f (x )+f (y ), 取x =y =1,得f (1)=f (1)+f (1), ∴f (1)=0.取x =y =-1,得f (1)=f (-1)+f (-1),∴f (-1)=0.(2)对任意x ≠0,取y =-1,则f (-x )=f (x )+f (-1)=f (x )+0,即f (-x )=f (x ),∴f (x )是偶函数.(3)∵f (x )+f (x -21)≤0,∴f [x (x -21)]≤0.由f (x )是偶函数,得f (|x 2-21x |)≤f (1).又y =f (x )(x ≠0)在(0,+∞)上是增函数,∴0<|x 2-21x |≤1. ∴-1≤x 2-21x <0或0<x 2-21x ≤1. 解得0<x <21或4171-≤x <0或21<x ≤4171+.方法引导:本题求抽象函数的单调性与奇偶性,一般常用赋值法,给x 、y 取一些特殊的值,从而得到一些特殊的函数值,再结合函数的单调性与奇偶性的性质解题.【例6】 已知f (x )∈[83,21],求y =f (x )+)(21x f -的值域.解:∵f (x )∈[83,21],∴2f (x )∈[43,1].∴1-2f (x )∈[0,41].∴)(21x f -∈[0,21].令t =)(21x f -,t ∈[0,21],则f (x )=21(1-t 2).∴y =21(1-t 2)+t =-21(t -1)2+1.由于t ∈[0,21],所以21≤y ≤87.故函数y 的值域为[21,87].方法引导:本题利用换元法求函数的值域,设出新元以后必须给出新元的范围,对于)(21x f -的范围的研究通常由里向外,最后再根据二次函数的性质求值域.【例7】 如下图,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为a ,边坡的倾斜角为60°.(1)求横断面积y 与底宽x 的函数关系式;(2)已知底宽x ∈[4a ,2a ],求横断面面积y 的最大值和最小值. 解:(1)分别过A 、B 作AE 、BF 垂直于CD ,交CD 于点E 、F , ∵∠ADC =∠BCD =60°,且AB =x ,∴AD =BC =2xa -.∴D E=CF =2x a -·cos60°=4xa -,AE =2xa -·sin60°=4)(3x a -.∴y =21(AB +CD )·AE =21(x +x +2xa -)·4)(3x a -=163(a +3x )(a -x )(0<x<a ).(2)∵y =-1633(x -3a )2+123a 2,x ∈[4a ,2a],∴当x =3a时,y max =123a 2;当x =2a时,y min =6435 a 2.故横断面面积y 的最大值为123a 2,最小值为6435a 2.方法引导:本题是函数在几何图形方面的应用,运用几何图形的性质求出与面积有关的量(用x 表示),根据面积公式列出关系式,这个过程就是建立数学模型,得到的函数是二次函数,但定义域不是R ,而是实际的底宽[4a ,2a].【例8】 某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图甲所示的一条折线表示;西红柿的种植成本与上市时间的关系用图乙的抛物线表示:(1)写出如图甲表示的市场售价与时间的函数关系式P =f (t );写出如图乙表示的种植成本与时间的函数关系式Q =g (t ).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)解:(1)由图甲可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-.300200,3002,2000,300t t t t由图乙可得种植成本与时间的函数关系为g (t )=2001(t -150)2+100,0≤t ≤300. (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,2125272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001·(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300)上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.方法引导:本题是现实生活中的实际问题,题中两图本来是通过实验分析得到相关数据抽象出来的数学模型,这里让我们通过识图找到相应的函数关系式,然后建立纯收益关于时间的分段函数,利用二次函数和分段函数的知识解决问题.【例9】 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0,有ba b f a f ++)()(>0.(1)判断函数f (x )在[-1,1]上是增函数还是减函数,并证明你的结论;(2)若满足f (x +21)<f (11-x ),求x 的取值范围;(3)若f (x )≤m 2-2am +1,对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)任取-1≤x 1<x 2≤1,则x 1-x 2<0.∵ba b f a f ++)()(>0,∴2121)()(x x x f x f --+>0.∴f (x 1)+f (-x 2)<0.又∵f (x )是定义在[-1,1]上的奇函数,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴函数f (x )在[-1,1]上是增函数.(2)∵函数f (x )在[-1,1]上是增函数,由f (x +21)<f (11-x ), 得⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤--≥+,1121,111,121x x x x ⎪⎪⎩⎪⎪⎨⎧<<-<<≥-≥.2311,12,23x x x x x 或或 ∴-23≤x <-1. (3)∵f (x )≤m 2-2am +1,且对所有x ∈[-1,1],a ∈[-1,1]恒成立, ∴m 2-2am +1≥f (x )max =f (1),得m 2-2am ≥0,当a ∈[-1,1]时恒成立. 令f (a )=m 2-2am ,a ∈[-1,1],∴⎪⎩⎪⎨⎧≥+=-≥+-=,02)1(,02)1(22m m f m m f得⎩⎨⎧-≤≥≤≥.20,02m m m m 或或∴m ≥2或m ≤-2或m =0.方法引导:本题是函数的一个综合题,注意对于函数单调性的证明应该用定义法,利用函数的单调性求出自变量之间的关系以及利用最值解决恒成立问题,这是对函数性质的一个综合把握.三、课堂练习 (2课时的练习)课本P 51复习参考题A 组1,2,3,4,5,6,7,8,9. 答案:1.(1)A ={-3,3};(2)B ={1,2};(3)C ={1,2}. 2.(1)集合的点组成线段AB 的垂直平分线;(2)集合的点组成以O 为圆心,3 cm 为半径的圆. 3.三角形的外心.4.a 的值为0,-1,1.5.A ∩B ={(0,0)},A ∩C =∅,(A ∩B )∪(B ∩C )={(0,0),(53,-59}. 6.(1){x |x ≤-2或x ≥2}. (2){x |x ≥2}.(3){x |x ≥4且x ≠5}.7.(1)f (a )+1=a +12; (2)f (a +1)=-aa+2.8.证明:(1)f (-x )=22)(1)(1x x ---+=2211x x -+=f (x );(2)f (x 1)=22)1(1)1(1xx -+=1122-+x x =-2211x x -+=-f (x ). 9.(1)图象略.(2)最大高度为1.08 m. 四、课堂小结1.集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的内容.2.运用集合与对应的语言进一步描述了函数概念.与初中的函数概念相比较,突出了函数概念的本质:两个数集间的一种确定的对应关系;明确了函数的三要素.3.函数是描述变量之间依赖关系的重要数学模型.函数的表示方法主要有解析法、图象法、列表法三种.4.研究函数的基本性质不仅是解决实际问题的需要,也是数学本身的自然要求.例如:事物的变化趋势、对称性、用料最省、利润最大、效率最高等,就要研究函数的基本性质,如单调性、最大(小)值和奇偶性等.五、布置作业 (2课时的作业)课本P52复习参考题A组10,11,12,13,14;B组2,3,4,5,6,7,8.板书设计第一章单元复习方法归类要点例题及分析过程课堂小结与布置作业。
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
第一章集合与函数概念本章复习教材分析集合语言是现代数学根本语言,使用集合语言,可以简洁、准确地表达数学一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最根本集合语言去表示有关数学对象,开展运用数学语言进展交流能力.函数学习促使学生数学思维方式发生了重大转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学核心内容,是高中数学课程一个根本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识掌握更结实一些.函数与不等式、数列、导数、立体几何、解析几何、算法、概率、选修中很多专题内容有着密切联系.用函数思想去理解这些内容,是非常重要出发点.反过来,通过这些内容学习,加深了对函数思想认识.函数思想方法贯穿于高中数学课程始终.高中数学课程中,函数有许多下位知识,如必修1第二章幂、指、对数函数,在必修四将学习三角函数.函数是描述客观世界变化规律重要数学模型.学情分析1.学生作业与试卷局部缺失,导致易错问题分析不全面.通过布置易错点分析任务,让学生意识到保存资料重要性.2.学生学习根本功较扎实,学习态度较端正,有一定自主学习能力.但是没有养成及时复习习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习必要性,培养学生良好复习习惯.3.在研究例4时,对分类情况研究不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观感知,体会二次函数对称轴与所给区间位置关系是解决这类问题关键.设计思路本节课中渗透理念是:“强调过程教学,启发思维,调动学生学习数学积极性〞.在本节课学习过程中,教师没有把梳理好知识展示给学生,而是让学生自己进展知识梳理.一方面让学生体会到知识网络化必要性,另一方面希望学生养成知识梳理习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生思维方式,引导学生在“最近开展区〞发现问题、解决问题.通过自主分析、交流合作,从而进展有机建构,解决问题,改变学生模仿式学习方式.在教学过程中,渗透了特殊到一般思想、数形结合思想、函数与方程思想.在教学过程中通过恰当应用信息技术,从而突破难点.教学目标分析(一)知识与技能1.了解集合含义与表示,理解集合间根本关系,集合根本运算.A:能从集合间运算分析出集合根本关系.B:对于分类讨论问题,能区分取交还是取并.2.理解函数定义,掌握函数根本性质,会运用函数图象理解与研究函数性质.A:会用定义证明函数单调性、奇偶性.B:会分析函数单调性、奇偶性、对称性关系.(二)过程与方法1.通过学生自主知识梳理,了解自己学习缺乏,明确知识来龙去脉,把学习内容网络化、系统化.2.在解决问题过程中,学生通过自主探究、合作交流,领悟知识横、纵向联系,体会集合与函数本质.(三)情感态度与价值观在学生自主整理知识构造过程中,认识到材料整理必要性,从而形成及时反思学习习惯,独立获取数学知识能力.在解决问题过程中,学生感受到成功喜悦,树立学好数学信心.在例4解答过程中,渗透动静结合思想,让学生养成理性思维品质.重难点分析教学重点:掌握知识之间联系,洞悉问题考察点,能选择适宜知识与方法解决问题.教学难点:含参问题讨论,函数性质之间关系.知识梳理(约10分钟)提出问题问题1:把本章知识构造用框图形式表示出来.问题2:一个集合中元素应当是确定、互异、无序,你能结合具体实例说明集合这些根本要求吗?问题3:类比两个数关系,思考两个集合之间根本关系.类比两个数运算,思考两个集合之间根本运算——交、并、补.问题4:通过本章学习,你对函数概念有什么新认识与体会吗?请结合具体实例分析表示函数三种方法,每一种方法特点.问题5:分析研究函数方向,它们之间联系.在前一次晚自习上,学生相互展示自己结果,通过相互讨论,每组提供最正确方案.在自己原有方案根底上进展补充与完善.学生答复下列问题要点预设如下:1.集合语言可以简洁准确表达数学内容.2.运用集合与对应进一步描述了函数概念,与初中函数定义比拟,突出了函数本质——函数是描述变量之间依赖关系重要数学模型.3.函数表示方法主要有三种,这三种表示方法有各自适用范围,要根据具体情况选用.4.研究函数性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数图象特征,最后抽象到用数学符号刻画相应数量特征,也是数学学习与研究中经常使用方法.设计意图:通过布置任务,让学生充分认识自己在学习过程中,哪些知识学习不透彻.让学生更有针对进展复习,让复习进展更有效.让学生体会到知识横向联系与纵向联系.通过类比初中与高中两种函数定义,让学生体会到两种函数定义本质是一样.易错点分析(约3分钟)问题6:集合中易错问题,函数中易错问题,主要包括作业、训练、考试中出现问题.(任务提前布置,由课代表汇总,并且在教学课件中表达.教师不进展修改,呈现是原始)教师展示学习成果并进展点评.对于问题6主要由学生讨论分析,并答复,其他学生补充.这个过程尽量由学生来完成,教师可以适当引导与点评.设计意图:让学生学会避开命题者制造陷阱,通过不断分析,让学生了解问题出现根源,充分暴露自己思维,在交流与合作过程中,改良自己缺乏,加深对错误认识.通过交流了解别人错误,自己防止出现类似错误.考察点分析(约5分钟)问题7:分析集合中考察点,函数中考察点.问题8:知识横纵联系.学生答复下列问题要点预设如下:1.集合中元素互异性.2.A⊆B,那么集合A可以是空集.3.交集与并集区分,即何时取交,何时取并,特别是含参分类讨论问题.4.函数单调性与奇偶性证明.5.作业与试卷中出现问题.6.学生分析本章考察点,主要分析考察知识点、思想方法等方面.设计意图:让学生了解考察点,才能知道命题者考察意图,才能选择适宜知识与思想方法来解答.例如如果试题中出现集合,无论试题以什么形式出现,考察点根本是集合间根本关系、集合运算.典型问题分析1设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},(1)假设B⊆A,求实数a值;(2)假设A∩B=B,求实数a值;(3)假设A∪B=B,求实数a值.教师点评,同时板书.答案:(1)a≤-1或a=1;(2)a=1或a≤-1;(3)a=1.由学生分析问题考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析,这是集合问题.考察点主要为集合表示方法、集合中元素特性、集合间根本关系、集合运算等.学生在解第(1)问时,可能漏掉特殊情况.第(2)、(3)问可能会遇到一定障碍,可以给学生时间进展充分思考.设计意图:让学生体会到分析考察点好处,养成解题之前分析考察点习惯,能顺利找到问题突破口,为后续解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动地形成发散思维,主动应用转化与化归思想.2函数f (x )是定义在R 上奇函数,当x ≥0时,f (x )=x (1+x ),求函数f (x )解析式.变式:假设函数f (x )是偶函数,试求函数f (x )解析式.教师对学生答复进展点评,并板书.答案:f (x )=⎩⎪⎨⎪⎧ x (1+x ),x ≥0,x (1-x ),x <0.学生分析考察点、解题思路,如果不完善,其他学生补充. 学生答复下列问题要点预设如下:1.考察点为函数奇偶性与函数图象关系.2.函数奇偶性定义.3.转化与化归思想.法一:此题即求x <0时函数解析式,可先利用函数奇偶性绘制函数图象,把此题转化为二次函数图象与解析式问题.法二:本法更具有一般性,x ≥0时,函数解析式,要分析x <0时函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它相反数函数值之间有关系,-x >0,所以可以研究-x 函数值.设计意图:学生在思考过程中,体会数形结合思想.函数奇偶性与函数图象关系,可以根据奇偶性绘制函数图象,也可以通过函数图象分析函数奇偶性,两者是相辅相承.体会转化与化归思想,把要研究转化为.考察函数单调性证明,函数奇偶性与单调性之间关系,体会知识纵向联系.体会转化与化归思想、特殊与一般数学思想,让学生体会到问题后面隐含本质.3f (x )是偶函数,而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上是增函数还是减函数,并证明你判断.变式1:假设函数f (x )为奇函数,判断f (x )在(-∞,0)上单调性. 变式2:你能分析奇函数(偶函数)在对称区间上单调性关系吗?试从数形两个方面来分析.学生分析考察点、解题思路,如果不完善,其他学生补充. 学生答复下列问题要点预设如下:1.考察点为函数奇偶性与单调性关系.2.函数单调性定义.3.数形结合、转化与化归思想.法一:通过函数图象分析.法二:把要研究范围转化为范围.设计意图:明确函数性质是一个有机整体,不是一个个知识点简单罗列.同时体会知识纵向联系与横向联系,在第二个方法中进一步感受转化与化归思想.通过两个变式研究过程,学生体会研究探索性问题一般思路,即通过特殊情况分析结果,再对结果正确性进展证明.4求f (x )=x 2-2ax -1在区间[0,2]上最大值与最小值.变式:f (x )=ax2+(2a -1)x -3在区间⎣⎢⎢⎡⎦⎥⎥⎤-32,2上最大值是1,求a 值.教师用几何画板演示,二次函数对称轴变化对函数最值影响. 答案:a <0时,最大值是3-4a ,最小值是-1;0≤a <1时,最大值是3-4a,最小值是-1-a2;1≤a≤2时,最大值是-1,最小值是-1-a2;a>2时,最大值是-1,最小值是3-4a.学生通过直观演示,思考问题考察点与解答策略.学生答复考察点分析(预设):1.二次函数图象与性质.2.分类与整合.3.逆向思维.学生答复解题思路分析(预设):研究二次函数对称轴方程与所给区间关系.设计意图:通过几何画板动态性,给学生直观感知,从而建立最近开展区,进而突破难点.通过对二次函数研究,学生稳固了上位知识函数图象与性质,充分体会数形结合优势.学生在解答变式过程中,体会逆向思维与正向思维关系,体会函数与方程思想,感受到动静结合.课后小结1.知识网络2.知识来龙去脉3.问题中表达数学思想4.分析问题根本思路学生总结,教师板书.设计意图:让学生把知识穿串,形成网络,能迅速而准确选用知识来解答问题.课后总结稳固所学,补充课上缺乏.主要是本节课中没有涉及问题,本节课中理解有困难问题.1.f(x)是定义在R上函数,设g(x)=f(x)+f(-x)2,h(x)=f(x)-f(-x)2.(1)试判断g(x)与h(x)奇偶性;(2)试判断g(x),h(x)与f(x)关系;(3)由此你猜测得出什么样结论,并说明理由?2.设函数f(x)=x2+|x-2|+1,x∈R,(1)讨论f(x)奇偶性;(2)求f(x)最小值.3.集合A={x|x2-mx+m2-19=0},B={y|y-5y+6=0},C={z|z2+2z-8=0},是否存在实数m,同时满足A∩B≠∅,A∩C =∅.4.将长度为20 cm铁丝分成两段,分别围成一个正方形与一个圆,要使正方形与圆面积之与最小,正方形周长应为多少?教学反思在复习课中,教师要充分调动学生学习自主性,让学生独立制定出适合自己知识构造、整理出自己在本章学习中出现问题.在课堂上,学生通过交流与合作,体会解决问题成功喜悦.从而养成良好学习习惯、树立信心.感受知识横向联系与纵向联系,洞悉知识本质、问题根源,从而形成深刻印象,少出现或防止出现类似问题.通过分析知识来龙去脉,明确知识用途.通过典型题分析,回忆主干知识,重要数学思想,感受知识与数学思想有机融合.备课资料知识点总结——函数概念及性质1.函数概念:设A,B是非空数集,如果按照某个确定对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定数f(x)与它对应,那么就称f:A→B为从集合A到集合B一个函数,记作:y=f(x),x∈A.其中,x叫做自变量,x取值范围A叫做函数定义域;与x值相对应y值叫做函数值,函数值集合{f(x)| x∈A }叫做函数值域.如果只给出解析式y=f(x),而没有指明它定义域,那么函数定义域即是指能使这个式子有意义实数集合;函数定义域、值域要写成集合或区间形式.能使函数式有意义实数x集合称为函数定义域,求函数定义域时列不等式组主要依据是:分式分母不等于零;偶次方根被开方数不小于零;对数式真数必须大于零;如果函数是由一些根本函数通过四那么运算结合而成,那么它定义域是使各局部都有意义x值组成集合;实际问题中函数定义域还要保证实际问题有意义.求出不等式组解集即为函数定义域.2.构成函数三要素:定义域、对应关系与值域.构成函数三个要素是定义域、对应关系与值域.由于值域是由定义域与对应关系决定,所以,如果两个函数定义域与对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们定义域与对应关系完全一致,而与表示自变量与函数值字母无关.一样函数判断方法:①表达式一样;②定义域一致(两点必须同时具备).函数值域取决于定义域与对应法那么,不管采取什么方法求函数值域都应先考虑其定义域;应熟悉掌握一次函数、二次函数,它是求解复杂函数值域根底;求函数值域常用方法有:直接法、换元法、配方法、判别式法、单调性法等.3.函数图象知识归纳定义:在平面直角坐标系中,以函数y=f(x)(x∈A)中x为横坐标,函数值y为纵坐标点P(x,y)集合C,叫做函数y=f(x)(x∈A)图象.C上每一点坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)每一组有序实数对x、y为坐标点(x,y),均在C上,即记为C={P(x,y)|y=f(x),x∈A}.图象C一般是一条光滑连续曲线(或直线),也可能是由与任意平行于y轴直线最多只有一个交点假设干条曲线或离散点组成.画法:(1)描点法:根据函数解析式与定义域,求出x,y一些对应值并列表,以(x,y)为坐标在坐标系内描出相应点P(x,y),最后用平滑曲线将这些点连结起来.(2)图象变换法:常用变换方法有三种,即平移变换、伸缩变换与对称变换.作用:直观地看出函数性质;利用数形结合方法分析解题思路;提高解题速度;发现解题中错误.4.区间概念区间分类:开区间、闭区间、半开半闭区间;无穷区间;区间数轴表示.5.映射一般地,设A、B是两个非空集合,如果按某一个确定对应法那么f,使对于集合A中任意一个元素x,在集合B中都有唯一确定元素y与之对应,那么就称对应f:A→B为从集合A到集合B一个映射,记作“f:A→B〞.给定一个集合A到B映射,如果a∈A,b∈B,且元素a与元素b对应,那么,我们把元素b叫做元素a象,元素a 叫做元素b原象.说明:函数是一种特殊映射,映射是一种特殊对应,(1)集合A,B及对应法那么f是确定;(2)对应法那么有“方向性〞,即强调从集合A到集合B对应,它与从B到A对应关系一般是不同;(3)对于映射f:A→B来说,那么应满足:①集合A中每一个元素,在集合B 中都有象,并且象是唯一;②集合A中不同元素,在集合B中对应象可以是同一个;③不要求集合B中每一个元素在集合A中都有原象.6.函数表示法函数图象既可以是连续曲线,也可以是直线、折线、离散点等等,注意判断一个图形是否是函数图象依据;解析法:必须注明函数定义域;图象法:描点法作图要注意:确定函数定义域;化简函数解析式;观察函数特征;列表法:选取自变量要有代表性,应能反映定义域特征.解析法便于算出函数值;列表法便于查出函数值;图象法便于量出函数值.分段函数:在定义域不同局部上有不同解析表达式函数,在不同范围里求函数值时必须把自变量代入相应表达式.分段函数解析式不能写成几个不同方程,而应写成函数值几种不同表达式并用一个左大括号括起来,并分别注明各局部自变量取值情况.分段函数是一个函数,不要把它误认为是几个函数;分段函数定义域是各段定义域并集,值域是各段值域并集.复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),那么y=f[g(x)]=F(x)(x∈A)称为f,g复合函数.7.函数单调性增函数:设函数y=f(x)定义域为I,如果对于定义域I内某个区间D内任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)单调增区间.如果对于区间D上任意两个自变量值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)单调减区间.注意:函数单调性是在定义域内某个区间上性质,是函数局部性质;必须是对于区间D内任意两个自变量x1、x2;当x1<x2时,总有f(x1)<f(x2).图象特点:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格)单调性,在单调区间上增函数图象从左到右是上升,减函数图象从左到右是下降.函数单调区间与单调性判定方法:定义法,任取x1、x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解与配方);定号〔即判断差f(x1)-f(x2)正负〕;下结论〔指出函数f(x)在给定区间D上单调性〕.图象法(从图象上看升降);复合函数单调性,复合函数f[g(x)]单调性与构成它函数u=g(x),y=f(u)单调性密切相关,其规律如下:注意:区间合在一起写成其并集.8.函数奇偶性偶函数:一般地,对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.奇函数:一般地,对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.注意:函数是奇函数或是偶函数称为函数奇偶性,函数奇偶性是函数整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数.由函数奇偶性定义,可知函数具有奇偶性一个必要条件是,对于定义域内任意一个x,那么-x也一定是定义域内一个自变量(即定义域关于原点对称).具有奇偶性函数图象特征:偶函数图象关于y轴对称;奇函数图象关于原点对称.总结:利用定义判断函数奇偶性格式步骤:首先确定函数定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)关系;作出相应结论:假设f(-x)=f(x)或f(-x)-f(x)=0,那么f(x)是偶函数;假设f(-x)=-f(x)或f(-x)+f(x)=0,那么f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性必要条件.首先看函数定义域是否关于原点对称,假设不对称那么函数是非奇非偶函数.假设对称再根据定义判定:有时判定f(-x)=±f(x)比拟困难,可考虑根据是否有f(-x)±f(x)=0或f(x)f(-x)=±1来判定:利用定理,或借助函数图象判定.9.函数解析表达式函数解析式是函数一种表示方法,要求两个变量之间函数关系时,一是要求出它们之间对应法那么,二是要求出函数定义域.求函数解析式主要方法有:待定系数法、换元法、消参法等,如果函数解析式构造时,可用待定系数法;复合函数f[g(x)]表达式时,可用换元法,这时要注意元取值范围;当表达式较简单时,也可用凑配法;假设抽象函数表达式,那么常用解方程组消参方法求出f(x).10.函数最大(小)值方法利用二次函数性质(配方法);利用图象;利用函数单调性;如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减那么函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增那么函数y=f(x)在x=b处有最小值f(b).。
第一章集合与函数概念复习课教学目标分析:知识目标:进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。
过程与方法:体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。
情感目标:体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。
重难点分析:重点:函数的性质的灵活应用。
难点:函数的性质的灵活应用。
互动探究:一、课堂探究:一、复习回顾1、集合的包含关系;2、集合的交、并、补运算;3、函数的单调性(概念、判断方法、应用——求函数的最值);4、函数的奇偶性(概念、图像特征、判断方法);5、函数最值的求法.二、典型例题探究1、集合的概念以及运算例1、设集合2==∈==-∈,求P Q.P y y x x R Q y y x x R{|,},{|2||,}答案:{|02}=≤≤.P Q y y变式:已知全集32C A=,求=++和它的子集{1,|21|}U x x x{1,3,32}A x=-,如果{0}U实数x的值.答案:1x=-2、函数及映射的概念例2、已知集合42{1,2,3,},{4,7,,3}==+,且,,,A kB a a a∈∈∈∈,映射a N k N x A y B=+和A中元素x对应,求,a k的值.y x→,使B中元素31:f A B答案:2,5==a k3、分段函数例3、若不等式|2||1|++->恒成立,求实数a的取值范围.x x a答案:3a <.变式:若不等式|2||1|x x a +-->的解集是空集,求实数a 的取值范围.答案:3a ≥.4、函数的定义域和值域例4、若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求,a b 的值.答案:3,32a b ==.变式1:若函数()y f x =的值域是[1,3],求函数()12(3)F x f x =-+的值域.答案:[5,1]--变式2:若函数()y f x =的值域为1[,3]2,求函数1()()()F x f x f x =+的值域.答案:10[2,]35、函数的单调性例5、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是多少?答案:(1)-变式:已知()(0,)()()(),(2)1x f x f f x f y f y+∞=-=是定义在上的增函数,且, 解不等式1()()23f x f x -≤-。
§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域(range ).注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . (2)构成函数的三要素是什么?定义域、对应关系和值域 (3)区间的概念 ①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0) y =ax 2+b x +c (a ≠0) y =xk(k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
人教版高中数学必修一第一章集合与函数概念教案第一章集合1 、1、1集合的含义【探索新知】在小学、初中我们就接触过“集合”一词。
例子:(1)自然数集合、正整数集合、实数集合等。
2(2)不等式2x,x,7,0解的集合(简称解集)。
2(3)方程解的集合。
x,3x,2,0(4)到角两边距离相等的点的集合。
2(5)二次函数图像上点的集合。
y,x(6)锐角三角形的集合(7)二元一次方程解的集合。
2x,y,1(8)某班所有桌子的集合。
现在,我们要进一步明确集合的概念。
问题1、从字面上看,怎样解释“集合”一词,、如果上面例子中的数、点、图形、数对和物体等称为“研究对象”,那么集合又是什2么呢,知识点一:1、集合、元素的概念再看例子(9)质数的集合。
1y,(10)反比例函数图像上所有点。
x222x(11)、、 xy,y,2y(12)所有周长为20厘米的三角形。
问题3、从集合中元素个数看,上面例子(1)(2)(4)(5)(6)(7)(9)(10)(12)与例子(3)(8)(11)有什么不同,知识点二 2、有限集和无限集choose water fountains, water-saving products should be purchased.As compared to open v-Groove type water supply system, sealed nipple water system can save water 81.35% saving bedding consumption 56.3%; sanitation and drinking water, and a variety of harmful gases concentrations decline, increased laying rate 13.79%, economicefficiency improved. Chicken Coop construction should pay attention to several problems, chicken distribution notes: a rational structure of the hen-house layout, can provide a good environment for chicken, making its full productive potential, so other than in understanding the physiological characteristics of the chicken itself, and must be properly planned and constructed sheds. 1. sites to choose away from populated areas, traffic convenient, away from the road 2. Gaozao terrain, a lot of sunshine. Winter sun as possible, summer wind, and not after the rain water. Larger, leaving room for development 3. Abundant water resources pollution-free, easy to access, sufficient power is guaranteed 4. Building structure, the economy, saving money, and saving energy, it is facing in accordance with local environmental and physiological condition, lighting is good, easy to ventilation, easy to operate, so conducive to cooling in the summer, to insulation in winter cold 5. Layout of premises should be reasonable, do distinguish betweenproduction and non-production areas and non-production areas and water sources are on a chicken farm in the wind, net road and dirt road separating uncrossed, dung farm is located in the指出:集合论是德国数学家Cantor(1845,1918)在十九世纪创立的,集合知识是现代数学的基本语言,为进一步研究数学提供了极大的便利。
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
第一章 集合与函数概念复习课教学目标分析:知识目标:进一步领会函数单调性和奇偶性的定义,并在此基础上,熟练应用定义判断和证明函数的单调性及奇偶性,初步学习单调性和奇偶性结合起来解决函数的有关问题。
过程与方法:体会单调性和奇偶性在解决函数有关问题中的重要作用,提高应用知识解决问题的能力。
情感目标:体会转化化归及数形结合思想的应用,培养学生的逻辑思维能力。
重难点分析:重点:函数的性质的灵活应用。
难点:函数的性质的灵活应用。
互动探究:一、课堂探究:一、复习回顾1、集合的包含关系;2、集合的交、并、补运算;3、函数的单调性(概念、判断方法、应用——求函数的最值);4、函数的奇偶性(概念、图像特征、判断方法);5、函数最值的求法.二、典型例题探究1、集合的概念以及运算例1、设集合2{|,},{|2||,}P y y x x R Q y y x x R ==∈==-∈,求P Q .答案:{|02}P Q y y =≤≤.变式:已知全集32{1,3,32}U x x x =++和它的子集{1,|21|}A x =-,如果{0}U C A =,求实数x 的值.答案:1x =-2、函数及映射的概念例2、已知集合42{1,2,3,},{4,7,,3}A k B a a a ==+,且,,,a N k N x A y B ∈∈∈∈,映射 :f A B →,使B 中元素31y x =+和A 中元素x 对应,求,a k 的值.答案:2,5a k ==3、分段函数例3、若不等式|2||1|x x a ++->恒成立,求实数a 的取值范围.答案:3a <.变式:若不等式|2||1|x x a +-->的解集是空集,求实数a 的取值范围.答案:3a ≥.4、函数的定义域和值域例4、若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求,a b 的值.答案:3,32a b ==. 变式1:若函数()y f x =的值域是[1,3],求函数()12(3)F x f x =-+的值域.答案:[5,1]--变式2:若函数()y f x =的值域为1[,3]2,求函数1()()()F x f x f x =+的值域.答案:10[2,]35、函数的单调性例5、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是多少?答案:(1)-变式:已知()(0,)()()(),(2)1xf x f f x f y f y+∞=-=是定义在上的增函数,且, 解不等式1()()23f x f x -≤-。
6、函数的奇偶性 (1)函数的奇偶性和单调性例6、已知偶函数()f x 在区间[0,)+∞上单调递增,则满足1(21)()3f x f -<的x 的取值范围是____________.答案:1233x <<. 变式:(1)函数)(x f 在定义域(1,1)-内是增函数,且满足)()(x f x f -=-和0)1()1(2<-+-a f a f ,求a 的取值范围.(2)若函数()f x 是定义在实数集R 上的偶函数,且在区间(,0)-∞上是增函数,又22(21)(321)f a a f a a ++<-+,求实数a 的取值范围。
(2)抽象函数的奇偶性与单调性例7、已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有12()f x x ⋅= 1()f x +2()f x ,且当1x >时()0,(2)1f x f >=.(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)比较5()2f -与7()4f 的大小关系;(4)解不等式2(21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=,∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴()f x 是偶函数.(2)设210x x >>,则221111()()()()x f x f x f x f x x -=⋅-221111()()()()x x f x f f x f x x =+-= ∵210x x >>,∴211x x >,∴21()x f x 0>,即21()()0f x f x ->,∴21()()f x f x > ∴()f x 在(0,)+∞上是增函数.(3)57()()24f f ->; (4)(2)1f =,∴(4)(2)(2)2f f f =+=,∵()f x 是偶函数∴不等式2(21)2f x -<可化为2(|21|)(4)f x f -<,又∵函数在(0,)+∞上是增函数,∴2|21|4x -<,解得:22x -<<,即不等式的解集为(22-. 7、函数的对称性例8、如果函数c bx x x f ++=2)(对任意实数t ,都有)3()3(t f t f -=+,那么)4(),3(),0(f f f 的大小关系是 。
变式:在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-.若()f x 在区间[1,2]上是减函数,则()f x( )A.在区间[2,1]--上是增函数,在区间[3,4]上是减函数B.在区间[2,1]--上是减函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是增函数,在区间[3,4]上是增函数答案:A(3)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
①)()(x b f x a f -=+ ⇔)(x f y =图象关于直线22)()(b a x b x a x +=-++=对称 推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称②c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称 推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(2)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)①函数)(x f y =与)(x f y -=图象关于y 轴对称;②函数)(x f y =与)(x f y --=图象关于原点对称函数;③函数)(x f y =与()y f x =-图象关于x 轴对称;④函数)(x a f y +=与)(x b f y -=图象关于直线2a b x -=对称;推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称;推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称;推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称;8、函数的周期性例9、(1)设()f x 是R 上的奇函数,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,求(7.5)f 的值.答案:0.5-.(2)已知函数()f x 是定义域为R 的偶函数,对任意x R ∈都有(4)()2(2),f x f x f +=+(1)2f -=,则(2013)f 等于( ).A.1B.2C.3D.4答案:B.(3)已知函数()f x 对任意x R ∈都有(6)()2(3),(1)f x f x f y f x ++==-的图像关于点(1,0)对称,且(4)4f =,则(2012)f =( )A .0B .-4C .-8D .-16答案:4-几种特殊的抽象函数的周期:函数()y f x =满足对定义域内任一实数x (其中a 为常数),①()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =, 若()f x 为偶函数,则其周期为2T a =.9、函数最值例10、已知函数()f x 对任意,x y 总有()()()f x y f x f y +=+,且当0x >时,()0f x <,32)1(-=f .(1)求证:()f x 是奇函数;(2)求证:()f x 是R 上的减函数;(3)求()f x 在[3,3]-上的最大值及最小值。
10、恒成立问题例11、已知函数22()(1)x x a f x x x++=≥,若对任意[1,),()0x f x ∈+∞>恒成立,求实数a 的取值范围.答案:3a >-11、不动点问题例12、对于函数()f x ,若存在0x ,使00()f x x =成立,则0x 称为()f x 的不动点。
已知函数2()(1)(1),(0)f x ax b x b a =+++-≠。
(1)当1,2a b ==-时,求函数()f x 的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求实数a 的取值范围。
反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:补充:1、已知集合{|25},{|121},,A x x B x m x m A B A m =-≤≤=+≤≤-=若求实数的取值范围。