1.5成轴对称图形的性质(2)
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
专题1.5 生活中的轴对称章末重难点题型【北师大版】【考点1 轴对称图形的识别】【方法点拨】解决此类问题关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【例1】(2020春•岳阳期末)2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是()A.协和医院B.湘雅医院C.齐鲁医院D.华西医院【变式1-1】(2020春•青岛期末)下列交通指示标识中,是轴对称图形的有()A.1个B.2个C.3个D.4个【变式1-2】(2020春•陈仓区期末)下列与防疫有关的图案中不是轴对称图形的有()A.1个B.2个C.3个D.4个【变式1-3】(2020春•揭阳期末)下列图形中,是轴对称图形的有()个.①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形A.4个B.5个C.6个D.7个【考点2 生活中的轴对称现象】【方法点拨】解决此类问题关键是掌握镜面对称原理及反射角与入射角的定义.【例2】(2020春•玉门市期末)如图,课间休息时,小新将镜子放在桌面上,无意间看到镜子中有一串数字,原来是桌旁墙面上张贴的同学手机号码中的几个数字,请问镜子中的数字对应的实际数字是.【变式2-1】(2020春•禅城区期末)室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20【变式2-2】(2019秋•润州区校级月考)如图是一个经过改造的规则为4×7的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【变式2-3】(2020春•兖州区期末)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的()A.A点B.B点C.C点D.D点【考点3 轴对称的性质与运用】【方法点拨】轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.【例3】(2020春•舞钢市期末)如图,△ABC中,∠B=60°,∠C=50°,点D是BC上任一点,点E 和点F分别是点D关于AB和AC的对称点,连接AE和AF,则∠EAF的度数是()A.140°B.135°C.120°D.100°【变式3-1】(2020秋•东城区校级期中)如图,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5,PN=3,MR=7,则线段QN的长为()A.1B.1.5C.2D.2.5【变式3-2】(2020秋•海珠区校级期中)如图,点P为∠AOB内一点,分别作出P点关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,若∠AOB=40°,则∠MPN的度数是()A.90°B.100°C.120°D.140°【变式3-3】(2020秋•兴宁区校级期中)如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④BP=EQ.其中正确的结论个数是()A.1B.2C.3D.4【考点4 等腰三角形中的分类讨论思想】【例4】(2020秋•淮南期末)等腰三角形的周长为14cm,其中一边长为4cm,则该等腰三角形的腰长为()A.4cm B.5cm C.4cm或5cm D.4cm或6cm【变式4-1】(2021春•南海区校级月考)等腰三角形一腰上的高与另一腰的夹角等于30°,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【变式4-2】(2020秋•扶余市期末)如图,点P是射线ON上一动点,∠AON=30°,当△AOP为等腰三角形时,∠A的度数一定不可能是()A.120°B.75°C.60°D.30°【变式4-3】(2021春•浦东新区期中)已知等腰三角形的底边长为6,一条腰上的中线把三角形的周长分为两部分,其中一部分比另外一部分长2,则三角形的腰长是.【考点5 作等腰三角形】【例5】(2020秋•随县期末)已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【变式5-1】(2020•海门市一模)线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.7【变式5-2】(2019秋•安陆市期末)如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条【变式5-3】(2019秋•鼓楼区月考)如图,直线PQ上有一点O,点A为直线外一点,连接OA,在直线PQ上找一点B,使得△AOB是等腰三角形,这样的点B最多有个.【考点6 角平分线的性质】【方法点拨】角平分线的性质:角平分线上的点到角两边的距离相等,解决此类问题的关键在于作垂线. 【例6】(2019秋•大名县期中)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【变式6-1】(2019秋•永嘉县校级期中)如图,AC,BC分别平分∠BAE,∠ABF,若△ABC的高CD=8,则点C到AE,BF的距离之和为.【变式6-2】(2019秋•长沙月考)如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=24,BC=12,则DE等于()A.10B.7C.5D.4【变式6-3】(2020春•碑林区校级期末)如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64B.48C.32D.42【考点7 角平分线的性质与判定综合】【方法点拨】掌握到角的两边距离相等的点在角的平分线上是解决此类问题的关键.【例7】(2020秋•兴隆县期中)如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°【变式7-1】(2019春•福田区校级期中)如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°③∠ACB=2∠APB;④若PM⊥BE,PN⊥BC,则AM+CN=ACA.1个B.2个C.3个D.4个【变式7-2】(2020春•龙岗区期末)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF =BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【变式7-3】(2020春•崇川区校级期末)如图,△ABC的角平分线AE,BF交于O点.(1)若∠ACB=70°,则∠BOA=;(2)求证:点O在∠ACB的角平分线上.(3)若OE=OF,求∠ACB的度数.【考点8 线段垂直平分线的应用】【方法点拨】线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键【例8】(2020春•沙坪坝区校级期末)如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC 的延长线于点E,交AC于点F,若AB+BC=6,则△BCF的周长为()A.4.5B.5C.5.5D.6【变式8-1】(2020春•郫都区期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【变式8-2】(2019秋•百色期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【变式8-3】(2020春•萍乡期末)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD ⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.【考点9 尺规作图】【例9】(2021春•碑林区校级月考)如图,在四边形ABCD中,AB=AD,CD>BC,请用尺规作图法在CD边上求作一点P,使得S△ADP=S△ABP.(要求:尺规作图,不写作法,保留作图痕迹)【变式9-1】(2020春•莱州市期末)如图,直线l1,l2,l3表示三条相互交叉的公路,现在要建设一个货物中转站,要求它到三条公路的距离相等,请确定中转站P的位置.要求:用尺规作图,保留作图痕迹,标注字母P,不写作法.【变式9-2】(2020春•靖远县期末)尺规作图.如图所示,已知A、B、C是三个新建的居民小区.现要在到三个小区距离相等的地方修建一所学校D,试确定学校D的位置.(保留作图痕迹,不写作法)【变式9-3】(2020春•广饶县期末)如图,求作一点P,使PC=PD,并且点P到∠AOB两边的距离相等(不写作法,保留作图痕迹).【考点10 设计轴对称图案】【方法点拨】轴对称设计图案的关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【例10】(2020春•抚州期末)如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个【变式10-1】(2020•宁波模拟)请在如图四个3×3的正方形网格中,画出与格点三角形(阴影部分)成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的四个图不能重复)【变式10-2】(2020春•禅城区期末)观察设计:(1)观察如图①、②中阴影部分构成的图案,请写出这2个图案都具有的2个共同特征;(2)借助后面的空白网格,请设计2个新的图案,使该图案同时具有你在解答(1)中所写出的2个共同特征.(注意:新图案与已有的2个图案不能重合)【变式10-3】(2020春•兰州期末)如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)11。
新旧版青岛版初中数学教材(总目录)对照旧版青岛版初中数学教材七年级上册第1章基本的几何图形 1.1 我们身边的图形世界 1.2 几何图形1.3 线段、射线和直线 1.4 线段的比较与作法第2章有理数2.1 有理数2.2 数轴2.3 相反数与绝对值第3章有理数的运算3.1 有理数的加法与减法 3.2 有理数的乘法与除法 3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行有理数的运算第4章数据的收集、整理与描述4.1 普查和抽样调查 4.2 简单随机抽样 4.3 数据的整理 4.4 扇形统计图第5章代数式与函数的初步认识 5.1 用字母表示数 5.2 代数式 5.3 代数式的值5.4 生活中的常量与变量 5.5 函数的初步认识第6章整式的加减6.1 单项式与多项式 6.2 同类项 6.3 去括号 6.4 整式的加减第7章数值的估算 7.1 生活中的数值估算 7.2 近似数和有效数字 7.3 估算的应用与调整第8章一元一次方程 7.1 等式的基本性质 7.2 一元一次方程7.3 一元一次方程的解法 7.4 一元一次方程的应用2021新版青岛版初中数学教材七(上)(60课时)第1章基本的几何图形(8课时) 1.1 我们身边的图形世界1课时 1.2 几何图形2课时1.3 线段、射线和直线2课时 1.4 线段的比较和作法2课时回顾与总结1课时第2章有理数(5课时)2.1 有理数1课时 2.2 数轴2课时 2.3 相反数与绝对值1课时回顾与总结1课时第3章有理数的运算(13课时) 3.1 有理数的加法与减法4课时 3.2 有理数的乘法与除法3课时 3.3 有理数的乘方2课时3.4 有理数的混合运算1课时3.5 用计算器进行有理数运算1课时回顾与总结2课时第4章数据的收集、整理与描述(6课时)4.1 普查与抽样调查1课时 4.2 简单随机抽样1课时 4.3 数据的整理1课时 4.4 扇形统计图2课时回顾与总结1课时第5章代数式与函数的初步认识(8课时)5.1 用字母表示数1课时 5.2 代数式2课时 5.3 代数式的值1课时5.4 生活中的常量与变量2课时 5.5 函数的初步认识1课时回顾与总结1课时综合与实践你知道的数学公式2课时第6章整式的加减(6课时) 6.1 单项式与多项式1课时 6.2 同类项2课时 6.3 去括号1课时 6.4 整式的加减1课时回顾与总结1课时第7章一元一次方程(12课时) 7.1 等式的基本性质1课时 7.2 一元一次方程1课时7.3 一元一次方程的解法2课时 7.4 一元一次方程的应用6课时回顾与总结2课时七年级下册第9章角 9.1 角的表示 9.2 角的比较 9.3 角的度量 9.4 对顶角9.5 垂直第10章平行线 10.1 同位角10.2 平行线和它的画法 10.3 平行线的性质 10.4 平行线的判定第11章图形与坐标11.1 怎样确定平面内点的位置11.2 平面直角坐标系11.3 直角坐标系中的图形 11.4 函数与图象11.5 一次函数和它的图象第12章二元一次方程组 12.1 认识二元一次方程组 12.2 向一元一次方程转化 12.3 图象的妙用12.4 列方程组解应用题第13章走进概率 13.1 天有不测风云13.2 确定事件与不确定事件 13.3 可能性的大小 13.4 概率的简单计算课题学习掷币中的思考第14章整式的乘法 14.1 同底数幂的乘法与除法 14.2 指数可以是零和负整数吗14.3 科学记数法14.4 积的乘方与幂的乘方 14.5 单项式的乘法 14.6 多项式乘多项式第15章平面图形的认识 15.1 三角形 15.2 多边形15.3 多边形的密铺 15.4 圆的初步认识15.5 用直尺和圆规作图七(下)(61课时)第8章角(7课时) 8.1 角的表示1课时 8.2 角的比较1课时 8.3 角的度量2课时 8.4 对顶角1课时 8.5 垂直1课时回顾与总结1课时第9章平行线(6课时)9.1 同位角、内错角、同旁内角1课时 9.2 平行线和它的画法1课时 9.3 平行线的性质1课时 9.4 平行线的判定2课时回顾与总结1课时第10章一次方程组(9课时) 10.1 认识二元一次方程组1课时 10.2 二元一次方程组的解法2课时 *10.3 三元一次方程组2课时 10.4 列方程组解应用题3课时回顾与总结1课时第11章整式的乘除(14课时) 11.1 同底数幂的乘法1课时11.2 积的乘方与幂的乘方2课时 11.3 单项式的乘法2课时 11.4 多项式的乘法2课时 11.5 同底数幂的除法1课时11.6 零指数幂和负整数指数幂4课时回顾与总结2课时第12章乘法公式和因式分解(7课时) 12.1 平方差公式1课时 12.2 完全平方公式2课时12.3 用提公因式法进行因式分解1课时 12.4 用公式法进行因式分解2课时回顾与总结1课时第13章平面图形的认识(10课时) 13.1 三角形4课时13.2 多边形2课时 13.3 圆2课时回顾与总结2课时综合与实践多边形的密铺2课时第14章位置与坐标(6课时) 14.1 用有序数对表示位置1课时 14.2 平面直角坐标系1课时14.3 直角坐标系中的简单图形2课时14.4 用方向和距离描述两个物体的相对位置1课时回顾与总结1课时八年级上册第1章轴对称与轴对称图形 1.1 我们身边的轴对称图形 1.2 线段的垂直平分线1.3 角的平分线 1.4 等腰三角形1.5 成轴对称的图形的性质 1.6 镜面对称1.7 简单的图案设计第2章乘法公式与因式分解 2.1 平方差公式 2.2 完全平方公式2.3 用提公因式法进行因式分解 2.4 用公式法进行因式分解第3章分式3.1 分式的基本性质 3.2 分式的约分3.3 分式的乘法与除法 3.4 分式的通分3.5 分式的加法与减法 3.6 比和比例 3.7 分式方程第4章样本与估计 4.1 普查与抽样调查 4.2 样本的选取 4.3 加权平均数4.4 中位数 4.5 众数4.6 用计算器求平均数课题学习学生课外生活情况的调查第5章实数 5.1 算术平方根 5.2 勾股定理5.3 2是有理数吗5.4 由边长判定直角三角形 5.5 平方根 5.6 立方根 5.7 方根的估算5.8 用计算器求平方根和立方根 5.9 实数第6章一元一次不等式 6.1 不等关系和不等式 6.2 一元一次不等式 6.3 一元一次不等式组八(上)(59课时)第1章全等三角形(9课时) 1.1 全等三角形1课时1.2 怎样判定三角形全等4课时 1.3 尺规作图3课时回顾与总结1课时第2章图形的轴对称(12课时) 2.1 图形的轴对称1课时2.2 轴对称的基本性质2课时 2.3 轴对称图形1课时2.4 线段的垂直平分线2课时 2.5 角的平分线1课时 2.6 等腰三角形3课时回顾与总结2课时第3章分式(15课时)3.1 分式和它的基本性质2课时 3.2 分式的约分1课时3.3 分式的乘法和除法1课时 3.4 分式的通分1课时3.5 分式的加法与减法2课时 3.6 比和比例3课时 3.7 分式方程3课时回顾与总结2课时第4章数据分析(9课时) 4.1 加权平均数2课时 4.2 中位数1课时 4.3 众数1课时4.4 数据的离散程度1课时 4.5 方差2课时4.6 用计算器求平均数及方差1课时回顾与总结1课时综合与实践统计开放日模拟现场会(暂定)2课时第5章几何证明初步(12课时)5.1 定义与命题1课时 5.2 为什么要证明1课时 5.3 什么是几何证明1课时5.4 平行线的性质定理和判定定理1课时 5.5 三角形内角和定理2课时 5.6 几何证明举例4课时回顾与总结2课时八年级下册第7章二次根式7.1 二次根式及其性质 7.2 二次根式的加减法 7.3 二次根式的乘除法第8章平面图形的全等与相似 8.1 全等形与相似形 8.2 全等三角形8.3 怎样判定三角形全等 8.4 相似三角形8.5 怎样判定三角形相似 8.6 相似多边形课题学习有趣的分形图第9章解直角三角形 9.1 锐角三角比9.2 30,45,60角的三角比 9.3 用计算器求锐角三角比 9.4 解直角三角形9.5 解直角三角形的应用第10章数据离散程度的度量 10.1 数据的离散程度 10.2 极差10.3 方差与标准差10.4 用科学计算器计算方差和标准差第11章几何证明初步 11.1 定义与命题11.2 为什么要证明 11.3 什么是几何证明 11.4 三角形内角和定理 11.5 几何证明举例 11.6 反证法八(下)(61课时)第6章平行四边形(11课时) 10.1 平行四边形及其性质2课时 10.2 平行四边形的判定2课时 10.3 特殊的平行四边形4课时 10.4 三角形中位线定理1课时回顾与总结2课时第7章实数(15课时) 6.1 算术平方根1课时 6.2 勾股定理1课时 6.32是有理数吗2课时6.4 由边长判定直角三角形2课时 6.5 平方根1课时 6.6 立方根1课时6.7 用计算器求平方根与立方根2课时 6.8 实数3课时回顾与总结2课时第8章一元一次不等式(8课时) 7.1 不等式的基本性质2课时 7.2 一元一次不等式2课时7.3 列一元一次不等式解应用题1课时 7.4 一元一次不等式组2课时回顾与总结1课时第9章二次根式(7课时) 8.1 二次根式和它的性质3课时 8.2 二次根式的加减法1课时8.3 二次根式的乘法和除法2课时回顾与总结1课时第10章一次函数(9课时) 9.1 函数的图象2课时9.2 一次函数和它的图象2课时 9.3 一次函数的性质1课时9.4 一次函数与二元一次方程1课时 9.5 一次函数与一元一次不等式2课时回顾与总结1课时综合与实践从函数图象中获取信息2课时第11章图形的平移和旋转(9课时) 11.1 图形的平移3课时 11.2 图形的旋转3课时 11.3 图形的中心对称2课时回顾与总结1课时综合与实践哪条路径最短九年级上册第1章特殊四边形1.1 平行四边形及其性质 1.2 平行四边形的判定 1.3 特殊的平行四边形 1.4 图形的中心对称 1.5 梯形1.6 中位线定理第2章图形变换2.1 图形的平移 2.2 图形的旋转 2.3 图形的位似第3章一元二次方程 3.1 一元二次方程3.2 用配方法解一元二次方程 3.3 用公式法解一元二次方程 3.4 用因式分解法解一元二次方程3.5 一元二次方程的应用第4章对圆的进一步认识4.1 圆的对称性4.2 确定圆的条件 4.3 圆周角4.4 直线与圆的位置关系 4.5 三角形的内切圆 4.6 圆与圆的位置关系4.7 弧长及扇形面积的计算九(上)(62课时)第1章相似多边形(12课时) 1.1 相似多边形1课时1.2 相似三角形的判定5课时 1.3 相似三角形的性质1课时 1.4 图形的位似2课时回顾与总结2课时第2章解直角三角形(11课时) 2.1 锐角三角比1课时2.2 30°,45°,60°角的三角比1课时 2.3 用计算器求锐角三角比2课时 2.4 解直角三角形2课时2.5 解直角三角形的应用3课时回顾与总结2课时第3章对圆的进一步认识(18课时) 3.1 圆的对称性3课时 3.2 确定圆的条件2课时 3.3 圆周角3课时3.4 直线与圆的位置关系4课时 3.5 三角形的内切圆1课时3.6 弧长与扇形面积计算1课时 3.7 正多边形与圆2课时回顾与总结2课时综合与实践图形变化与图案设计2课时第4章一元二次方程(13课时) 4.1 一元二次方程2课时4.2 用因式分解法解一元二次方程1课时 4.3 用配方法解一元二次方程2课时 4.4 用公式法解一元二次方程3课时*4.5 一元二次方程根与系数的关系1课时4.6一元二次方程的应用2课时回顾与总结2课时第5章走进概率(7课时) 5.1 随机事件1课时 5.2 概率的意义1课时 5.3 概率的简单计算2课时 5.4 用列举法计算概率2课时回顾与总结1课时感谢您的阅读,祝您生活愉快。
图形的轴对称【要点梳理】要点一、轴对称★轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:(1)轴对称的定义包含两层含义:①有两个全等的图形;②两个图形的位置必须满足沿一条直线对折后能完全重合.(2)图形的翻折变换就是轴对称变换.(3)对阵周是一条直线,而不是射线或线段.(4)轴对称是图形的变换的一种方式.【例1】将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.要点二、两个图形关于某条直线成轴对称一个图形以某条直线为对称轴,经过轴对称后,能够与另一个图形重合,就说这两个图形关于这条直线成轴对称,重合的点叫做对应点.要点三、成轴对称的性质成轴对称的两个图形是全等形,对应线段相等,对应角相等.要点诠释:(1)成轴对称的两个图形是全等形,但是全等形不一定成轴对称.(2)我们可以运用成轴对称的性质说明线段相等、角相等.要点三、成轴对称图形的性质成轴对称的两个图形是全等形,对应线段相等,对应角相等.要点诠释:成轴对称的两个图形是全等的,但是全等的图形不一定成轴对称.【例2】如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【变式2.1】下列说法正确的是()A.两个全等形一定成轴对称B. 成轴对称的两个图形一定全等C. 成轴对称的图形是一个图形D. 成轴对称的两个三角形不一定全等【变式】下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是()A.B.C.D.【变式2.1】如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°【变式2.2】如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°【变式2.3】如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB为.【变式】如图所示,扇形的面积为12π平方单位,C、D是弧AB的三等分点,则阴影部分的面积等于()平方单位。
人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。
青岛版初中数学教材(总目录)青岛版初中数学教材总目录七年级上册(最新)第1章基本的几何图形1.1我们身边的图形世界1.2几何图形1.3线段、射线和直线1.4线段的比较与作法第2章有理数2.1有理数2.2数轴2.3相反数与绝对值第3章有理数的运算3.1有理数的乘法与加法3.2有理数的乘法与乘法3.3有理数的乘方3.4有理数的混合运算3.5利用计算器展开有理数的运算第4章数据的搜集、整理与叙述4.1普查和抽样调查4.2直观随机抽样4.3数据的整理4.4扇形统计图第5章代数式与函数的初步认识5.1用字母表示数5.2代数式5.3代数式的值5.4生活中的常量与变量5.5函数的初步认识第6章整式的以此类推6.1单项式与多项式6.2同类项6.3回去括号6.4整式的以此类推第7章一元一次方程7.1等式的基本性质7.2一元一次方程7.3一元一次方程的数学分析7.4一元一次方程的应用领域七年级下册第9章角9.1角的表示9.2角的比较9.3角的度量9.4对顶角9.5垂直第10章平行线10.1同位角10.2平行线和它的画法10.3平行线的性质10.4平行线的判定第11章图形与坐标11.1怎样确定平面内点的位置11.2平面直角坐标系11.3直角坐标系中的图形11.4函数与图象11.5一次函数和它的图象第12章二元一次方程组12.1重新认识二元一次方程组12.2向一元一次方程转变12.3图象的妙用12.4列方程组求解应用题第13章来到概率13.1天有不测风云13.2确认事件与不能确认事件13.3可能性的大小13.4概率的直观排序课题自学掷币中的思索第14章整式的乘法14.1同底数幂的乘法与乘法14.2指数可以就是零和负整数吗14.3科学记数法14.4内积的乘方与幂的乘方14.5单项式的乘法14.6多项式乘坐多项式第15章平面图形的重新认识15.1三角形15.2多边形15.3多边形的密铺15.4圆的初步重新认识15.5用直尺和圆规作图八年级上册第1章轴对称与轴对称图形1.1我们身边的轴对称图形1.2线段的垂直平分线1.3角的平分线1.4等腰三角形1.5成轴对称的图形的性质1.6镜面等距1.7直观的图案设计第2章乘法公式与因式分解2.1平方差公式2.2全然平方公式2.3用提公因式法进行因式分解2.4用公式法进行因式分解第3章分式3.1分式的基本性质3.2分式的约分3.3分式的乘法与除法3.4分式的通分3.5分式的加法与减法3.6比和比例3.7分式方程第4章样本与估计4.1普查与抽样调查4.2样本的选取4.3加权平均数4.4中位数4.5众数4.6用计算器谋平均数课题学习学生课外生活情况的调查第5章实数5.1算术平方根5.2勾股定理5.32就是有理数吗5.4由边长认定直角三角形5.5平方根5.6立方根5.7方根的估计5.8用计算器求平方根和立方根5.9实数第6章一元一次不等式6.1左右关系和不等式6.2一元一次不等式6.3一元一次不等式组八年级下册第7章二次根式7.1二次根式及其性质7.2二次根式的加减法7.3二次根式的秦九韶法第8章平面图形的全等与相似8.1全等形与相似形8.2全等三角形8.3怎样判定三角形全等8.4相似三角形8.5怎样判定三角形相似8.6相似多边形课题学习有趣的分形图第9章解直角三角形9.1锐角三角比9.230?,45?,60?角的三角比9.3用计算器谋锐角三角比9.4求解直角三角形9.5求解直角三角形的应用领域第10章数据线性程度的度量10.1数据的线性程度10.2极差10.3方差与标准差10.4用科学计算器计算方差和标准差第11章几何证明初步11.1定义与命题11.2为什么要证明11.3什么是几何证明11.4三角形内角和定理11.5几何证明举例11.6反证法九年级下册第1章特殊四边形1.1平行四边形及其性质1.2平行四边形的判定1.3特殊的平行四边形1.4图形的中心对称1.5梯形1.6中位线定理第2章图形变换2.1图形的平移2.2图形的旋转2.3图形的位似第3章一元二次方程3.1一元二次方程3.2用配方法解一元二次方程3.3用公式法解一元二次方程3.4用因式分解法解一元二次方程3.5一元二次方程的应用第4章对圆的进一步认识4.1圆的对称性4.2确定圆的条件4.3圆周角4.4直线与圆的边线关系4.5三角形的内切圆4.6圆与圆的边线关系4.7弧长及扇形面积的排序九年级下册第5章对函数的再积极探索5.1函数与它的表示法5.2一次函数与一元一次不等式5.3反比例函数5.4二次函数5.5二次函数y?ax2的图象和性质5.6二次函数y?ax2?bx?c的图象和性质5.7确定二次函数的解析式5.8二次函数的应用5.9用图象法解一元二次方程第6章频率与概率6.1频数与频率6.2频数原产直方图6.3用频率估算概率6.4用树状图排序概率课题自学质数的原产第7章空间图形的初步重新认识7.1几种常用的几何体7.2棱柱的侧面进行图7.3圆柱、圆锥的侧面进行图第8章投影与Arracourt8.1从相同的方向看看物体8.2盲区8.3影子和投影8.4正投影8.5物体的三视图。
轴对称知识点汇总3篇轴对称这一章,知识点琐碎,内容繁杂,极易混淆,多练这些题,有助同学们把握重难点,有所突破!下面是小编给大家带来的轴对称知识点汇总,欢迎大家阅读参考,我们一起来看看吧!轴对称最全知识点汇总一、知识梳理1、轴对称如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴.两个图形中的对应点叫对称点.2、轴对称图形把一个图形沿一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.这个图形关于这条直线(成轴)对称.3、轴对称与对称轴的区别与联系区别:轴对称指的是两个图形的位置关系,而轴对称图形指的是具有对称性的某一个图形.联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形.如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称.4、一些典型图形的对称轴条数和表述语言正方形有4条对称轴,分别是对角线所在直线,2条;对边中点连线所在直线,2条.长方形有2条对称轴,是对边中点连线所在直线,2条.等腰三角形有1条对称轴,是顶角顶点与对边中点连线所在直线.(或顶角角平分线,底边中线,底边上的高所在直线)等边三角形有3条对称轴,分别是任意顶点与对边中点连线所在直线,3条.(或任意角角平分线,任意边的中线,任意边上的高所在直线)等腰梯形有1条对称轴,是上底中点与下底中点连线所在直线.圆有无数条对称轴,分别是直径所在直线,无数条.5、垂直平分线(中垂线)定义垂直并且平分一条线段的直线,叫做这条线段的垂直平分线.书写格式:判定:∵AO=A′O,∠1=90°,∴l 是AA′的垂直平分线.性质:∵l是AA′的垂直平分线,∴AO=A′O,∠1=∠2=90° .6、轴对称性质成轴对称的两个图形全等,且(1)对应点的连线被对称轴垂直平分.(2)对应点的连线互相平行(或在同一条直线上).(3)对应线段相等,对应角相等.(4)对应线段所在直线的交点在对称轴上(或对应线段所在直线互相平行).7、对称轴的作法法1:作一条对应点的连线,并作其中垂线.法2:作两条对应点的连线,并分别作其中点,两点确定一条直线.法3:分别延长两对对应线段,确定两个交点,两点确定一条直线.8、给出一个图形及对称轴,作其对称图形的作法过原图形各点画对称轴的垂线,以各点到垂足的距离为半径,截取相等,将所作对应点分别相连.八年级数学轴对称知识讲解轴对称【学习目标】1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.4.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.【要点梳理】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.要点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心初二数学轴对称测试题及答案1.下列图形不是轴对称图形的是( )2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.163.已知am=5,an=6,则am+n的值为( )A.11B.30C.D.4.下列计算错误的是( )A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a65.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )A.SASB.ASAC.SSSD.AAS6.计算(x+3y)2﹣(3x+y)2的结果是( )6.计算(x+3y)2﹣(3x+y)2的结果是( )A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.18C.26D.288.计算(﹣2x+1)(﹣3x2)的结果为( )A.6x3+1B.6x3﹣3C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是( )A①②③ B、① C、② D、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=__________12.化简(1- )(m+1)的结果是 .13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.(本题8分)计算:(1)(3a﹣2b)(9a+6b); (2)(﹣2m﹣1)2;18.(本题8分)分解因式:4m2﹣9n219.(本题8分)解分式方程 =20.(本题8分)已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.(本题10分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;运用与拓广:22.(本题8分)2015年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.(本题10分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.(本题12分)如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案一、选择题1. B.2. C.3. B.4. A.5. A.6. B.7. B.8. C.9. B. 10. A二、填空题11. 12. m. 13. 2+n. 14. 60 15. 15 16.十一.三、解答题17.解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1;18.解:4m2﹣9n2=(2m+3n)(2m﹣3n).19.解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.20.解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,∠DEC=∠AFB,∠ C=∠A,DC=BA,∴△DEC≌△BFA,∴CE=AF,∴CE=5.21.解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);22.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.23.解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,OC=OD,∠EUC=∠BOE,OE=OE,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2)△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴B D=4厘米,∴PC=BD,在△BPD和△CQP中,BD=PC,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t= = 秒,∴VQ= = 厘米/秒.。
1.5 等腰三角形的轴对称性复习课[趣题导学]建筑工人在建房子时,为了确定房梁是否水平,常用这样的方法:用一块等腰三角板放在梁上,从顶角顶点系一重物,假如系重物的绳刚好经过三角板的底边中点,则认为房梁就是水平的,你认为这样做有道理吗? 解答:这样做有道理。
如图1.5-1,△ABC 为等腰三角形,所系重物过底边中点D 点,则可知AD 为等腰三角形的底边中线,根据等腰三角形底的平分线,底边的高,底边的中线,“三线合一”的性质,可知AD 也为高,即AD ⊥BC ,AD 的方向正好为铅垂方向,与铅垂方向垂直的线则是水平线,由此可知梁BC 是水平的。
[双基锤炼]一、选择题1、以下图形中,不一定是轴对称图形的是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .直角三角形 2、有以下长度的三条线段,能组成等腰三角形的是( )A .2cm ,2cm ,4cmB .3cm ,8cm ,3cmC .3cm ,4cm ,6cmD .5cm ,4cm ,4cm 3、等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为( ) A .40°,40° B .80°,20°C .50°,50°D .50°,50°或80°,20°4、如图1.5-2,在△ABC 中,点D 、E 、F 分别在边BC 、AB 、AC 上,且BD=BE ,CD=CF ,∠A=70°,那么∠FDE 等于( )A .40°B .45°C .55°D .35°5、以下说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不.准确..的个数是( ) 图1.5-2A BCEFDA .1B .2C .3D .46、如图1.5-3,在△ABC 中,AB=AC ,∠A=36°,角平分线BE 与CD 相交于点F ,那么图中等腰三角形有( )A .6个B .7个C .8个D .9个7、如图1.5-4,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是( ) A .21B .18C .13D .15二、填空题8、在等边三角形、角、线段这三个图形中,对称轴最多的是 ,它共有 条对称轴,最少的是 ,有 条对称轴.9、若等腰三角形的顶角的外角是80°,那么它的底角是____________.10、如图1.5-5,B 、D 、F 在AN 上,C 、E 在AM上,且AB=BC=CD ,EC=ED=EF ,∠A=20°,则∠FEM 度数是 .11、如图1.5-6,在△ABC 中,∠ACB=90°,D 是AB 的中点,CE ⊥AB ,且AC=6,BC=8,EC=4.8,则CD 的长度是 .12、如图1.5-7,在△ABC 中,PM 、QN 分别是AB 、AC 的垂直平分线,∠BAC=110°,那么∠PAQ 等于 °.MAEFCB图1.5-4AFEDBC图1.5-3MCE图1.5-5三、解答题13、如图1.5-8,在△ABC 中,D 在BC 上,若AD=BD , AB=AC=CD ,求∠ABC 的度数.14、如图1.5-9,△ABC 中,角平分线BO 与CO 的相交点O ,OE ∥AB ,OF ∥AC ,BC=10,求△OEF 的周长.[水平提升] 一、综合渗透1、等腰三角形上的高与一腰的夹角为30°,则其顶角的度数为( ). A.60° B.120° C.60°或150° D.60°或120°2、如图1.5-10,在△ABC 中,AB=AC ,AD=AE ,∠BAD=30°,∠EDC 是( ) A .10° B .12.5° C .15° D .20°ABCMNPQ图1.5-7ABCED图1.5-6C图1.5-8ABCEFO图1.5-93、如图1.5-11,在△ABC 中,CF ⊥AB ,BE ⊥AC ,M 为BC 的中点,则图中等腰三角形有( ) A .2个B .4个C .3个D .5个4、(2005玉林)如图1.5-12,在△ABC 中,AB=AC ,BE 平分∠ABC ,DE ∥BC . 求证:DE=EC .5、如图1.5-13,△ABC 是等边三角形,P 为△ABC 内部一点,将△ABP 绕点A 逆时针旋转后,能与△ACP ˊ重合,假如AP=3,求PP ˊ的长. (以下空6行)二、应用创新1、如图1.5-14,△ABC 中,∠B=∠C ,AD ⊥BC ,垂足为D ,DE ∥AB 。
义务教育基础课程初中教学资料第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。
教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。
3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
动手画出第5页几幅图片的对称轴。
说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。
轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。
学生口述对称轴的位置。
4、讨论、交流:轴对称与轴对称图形的区别与联系。
区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。
联系:两部分都完全重合,都有对称轴,都有对称点。
5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。
6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。
三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。
轴对称的基本性质二、新知探究3.结合轴对称的基本性质,求出点Q关于标:;点Q〞关于y轴的对称点坐标:。
4.你能写出点(-1,0)关于y轴和x轴对称点的坐标吗?点(呢?中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
八年级数学(上)预习案(第一章)
1.5成轴对称图形的性质(2)
一、课前预习
的内容,思考并总结本节课学习的主要内容,写在学习任务一:阅读教材P
18-19
下面横线上:
学习任务二:利用轴对称图形的性质,探索作一个点关于一条直线的对称点的方法。
1、作一个点关于一条直线的对称点,你有什么方法?并解释这样做的原因?
学习任务三:阅读教材第19页的例2,回答下列问题。
1、⊿BCD关于直线L的对称图形是
2、所作三角形的三个顶点分别是⊿BCD的三个顶点关于直线L的对称点,因此只须确定对称图形的
预习质疑:
问题:
预习检测:(要知道提出一个问题比解决一个问题更有价值!)
1、课本第19页练习1、2题,直接在课本上完成。
2、如图是轴对称图形的一部分,其中是对称轴,请把它补充完整.。